code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
def SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: """simple docstring""" return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] _SCREAMING_SNAKE_CASE : Tuple = generate_large_matrix() _SCREAMING_SNAKE_CASE : int = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] ) -> None: """simple docstring""" assert all(row == sorted(__UpperCamelCase , reverse=__UpperCamelCase ) for row in grid ) assert all(list(__UpperCamelCase ) == sorted(__UpperCamelCase , reverse=__UpperCamelCase ) for col in zip(*__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] ) -> int: """simple docstring""" A__ : List[str] = 0 A__ : int = len(__UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A__ : Union[str, Any] = (left + right) // 2 A__ : Optional[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A__ : Optional[int] = mid + 1 else: A__ : Any = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Dict = len(grid[0] ) for i in range(len(__UpperCamelCase ) ): A__ : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCamelCase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[list[int]] ) -> int: """simple docstring""" A__ : Optional[Any] = 0 for row in grid: for i, number in enumerate(__UpperCamelCase ): if number < 0: total += len(__UpperCamelCase ) - i break return total def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) A__ : Any = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A__ : Union[str, Any] = timeit(F"{func}(grid=grid)" , setup=__UpperCamelCase , number=5_00 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ ): super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ = 1 , UpperCamelCase__ = 2000 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , **UpperCamelCase__ , ): A__ : Tuple = self.unet.config.sample_size A__ : List[Any] = (batch_size, 3, img_size, img_size) A__ : Tuple = self.unet A__ : Union[str, Any] = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ ) * self.scheduler.init_noise_sigma A__ : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) self.scheduler.set_sigmas(UpperCamelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): A__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): A__ : Optional[Any] = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample A__ : Any = self.scheduler.step_correct(UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ).prev_sample # prediction step A__ : Any = model(UpperCamelCase__ , UpperCamelCase__ ).sample A__ : Dict = self.scheduler.step_pred(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A__ , A__ : str = output.prev_sample, output.prev_sample_mean A__ : List[str] = sample_mean.clamp(0 , 1 ) A__ : Optional[int] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : Optional[int] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase__ )
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import itertools import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ : List[Any] = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 1_00_01 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , __UpperCamelCase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _SCREAMING_SNAKE_CASE : List[str] = 2 class UpperCamelCase__ : '''simple docstring''' def __init__( self , *, # begin keyword-only arguments UpperCamelCase__="<s>" , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=None , ): A__ , A__ , A__ , A__ : str = bos, unk, pad, eos A__ : Optional[int] = [] A__ : List[str] = [] A__ : Any = {} A__ : str = self.add_symbol(UpperCamelCase__ ) A__ : Optional[Any] = self.add_symbol(UpperCamelCase__ ) A__ : Optional[Any] = self.add_symbol(UpperCamelCase__ ) A__ : str = self.add_symbol(UpperCamelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCamelCase__ ) A__ : Optional[int] = len(self.symbols ) def __eq__( self , UpperCamelCase__ ): return self.indices == other.indices def __getitem__( self , UpperCamelCase__ ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): return len(self.symbols ) def __contains__( self , UpperCamelCase__ ): return sym in self.indices @classmethod def __snake_case ( cls , UpperCamelCase__ ): A__ : int = cls() d.add_from_file(UpperCamelCase__ ) return d def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False ): if word in self.indices and not overwrite: A__ : Optional[Any] = self.indices[word] A__ : Any = self.count[idx] + n return idx else: A__ : Optional[Any] = len(self.symbols ) A__ : List[str] = idx self.symbols.append(UpperCamelCase__ ) self.count.append(UpperCamelCase__ ) return idx def __snake_case ( self , UpperCamelCase__ ): return 0 def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(UpperCamelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(UpperCamelCase__ ) ) return A__ : List[Any] = f.readlines() A__ : Any = self._load_meta(UpperCamelCase__ ) for line in lines[indices_start_line:]: try: A__ , A__ : str = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": A__ : List[Any] = True A__ , A__ : List[Any] = line.rsplit(''' ''' , 1 ) else: A__ : Optional[int] = False A__ : Dict = int(UpperCamelCase__ ) A__ : int = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(UpperCamelCase__ ) ) self.add_symbol(UpperCamelCase__ , n=UpperCamelCase__ , overwrite=UpperCamelCase__ ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] = dict((re.sub(R'''@@$''' , '''''' , __UpperCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , __UpperCamelCase ), v) for k, v in d.items() ) A__ : str = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"{k}</w>"] A__ : int = d[k] # restore return da def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : int ) -> Dict: """simple docstring""" if not os.path.exists(__UpperCamelCase ): raise ValueError(F"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) print(F"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models A__ : Tuple = os.path.join(__UpperCamelCase , '''checkpoint.pt''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F"path to the file {checkpoint_file} does not exist!" ) A__ : Dict = torch.load(__UpperCamelCase , map_location='''cpu''' ) A__ : Union[str, Any] = chkpt['''cfg''']['''model'''] # dicts A__ : Dict = os.path.join(__UpperCamelCase , '''dict.txt''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F"path to the file {dict_file} does not exist!" ) A__ : Union[str, Any] = Dictionary.load(__UpperCamelCase ) A__ : Any = rewrite_dict_keys(src_dict.indices ) A__ : Tuple = len(__UpperCamelCase ) A__ : List[str] = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # merges_file (bpecodes) A__ : List[Any] = os.path.join(__UpperCamelCase , '''bpecodes''' ) if not os.path.isfile(__UpperCamelCase ): raise ValueError(F"path to the file {bpecodes_file} does not exist!" ) A__ : Optional[int] = os.path.join(__UpperCamelCase , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(__UpperCamelCase , __UpperCamelCase ) # model config A__ : Optional[Any] = os.path.join(__UpperCamelCase , '''config.json''' ) A__ : Optional[Any] = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"Generating {biogpt_model_config_file}" ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # tokenizer config A__ : Tuple = os.path.join(__UpperCamelCase , __UpperCamelCase ) A__ : List[Any] = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"Generating {biogpt_tokenizer_config_file}" ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__UpperCamelCase , ensure_ascii=__UpperCamelCase , indent=__UpperCamelCase ) ) # model A__ : Union[str, Any] = chkpt['''model'''] # remove unneeded keys A__ : str = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): A__ : int = model_state_dict.pop(__UpperCamelCase ) else: A__ : Tuple = model_state_dict.pop(__UpperCamelCase ) A__ : Optional[int] = BioGptConfig.from_pretrained(__UpperCamelCase ) A__ : Dict = BioGptForCausalLM(__UpperCamelCase ) # check that it loads ok model_new.load_state_dict(__UpperCamelCase ) # save A__ : Dict = os.path.join(__UpperCamelCase , __UpperCamelCase ) print(F"Generating {pytorch_weights_dump_path}" ) torch.save(__UpperCamelCase , __UpperCamelCase ) print('''Conversion is done!''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=0.9 , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ): A__ : List[str] = size if size is not None else {'''shortest_edge''': 30} A__ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} A__ : List[str] = parent A__ : Union[str, Any] = batch_size A__ : Any = num_channels A__ : Optional[int] = min_resolution A__ : Any = max_resolution A__ : List[str] = do_resize_and_center_crop A__ : Dict = size A__ : Dict = crop_pct A__ : Union[str, Any] = crop_size A__ : str = do_normalize A__ : Optional[Any] = image_mean A__ : List[Any] = image_std def __snake_case ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = PoolFormerImageProcessor if is_vision_available() else None def __snake_case ( self ): A__ : int = PoolFormerImageProcessingTester(self ) @property def __snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''crop_pct''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) def __snake_case ( self ): A__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) A__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processing A__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : Dict = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : Tuple = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __snake_case ( self ): # Initialize image_processing A__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A__ : str = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : int = logging.get_logger() @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def __snake_case ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 0 _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = field(default_factory=SCREAMING_SNAKE_CASE_ ) def __call__( self , UpperCamelCase__ ): A__ : Any = Tracker(self.dest )(UpperCamelCase__ ).parametrized A__ : Optional[Any] = Tracker(self.src )(UpperCamelCase__ ).parametrized A__ : Tuple = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) A__ : Union[str, Any] = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise Exception( F"Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while" F" destination module has {len(UpperCamelCase__ )}." ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : ResNetConfig , __UpperCamelCase : Path , __UpperCamelCase : bool = True ) -> Union[str, Any]: """simple docstring""" print(F"Converting {name}..." ) with torch.no_grad(): A__ : List[str] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ).eval() A__ : List[str] = ResNetForImageClassification(__UpperCamelCase ).eval() A__ : List[Any] = ModuleTransfer(src=__UpperCamelCase , dest=__UpperCamelCase ) A__ : Any = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__UpperCamelCase ) assert torch.allclose(from_model(__UpperCamelCase ) , our_model(__UpperCamelCase ).logits ), "The model logits don't match the original one." A__ : Union[str, Any] = F"resnet{'-'.join(name.split('resnet' ) )}" print(__UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=__UpperCamelCase , ) # we can use the convnext one A__ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=__UpperCamelCase , ) print(F"Pushed {checkpoint_name}" ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Path , __UpperCamelCase : str = None , __UpperCamelCase : bool = True ) -> Dict: """simple docstring""" A__ : Optional[int] = '''imagenet-1k-id2label.json''' A__ : Optional[int] = 10_00 A__ : Optional[int] = (1, num_labels) A__ : Dict = '''huggingface/label-files''' A__ : List[Any] = num_labels A__ : str = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : str = idalabel A__ : List[str] = {v: k for k, v in idalabel.items()} A__ : Dict = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) A__ : str = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(__UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
import os import sys import unittest _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _SCREAMING_SNAKE_CASE : Dict = os.path.join(git_repo_path, 'src', 'transformers') _SCREAMING_SNAKE_CASE : Dict = '\n{0} = None\n' _SCREAMING_SNAKE_CASE : Dict = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' _SCREAMING_SNAKE_CASE : int = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : List[str] = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(UpperCamelCase__ ) A__ : Tuple = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(UpperCamelCase__ , '''tokenizers''' ) A__ : Tuple = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(UpperCamelCase__ , '''tensorflow_text''' ) A__ : Any = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tokenizers''' ) A__ : int = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tensorflow_text''' ) A__ : List[Any] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(UpperCamelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __snake_case ( self ): A__ : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , UpperCamelCase__ ) self.assertIn('''tensorflow_text''' , UpperCamelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , UpperCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __snake_case ( self ): A__ : str = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(UpperCamelCase__ , '''\nCONSTANT = None\n''' ) A__ : int = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( UpperCamelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) A__ : Optional[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' A__ : Union[str, Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' A__ : Any = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , UpperCamelCase__ )
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "detr" _lowerCAmelCase = ["past_key_values"] _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=100 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = backbone_config.get('''model_type''' ) A__ : int = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) # set timm attributes to None A__ , A__ , A__ : List[Any] = None, None, None A__ : Any = use_timm_backbone A__ : List[Any] = backbone_config A__ : str = num_channels A__ : Union[str, Any] = num_queries A__ : Optional[Any] = d_model A__ : List[Any] = encoder_ffn_dim A__ : Dict = encoder_layers A__ : int = encoder_attention_heads A__ : int = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Tuple = decoder_attention_heads A__ : Optional[Any] = dropout A__ : str = attention_dropout A__ : int = activation_dropout A__ : List[Any] = activation_function A__ : List[Any] = init_std A__ : str = init_xavier_std A__ : str = encoder_layerdrop A__ : List[Any] = decoder_layerdrop A__ : Tuple = encoder_layers A__ : Dict = auxiliary_loss A__ : List[str] = position_embedding_type A__ : Tuple = backbone A__ : List[str] = use_pretrained_backbone A__ : List[str] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : List[Any] = bbox_cost A__ : List[str] = giou_cost # Loss coefficients A__ : int = mask_loss_coefficient A__ : Tuple = dice_loss_coefficient A__ : Optional[Any] = bbox_loss_coefficient A__ : List[str] = giou_loss_coefficient A__ : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model @classmethod def __snake_case ( cls , UpperCamelCase__ , **UpperCamelCase__ ): return cls(backbone_config=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self ): A__ : str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: A__ : Union[str, Any] = self.backbone_config.to_dict() A__ : Any = self.__class__.model_type return output class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = version.parse("1.11" ) @property def __snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __snake_case ( self ): return 1e-5 @property def __snake_case ( self ): return 12
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
import qiskit def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> qiskit.result.counts.Counts: """simple docstring""" A__ : str = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register A__ : int = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ : List[str] = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
55
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
1
from bisect import bisect from itertools import accumulate def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : x[0] / x[1] , reverse=__UpperCamelCase ) A__ , A__ : Dict = [i[0] for i in r], [i[1] for i in r] A__ : Any = list(accumulate(__UpperCamelCase ) ) A__ : Any = bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
55
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
from __future__ import annotations import math import random from typing import Any class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : list[Any] = [] A__ : int = 0 A__ : int = 0 def __snake_case ( self ): return self.head == self.tail def __snake_case ( self , UpperCamelCase__ ): self.data.append(UpperCamelCase__ ) A__ : List[Any] = self.tail + 1 def __snake_case ( self ): A__ : Tuple = self.data[self.head] A__ : List[str] = self.head + 1 return ret def __snake_case ( self ): return self.tail - self.head def __snake_case ( self ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ ): A__ : Union[str, Any] = data A__ : MyNode | None = None A__ : MyNode | None = None A__ : int = 1 def __snake_case ( self ): return self.data def __snake_case ( self ): return self.left def __snake_case ( self ): return self.right def __snake_case ( self ): return self.height def __snake_case ( self , UpperCamelCase__ ): A__ : int = data def __snake_case ( self , UpperCamelCase__ ): A__ : Any = node def __snake_case ( self , UpperCamelCase__ ): A__ : Union[str, Any] = node def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = height def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode | None ) -> int: """simple docstring""" if node is None: return 0 return node.get_height() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" if a > b: return a return b def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" print('''left rotation node:''' , node.get_data() ) A__ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__UpperCamelCase ) A__ : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) A__ : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" print('''right rotation node:''' , node.get_data() ) A__ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__UpperCamelCase ) A__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) A__ : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__UpperCamelCase ) return ret def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" A__ : Dict = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCamelCase ) ) return right_rotation(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> MyNode: """simple docstring""" A__ : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCamelCase ) ) return left_rotation(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode | None , __UpperCamelCase : Any ) -> MyNode | None: """simple docstring""" if node is None: return MyNode(__UpperCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A__ : List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A__ : int = right_rotation(__UpperCamelCase ) else: A__ : Dict = lr_rotation(__UpperCamelCase ) else: node.set_right(insert_node(node.get_right() , __UpperCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A__ : List[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): A__ : List[Any] = rl_rotation(__UpperCamelCase ) else: A__ : Optional[Any] = left_rotation(__UpperCamelCase ) A__ : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__UpperCamelCase ) return node def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> Any: """simple docstring""" while True: A__ : Optional[Any] = root.get_right() if right_child is None: break A__ : Union[str, Any] = right_child return root.get_data() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode ) -> Any: """simple docstring""" while True: A__ : str = root.get_left() if left_child is None: break A__ : List[str] = left_child return root.get_data() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : MyNode , __UpperCamelCase : Any ) -> MyNode | None: """simple docstring""" A__ : str = root.get_left() A__ : Optional[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A__ : str = get_left_most(__UpperCamelCase ) root.set_data(__UpperCamelCase ) root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) elif left_child is not None: A__ : str = left_child elif right_child is not None: A__ : Any = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(__UpperCamelCase , __UpperCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCamelCase , __UpperCamelCase ) ) if get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A__ : int = left_rotation(__UpperCamelCase ) else: A__ : Any = rl_rotation(__UpperCamelCase ) elif get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A__ : Dict = right_rotation(__UpperCamelCase ) else: A__ : Optional[Any] = lr_rotation(__UpperCamelCase ) A__ : int = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__UpperCamelCase ) return root class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : MyNode | None = None def __snake_case ( self ): return get_height(self.root ) def __snake_case ( self , UpperCamelCase__ ): print('''insert:''' + str(UpperCamelCase__ ) ) A__ : Tuple = insert_node(self.root , UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): print('''delete:''' + str(UpperCamelCase__ ) ) if self.root is None: print('''Tree is empty!''' ) return A__ : Union[str, Any] = del_node(self.root , UpperCamelCase__ ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree A__ : Union[str, Any] = '''''' A__ : Union[str, Any] = MyQueue() q.push(self.root ) A__ : int = self.get_height() if layer == 0: return output A__ : List[Any] = 0 while not q.is_empty(): A__ : Optional[int] = q.pop() A__ : int = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCamelCase__ ) q.push(UpperCamelCase__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A__ : Dict = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCamelCase__ ) - 1: A__ : Tuple = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() _SCREAMING_SNAKE_CASE : List[str] = AVLtree() _SCREAMING_SNAKE_CASE : Optional[Any] = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
55
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowerCAmelCase = field(default="question-answering-extractive", metadata={"include_in_asdict_even_if_is_default": True} ) _lowerCAmelCase = Features({"question": Value("string" ), "context": Value("string" )} ) _lowerCAmelCase = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) _lowerCAmelCase = "question" _lowerCAmelCase = "context" _lowerCAmelCase = "answers" @property def __snake_case ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] = torch.nn.Linear(2 , 4 ) A__ : int = torch.optim.AdamW(model.parameters() , lr=1.0 ) A__ : Any = torch.optim.lr_scheduler.OneCycleLR(__UpperCamelCase , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) A__ : Optional[Any] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) A__ : Union[str, Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" A__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(__UpperCamelCase ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_cuda def __snake_case ( self ): A__ : Any = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase__ ): A__ : Dict = Accelerator(cpu=UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = Accelerator() A__ : str = GradientState() assert state.num_steps == 1 A__ : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True A__ : int = False assert state.sync_gradients is False GradientState._reset_state() def __snake_case ( self ): A__ : Optional[int] = Accelerator() A__ , A__ , A__ , A__ , A__ : Dict = create_components() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Any = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __snake_case ( self ): A__ : Dict = Accelerator() A__ , A__ , A__ , A__ , A__ : str = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __snake_case ( self ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase__ , **UpperCamelCase__ ): pass with patch('''torch.cuda.set_device''' , UpperCamelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): A__ : Optional[int] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def __snake_case ( self ): A__ : Tuple = Accelerator() A__ , A__ , A__ , A__ , A__ : Any = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = get_signature(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) def __snake_case ( self ): A__ : List[Any] = Accelerator() A__ , A__ , A__ , A__ , A__ : Optional[int] = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : Union[str, Any] = get_signature(UpperCamelCase__ ) # saving hook def save_config(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(UpperCamelCase__ , '''data.json''' ) , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # loading hook def load_config(UpperCamelCase__ , UpperCamelCase__ ): with open(os.path.join(UpperCamelCase__ , '''data.json''' ) , '''r''' ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) A__ : List[Any] = config['''class_name'''] A__ : Dict = accelerator.register_save_state_pre_hook(UpperCamelCase__ ) A__ : Optional[int] = accelerator.register_load_state_pre_hook(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded A__ : Union[str, Any] = '''random''' # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded A__ : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __snake_case ( self ): A__ : int = Accelerator() A__ , A__ , A__ , A__ , A__ : Tuple = create_components() A__ : List[Any] = None # This should work A__ , A__ , A__ , A__ , A__ , A__ : Tuple = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(dummy_obj is None ) def __snake_case ( self ): A__ : str = Accelerator() A__ , A__ , A__ , A__ , A__ : int = create_components() A__ : Any = [1, 2, 3] # This should work A__ , A__ , A__ , A__ , A__ , A__ : List[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(UpperCamelCase__ , '''_is_accelerate_prepared''' , UpperCamelCase__ ) , UpperCamelCase__ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map={'''''': 0} , ) A__ : Optional[int] = Accelerator() # This should work A__ : Optional[Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : List[str] = Accelerator() with init_empty_weights(): A__ : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() A__ : Any = infer_auto_device_map(UpperCamelCase__ ) A__ : Any = '''cpu''' A__ : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=UpperCamelCase__ , load_in_abit=UpperCamelCase__ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase__ ) # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb @require_multi_gpu def __snake_case ( self ): from transformers import AutoModelForCausalLM A__ : Any = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): A__ : Tuple = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() A__ : Dict = infer_auto_device_map(UpperCamelCase__ ) A__ : Dict = 1 A__ : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) A__ : Any = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): A__ : Dict = accelerator.prepare(UpperCamelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __snake_case ( self ): from transformers import AutoModelForCausalLM with init_empty_weights(): A__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) A__ : Tuple = infer_auto_device_map(UpperCamelCase__ ) A__ : Optional[int] = 1 A__ : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) A__ : List[Any] = Accelerator() # This should work A__ : List[Any] = accelerator.prepare(UpperCamelCase__ ) @require_cuda def __snake_case ( self ): A__ : int = torch.nn.Linear(10 , 10 ) A__ : int = torch.optim.SGD(model.parameters() , lr=0.0_1 ) A__ : str = Accelerator(cpu=UpperCamelCase__ ) A__ : Optional[Any] = accelerator.prepare(UpperCamelCase__ )
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = 'Hello, World!' _SCREAMING_SNAKE_CASE : str = 'en_XX' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : bool ) -> Dict: """simple docstring""" A__ : Any = Path('''data_bin''' ) A__ : int = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__UpperCamelCase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__UpperCamelCase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) A__ : List[Any] = xmod.model.encoder.sentence_encoder A__ : List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A__ : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __UpperCamelCase ) A__ : Optional[int] = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings A__ : List[Any] = xmod_sent_encoder.embed_tokens.weight A__ : int = xmod_sent_encoder.embed_positions.weight A__ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A__ : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight A__ : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A__ : Optional[int] = model.roberta.encoder.layer[i] A__ : int = xmod_sent_encoder.layers[i] # self attention A__ : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) A__ : Dict = xmod_layer.self_attn.q_proj.weight A__ : Optional[Any] = xmod_layer.self_attn.q_proj.bias A__ : Optional[Any] = xmod_layer.self_attn.k_proj.weight A__ : List[str] = xmod_layer.self_attn.k_proj.bias A__ : Any = xmod_layer.self_attn.v_proj.weight A__ : int = xmod_layer.self_attn.v_proj.bias # self-attention output A__ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) A__ : Any = xmod_layer.self_attn.out_proj.weight A__ : List[Any] = xmod_layer.self_attn.out_proj.bias A__ : Tuple = xmod_layer.self_attn_layer_norm.weight A__ : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate A__ : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) A__ : List[str] = xmod_layer.fca.weight A__ : Any = xmod_layer.fca.bias # output A__ : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) A__ : Any = xmod_layer.fca.weight A__ : int = xmod_layer.fca.bias A__ : List[Any] = xmod_layer.final_layer_norm.weight A__ : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A__ : Dict = xmod_layer.adapter_layer_norm.weight A__ : List[str] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A__ : List[str] = bert_output.adapter_modules[lang_code] A__ : Dict = xmod_layer.adapter_modules[lang_code] A__ : Dict = from_adapter.fca.weight A__ : List[str] = from_adapter.fca.bias A__ : Dict = from_adapter.fca.weight A__ : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A__ : Dict = xmod_sent_encoder.layer_norm.weight A__ : int = xmod_sent_encoder.layer_norm.bias if classification_head: A__ : Any = xmod.model.classification_heads['''mnli'''].dense.weight A__ : int = xmod.model.classification_heads['''mnli'''].dense.bias A__ : Union[str, Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight A__ : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A__ : List[str] = xmod.model.encoder.lm_head.dense.weight A__ : int = xmod.model.encoder.lm_head.dense.bias A__ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight A__ : List[str] = xmod.model.encoder.lm_head.layer_norm.bias A__ : str = xmod.model.encoder.lm_head.weight A__ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A__ : List[Any] = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) A__ : str = model(__UpperCamelCase )[0] if classification_head: A__ : Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__UpperCamelCase ) ) else: A__ : Optional[Any] = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A__ : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 A__ : int = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
55
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) A__ : Dict = VideoClassificationPipeline(model=UpperCamelCase__ , image_processor=UpperCamelCase__ , top_k=2 ) A__ : Optional[int] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): for example in examples: A__ : Tuple = video_classifier(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {'''score''': ANY(UpperCamelCase__ ), '''label''': ANY(UpperCamelCase__ )}, {'''score''': ANY(UpperCamelCase__ ), '''label''': ANY(UpperCamelCase__ )}, ] , ) @require_torch def __snake_case ( self ): A__ : Tuple = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' A__ : Tuple = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) A__ : Dict = pipeline( '''video-classification''' , model=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , frame_sampling_rate=4 ) A__ : Dict = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) A__ : List[str] = video_classifier(UpperCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}] , ) A__ : Dict = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=4 ) , [ [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_1_9_9, '''label''': '''LABEL_0'''}, {'''score''': 0.4_8_0_1, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __snake_case ( self ): pass
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
import random def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : str ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = a[left_index] A__ : Any = left_index + 1 for j in range(left_index + 1 , __UpperCamelCase ): if a[j] < pivot: A__ , A__ : Dict = a[i], a[j] i += 1 A__ , A__ : int = a[i - 1], a[left_index] return i - 1 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str ) -> str: """simple docstring""" if left < right: A__ : str = random.randint(__UpperCamelCase , right - 1 ) A__ , A__ : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound A__ : Union[str, Any] = partition(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) quick_sort_random( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( __UpperCamelCase , pivot_index + 1 , __UpperCamelCase ) # recursive quicksort to the right of the pivot point def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" A__ : Optional[int] = input('''Enter numbers separated by a comma:\n''' ).strip() A__ : str = [int(__UpperCamelCase ) for item in user_input.split(''',''' )] quick_sort_random(__UpperCamelCase , 0 , len(__UpperCamelCase ) ) print(__UpperCamelCase ) if __name__ == "__main__": main()
55
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=False ) -> Tuple: """simple docstring""" try: A__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Dict = default else: # KEY is set, convert it to True or False. try: A__ : Tuple = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) _SCREAMING_SNAKE_CASE : Tuple = parse_flag_from_env('RUN_REMOTE', default=False) _SCREAMING_SNAKE_CASE : List[Any] = parse_flag_from_env('RUN_LOCAL', default=True) _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression _SCREAMING_SNAKE_CASE : Dict = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') _SCREAMING_SNAKE_CASE : str = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') _SCREAMING_SNAKE_CASE : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio _SCREAMING_SNAKE_CASE : Optional[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam _SCREAMING_SNAKE_CASE : Any = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility _SCREAMING_SNAKE_CASE : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows _SCREAMING_SNAKE_CASE : Any = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: """simple docstring""" try: import faiss # noqa except ImportError: A__ : List[str] = unittest.skip('''test requires faiss''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" try: import regex # noqa except ImportError: A__ : Optional[int] = unittest.skip('''test requires regex''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" try: import elasticsearch # noqa except ImportError: A__ : Optional[int] = unittest.skip('''test requires elasticsearch''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" try: import sqlalchemy # noqa except ImportError: A__ : Tuple = unittest.skip('''test requires sqlalchemy''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" if not config.TORCH_AVAILABLE: A__ : Optional[Any] = unittest.skip('''test requires PyTorch''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Tuple: """simple docstring""" if not config.TF_AVAILABLE: A__ : str = unittest.skip('''test requires TensorFlow''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> str: """simple docstring""" if not config.JAX_AVAILABLE: A__ : Optional[Any] = unittest.skip('''test requires JAX''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> int: """simple docstring""" if not config.PIL_AVAILABLE: A__ : Dict = unittest.skip('''test requires Pillow''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(__UpperCamelCase ) else: return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(__UpperCamelCase ) else: return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(__UpperCamelCase ) else: return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" def _require_spacy_model(__UpperCamelCase : List[Any] ): try: import spacy # noqa F401 spacy.load(__UpperCamelCase ) except ImportError: return unittest.skip('''test requires spacy''' )(__UpperCamelCase ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__UpperCamelCase ) )(__UpperCamelCase ) else: return test_case return _require_spacy_model def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[str]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(__UpperCamelCase ) else: return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(__UpperCamelCase ) else: return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Tuple: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: A__ : Tuple = unittest.skip('''test is slow''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: A__ : int = unittest.skip('''test is local''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Optional[Any]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: A__ : Tuple = unittest.skip('''test is packaged''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: A__ : Any = unittest.skip('''test requires remote''' )(__UpperCamelCase ) return test_case def SCREAMING_SNAKE_CASE ( *__UpperCamelCase : Any ) -> Optional[int]: """simple docstring""" def decorate(cls : Tuple ): for name, fn in cls.__dict__.items(): if callable(__UpperCamelCase ) and name.startswith('''test''' ): for decorator in decorators: A__ : Optional[Any] = decorator(__UpperCamelCase ) setattr(cls , __UpperCamelCase , __UpperCamelCase ) return cls return decorate class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = 1 _lowerCAmelCase = 2 @contextmanager def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int=OfflineSimulationMode.CONNECTION_FAILS , __UpperCamelCase : Optional[int]=1e-16 ) -> Dict: """simple docstring""" A__ : Optional[int] = requests.Session().request def timeout_request(__UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , **__UpperCamelCase : Dict ): # Change the url to an invalid url so that the connection hangs A__ : List[str] = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) A__ : Optional[Any] = timeout try: return online_request(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier A__ : List[str] = url A__ : Optional[Any] = e.args[0] A__ : Union[str, Any] = (max_retry_error.args[0].replace('''10.255.255.1''' , F"OfflineMock[{url}]" ),) A__ : List[str] = (max_retry_error,) raise def raise_connection_error(__UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , **__UpperCamelCase : Any ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__UpperCamelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __UpperCamelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __UpperCamelCase ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def SCREAMING_SNAKE_CASE ( *__UpperCamelCase : str , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCamelCase , **__UpperCamelCase ) as tmp_dir: try: os.chdir(__UpperCamelCase ) yield finally: os.chdir(__UpperCamelCase ) @contextmanager def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" import gc gc.collect() A__ : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" import gc gc.collect() A__ : List[str] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int ) -> Optional[int]: """simple docstring""" return deepcopy(__UpperCamelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCamelCase ).integers(0 , 1_00 , 10 ).tolist() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Optional[Any]: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCamelCase : Tuple , *__UpperCamelCase : Tuple , **__UpperCamelCase : Optional[Any] ): try: return func(*__UpperCamelCase , **__UpperCamelCase ) except HTTPError as err: if str(__UpperCamelCase ).startswith('''500''' ) or str(__UpperCamelCase ).startswith('''502''' ): pytest.xfail(str(__UpperCamelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCamelCase ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = returncode A__ : List[str] = stdout A__ : Tuple = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" while True: A__ : int = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : Optional[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : Any = [] A__ : Dict = [] def tee(__UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]="" ): A__ : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=1_80 , __UpperCamelCase : str=False , __UpperCamelCase : int=True ) -> _RunOutput: """simple docstring""" A__ : str = asyncio.get_event_loop() A__ : List[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : List[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"'{cmd_str}' produced no output." ) return result def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Any = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) A__ : int = re.sub(R'''^gw''' , '''''' , __UpperCamelCase , 0 , re.M ) return int(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" A__ : List[Any] = 2_95_00 A__ : str = pytest_xdist_worker_id() return port + uniq_delta
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> Any: """simple docstring""" assert x is not None assert y is not None A__ : int = len(__UpperCamelCase ) A__ : Union[str, Any] = len(__UpperCamelCase ) # declaring the array for storing the dp values A__ : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): A__ : Any = 1 if x[i - 1] == y[j - 1] else 0 A__ : Tuple = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) A__ : Optional[int] = '''''' A__ , A__ : List[str] = m, n while i > 0 and j > 0: A__ : List[str] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: A__ : Optional[int] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = 'AGGTAB' _SCREAMING_SNAKE_CASE : Optional[int] = 'GXTXAYB' _SCREAMING_SNAKE_CASE : Optional[Any] = 4 _SCREAMING_SNAKE_CASE : int = 'GTAB' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10 , __UpperCamelCase : int = 10_00 , __UpperCamelCase : bool = True ) -> int: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> None: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(__UpperCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) A__ : List[str] = lower A__ : List[Any] = higher A__ : List[Any] = [] while True: A__ : Tuple = get_avg(__UpperCamelCase , __UpperCamelCase ) last_numbers.append(__UpperCamelCase ) if answer(__UpperCamelCase ) == "low": A__ : int = number elif answer(__UpperCamelCase ) == "high": A__ : int = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" A__ : Optional[int] = int(input('''Enter lower value : ''' ).strip() ) A__ : Tuple = int(input('''Enter high value : ''' ).strip() ) A__ : Optional[Any] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
from sklearn.metrics import fa_score import datasets _SCREAMING_SNAKE_CASE : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _SCREAMING_SNAKE_CASE : Any = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _SCREAMING_SNAKE_CASE : Union[str, Any] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__="binary" , UpperCamelCase__=None ): A__ : Optional[Any] = fa_score( UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ , pos_label=UpperCamelCase__ , average=UpperCamelCase__ , sample_weight=UpperCamelCase__ ) return {"f1": float(UpperCamelCase__ ) if score.size == 1 else score}
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=None , UpperCamelCase__=2 , ): A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Dict = image_size A__ : int = patch_size A__ : Any = num_channels A__ : List[Any] = is_training A__ : Optional[Any] = use_labels A__ : str = hidden_size A__ : int = num_hidden_layers A__ : Tuple = num_attention_heads A__ : Tuple = intermediate_size A__ : str = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = type_sequence_label_size A__ : Optional[int] = initializer_range A__ : Optional[int] = scope A__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A__ : List[Any] = (image_size // patch_size) ** 2 A__ : Optional[int] = num_patches + 1 def __snake_case ( self ): A__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : str = None if self.use_labels: A__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Tuple = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ : Optional[Any] = 1 A__ : str = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = self.type_sequence_label_size A__ : str = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ : Union[str, Any] = 1 A__ : int = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self ): A__ : List[Any] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) : Union[str, Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : Union[str, Any] = ViTModelTester(self ) A__ : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ , A__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[int] = model_class(UpperCamelCase__ ) A__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Any = [*signature.parameters.keys()] A__ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Any = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(UpperCamelCase__ ) A__ : List[str] = self.default_image_processor A__ : Dict = prepare_img() A__ : Dict = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Optional[int] = model(**UpperCamelCase__ ) # verify the logits A__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def __snake_case ( self ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. A__ : Optional[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(UpperCamelCase__ ) A__ : List[str] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) A__ : Optional[Any] = prepare_img() A__ : int = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) A__ : str = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : int = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits A__ : Dict = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) A__ : int = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __snake_case ( self ): A__ : Any = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) A__ : Any = self.default_image_processor A__ : Optional[Any] = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) A__ : Dict = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A__ : List[Any] = model(UpperCamelCase__ )
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _SCREAMING_SNAKE_CASE : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Tuple: """simple docstring""" inspect_dataset(__UpperCamelCase , __UpperCamelCase ) A__ : Any = path + '''.py''' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" inspect_metric(__UpperCamelCase , __UpperCamelCase ) A__ : List[str] = path + '''.py''' assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) -> int: """simple docstring""" A__ : Tuple = get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict ) -> int: """simple docstring""" A__ : Any = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : Tuple = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs A__ : int = expected_configs[0] assert expected_config in infos A__ : List[str] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" A__ : Dict = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos A__ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase , config_name=__UpperCamelCase )
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = '▁' _SCREAMING_SNAKE_CASE : Optional[int] = {'vocab_file': 'spiece.model'} _SCREAMING_SNAKE_CASE : int = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _SCREAMING_SNAKE_CASE : List[str] = { 'google/reformer-crime-and-punishment': 5_2_4_2_8_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__=[] , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : Tuple = vocab_file A__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def __snake_case ( self ): return self.sp_model.get_piece_size() def __snake_case ( self ): A__ : Dict = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ : Tuple = self.__dict__.copy() A__ : List[str] = None return state def __setstate__( self , UpperCamelCase__ ): A__ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A__ : int = {} A__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.piece_to_id(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): if index < self.sp_model.get_piece_size(): A__ : Dict = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def __snake_case ( self , UpperCamelCase__ ): A__ : int = [] A__ : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ : Any = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ : str = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: A__ : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _SCREAMING_SNAKE_CASE : str = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) _SCREAMING_SNAKE_CASE : int = dataset.iloc[:, 1:2].values _SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 2].values _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = train_test_split(X, y, test_size=0.2, random_state=0) _SCREAMING_SNAKE_CASE : int = PolynomialFeatures(degree=4) _SCREAMING_SNAKE_CASE : Optional[int] = poly_reg.fit_transform(X) _SCREAMING_SNAKE_CASE : List[str] = LinearRegression() pol_reg.fit(X_poly, y) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" plt.scatter(__UpperCamelCase , __UpperCamelCase , color='''red''' ) plt.plot(__UpperCamelCase , pol_reg.predict(poly_reg.fit_transform(__UpperCamelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" return math.sqrt(__UpperCamelCase ) * math.sqrt(__UpperCamelCase ) == num def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> bool: """simple docstring""" A__ : Dict = 0 A__ : Optional[Any] = n while left <= right: A__ : Dict = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A__ : Optional[Any] = mid - 1 else: A__ : str = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = TransfoXLTokenizer _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): super().setUp() A__ : List[Any] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] A__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , **UpperCamelCase__ ): A__ : List[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = '''<unk> UNwanted , running''' A__ : Optional[Any] = '''<unk> unwanted, running''' return input_text, output_text def __snake_case ( self ): A__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(UpperCamelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [0, 4, 8, 7] ) def __snake_case ( self ): A__ : int = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __snake_case ( self ): A__ : List[Any] = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Tuple = TransfoXLTokenizer(lower_case=UpperCamelCase__ ) A__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' A__ : str = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCamelCase__ ) , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = self.get_tokenizer() A__ : int = len(UpperCamelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCamelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
import os def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) ) A__ : int = os.path.join(__UpperCamelCase , '''triangle.txt''' ) with open(__UpperCamelCase ) as f: A__ : Dict = f.readlines() A__ : Optional[Any] = [] for line in triangle: A__ : Optional[Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(__UpperCamelCase ) ) a.append(__UpperCamelCase ) for i in range(1 , len(__UpperCamelCase ) ): for j in range(len(a[i] ) ): A__ : Optional[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 A__ : List[Any] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCamelCase , __UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=19 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): A__ : Optional[Any] = parent A__ : Any = batch_size A__ : Union[str, Any] = seq_length A__ : Dict = is_training A__ : int = use_input_mask A__ : List[Any] = use_token_type_ids A__ : Optional[Any] = use_labels A__ : int = vocab_size A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Optional[Any] = num_attention_heads A__ : int = intermediate_size A__ : List[Any] = hidden_act A__ : Dict = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : Union[str, Any] = max_position_embeddings A__ : Optional[Any] = type_vocab_size A__ : Dict = type_sequence_label_size A__ : Optional[int] = initializer_range A__ : Union[str, Any] = num_labels A__ : List[Any] = num_choices A__ : Any = scope def __snake_case ( self ): A__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None A__ : Optional[int] = None A__ : Optional[int] = None if self.use_labels: A__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : int = ids_tensor([self.batch_size] , self.num_choices ) A__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ): A__ : Optional[int] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=UpperCamelCase__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = EsmForProteinFolding(config=UpperCamelCase__ ).float() model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A__ : Any = model(UpperCamelCase__ ) A__ : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __snake_case ( self ): A__ : Tuple = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = False _lowerCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () _lowerCAmelCase = () _lowerCAmelCase = {} if is_torch_available() else {} _lowerCAmelCase = False def __snake_case ( self ): A__ : Optional[Any] = EsmFoldModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip('''Does not support attention outputs''' ) def __snake_case ( self ): pass @unittest.skip def __snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def __snake_case ( self ): pass @unittest.skip('''Esm does not support embedding resizing''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold only has one output format.''' ) def __snake_case ( self ): pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __snake_case ( self ): pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __snake_case ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self ): pass @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @slow def __snake_case ( self ): A__ : Any = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() A__ : List[Any] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ : List[Any] = model(UpperCamelCase__ )['''positions'''] A__ : Optional[int] = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , UpperCamelCase__ , atol=1e-4 ) )
55
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "camembert" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Dict = vocab_size A__ : Dict = hidden_size A__ : Dict = num_hidden_layers A__ : str = num_attention_heads A__ : List[Any] = hidden_act A__ : Dict = intermediate_size A__ : str = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Union[str, Any] = max_position_embeddings A__ : int = type_vocab_size A__ : List[str] = initializer_range A__ : Optional[Any] = layer_norm_eps A__ : Union[str, Any] = position_embedding_type A__ : Optional[Any] = use_cache A__ : str = classifier_dropout class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def __snake_case ( self ): if self.task == "multiple-choice": A__ : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
55
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Any = '▁' _SCREAMING_SNAKE_CASE : Any = {'vocab_file': 'spiece.model'} _SCREAMING_SNAKE_CASE : str = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _SCREAMING_SNAKE_CASE : Optional[int] = { 'google/pegasus-xsum': 5_1_2, } _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<mask_2>" , UpperCamelCase__="<mask_1>" , UpperCamelCase__=None , UpperCamelCase__=103 , UpperCamelCase__ = None , **UpperCamelCase__ , ): A__ : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError( F"additional_special_tokens should be of type {type(UpperCamelCase__ )}, but is" F" {type(UpperCamelCase__ )}" ) A__ : Any = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(UpperCamelCase__ ) , self.offset - 1 ) ] if len(set(UpperCamelCase__ ) ) != len(UpperCamelCase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) A__ : Optional[Any] = additional_special_tokens_extended else: A__ : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] A__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token_sent=UpperCamelCase__ , offset=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : List[Any] = mask_token_sent A__ : Any = vocab_file A__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # add special tokens to encoder dict A__ : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) A__ : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __snake_case ( self ): return len(self.sp_model ) + self.offset def __snake_case ( self ): A__ : List[str] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A__ : List[str] = self.__dict__.copy() A__ : str = None return state def __setstate__( self , UpperCamelCase__ ): A__ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A__ : int = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self , UpperCamelCase__ ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ : str = self.sp_model.piece_to_id(UpperCamelCase__ ) return sp_id + self.offset def __snake_case ( self , UpperCamelCase__ ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __snake_case ( self , UpperCamelCase__ ): A__ : Optional[int] = [] A__ : Union[str, Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token A__ : int = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __snake_case ( self , UpperCamelCase__=False ): return 1 def __snake_case ( self , UpperCamelCase__ ): A__ : Any = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): if already_has_special_tokens: return self._special_token_mask(UpperCamelCase__ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: A__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , **__UpperCamelCase : Optional[int] ) -> int: """simple docstring""" A__ : int = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) A__ : int = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCAmelCase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : List[str] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): A__ : Tuple = parent A__ : Tuple = batch_size A__ : Tuple = seq_length A__ : Union[str, Any] = is_training A__ : Any = use_input_mask A__ : Union[str, Any] = use_token_type_ids A__ : Optional[Any] = use_labels A__ : Dict = vocab_size A__ : Union[str, Any] = hidden_size A__ : str = num_hidden_layers A__ : List[str] = num_attention_heads A__ : List[str] = intermediate_size A__ : Union[str, Any] = hidden_act A__ : int = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : Tuple = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : List[str] = type_sequence_label_size A__ : Union[str, Any] = initializer_range A__ : List[Any] = num_labels A__ : List[str] = num_choices A__ : Dict = scope A__ : List[Any] = embedding_size def __snake_case ( self ): A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Optional[int] = None A__ : Union[str, Any] = None A__ : Optional[int] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = TFMobileBertModel(config=UpperCamelCase__ ) A__ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : List[str] = model(UpperCamelCase__ ) A__ : List[Any] = [input_ids, input_mask] A__ : Optional[Any] = model(UpperCamelCase__ ) A__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = TFMobileBertForMaskedLM(config=UpperCamelCase__ ) A__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=UpperCamelCase__ ) A__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : int = TFMobileBertForPreTraining(config=UpperCamelCase__ ) A__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : int = model(UpperCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = self.num_labels A__ : int = TFMobileBertForSequenceClassification(config=UpperCamelCase__ ) A__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = self.num_choices A__ : str = TFMobileBertForMultipleChoice(config=UpperCamelCase__ ) A__ : Any = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : Dict = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : List[Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A__ : Tuple = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = self.num_labels A__ : Optional[int] = TFMobileBertForTokenClassification(config=UpperCamelCase__ ) A__ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = TFMobileBertForQuestionAnswering(config=UpperCamelCase__ ) A__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] = config_and_inputs A__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def __snake_case ( self ): A__ : str = TFMobileBertModelTest.TFMobileBertModelTester(self ) A__ : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase__ ) @slow def __snake_case ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A__ : int = TFMobileBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): A__ : Union[str, Any] = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) A__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ : List[str] = model(UpperCamelCase__ )[0] A__ : int = [1, 6, 3_0522] self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Union[str, Any] = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" A__ : Optional[int] = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Any ) -> Any: """simple docstring""" A__ : Tuple = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" A__ : Optional[Any] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", '''stage2.cls_token''') ) return token def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : Optional[int] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] = '''imagenet-1k-id2label.json''' A__ : str = 10_00 A__ : str = '''huggingface/label-files''' A__ : Union[str, Any] = num_labels A__ : Tuple = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) A__ : List[str] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : int = idalabel A__ : Optional[int] = {v: k for k, v in idalabel.items()} A__ : int = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": A__ : Any = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": A__ : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ : List[str] = [2, 2, 20] A__ : Optional[int] = [3, 12, 16] A__ : List[str] = [1_92, 7_68, 10_24] A__ : Dict = CvtForImageClassification(__UpperCamelCase ) A__ : List[Any] = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) A__ : Union[str, Any] = image_size A__ : List[Any] = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) A__ : Any = OrderedDict() A__ : Dict = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ : int = list_of_state_dict + cls_token(__UpperCamelCase ) A__ : List[str] = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): A__ : int = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) A__ : Dict = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): A__ : Any = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
55
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=True , ): A__ : Optional[Any] = parent A__ : List[str] = batch_size A__ : Any = num_channels A__ : Any = image_size A__ : Tuple = min_resolution A__ : Optional[int] = max_resolution A__ : int = do_resize A__ : Union[str, Any] = size_divisor A__ : str = do_rescale def __snake_case ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = GLPNImageProcessor if is_vision_available() else None def __snake_case ( self ): A__ : Optional[Any] = GLPNImageProcessingTester(self ) @property def __snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self ): A__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size_divisor''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''resample''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_rescale''' ) ) def __snake_case ( self ): pass def __snake_case ( self ): # Initialize image_processing A__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self ): # Initialize image_processing A__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __snake_case ( self ): # Initialize image_processing A__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) A__ : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "megatron-bert" def __init__( self , UpperCamelCase__=2_9056 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=0 , UpperCamelCase__="absolute" , UpperCamelCase__=True , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : List[Any] = vocab_size A__ : Tuple = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : str = num_attention_heads A__ : Dict = hidden_act A__ : Dict = intermediate_size A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : Optional[int] = position_embedding_type A__ : str = use_cache
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[Any] = tempfile.mkdtemp() A__ : Union[str, Any] = BlipImageProcessor() A__ : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) A__ : Any = BlipaProcessor(UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Dict = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : Any = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A__ : Any = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : int = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.get_image_processor() A__ : List[str] = self.get_tokenizer() A__ : List[Any] = BlipaProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ : Any = self.prepare_image_inputs() A__ : Dict = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : Tuple = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : str = self.get_image_processor() A__ : Tuple = self.get_tokenizer() A__ : Any = BlipaProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ : List[Any] = '''lower newer''' A__ : Tuple = processor(text=UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self ): A__ : Any = self.get_image_processor() A__ : int = self.get_tokenizer() A__ : List[str] = BlipaProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ : List[Any] = '''lower newer''' A__ : Tuple = self.prepare_image_inputs() A__ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): A__ : Union[str, Any] = self.get_image_processor() A__ : Optional[Any] = self.get_tokenizer() A__ : Tuple = BlipaProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Union[str, Any] = processor.batch_decode(UpperCamelCase__ ) A__ : Dict = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.get_image_processor() A__ : List[Any] = self.get_tokenizer() A__ : List[Any] = BlipaProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A__ : str = '''lower newer''' A__ : List[str] = self.prepare_image_inputs() A__ : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
_SCREAMING_SNAKE_CASE : Union[str, Any] = {str(digit): digit**5 for digit in range(1_0)} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(__UpperCamelCase ) ) if __name__ == "__main__": print(solution())
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
from collections import deque from math import floor from random import random from time import time class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : int = {} def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 ): if self.graph.get(UpperCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A__ : Dict = [[w, v]] if not self.graph.get(UpperCamelCase__ ): A__ : str = [] def __snake_case ( self ): return list(self.graph ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): if s == d: return [] A__ : Union[str, Any] = [] A__ : int = [] if s == -2: A__ : Union[str, Any] = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: A__ : Optional[int] = stack[len(UpperCamelCase__ ) - 1] else: A__ : List[str] = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def __snake_case ( self , UpperCamelCase__=-1 ): if c == -1: A__ : List[str] = floor(random() * 1_0000 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ : int = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def __snake_case ( self , UpperCamelCase__=-2 ): A__ : int = deque() A__ : Tuple = [] if s == -2: A__ : int = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: A__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __snake_case ( self , UpperCamelCase__ ): A__ : int = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __snake_case ( self , UpperCamelCase__ ): return len(self.graph[u] ) def __snake_case ( self , UpperCamelCase__=-2 ): A__ : Optional[Any] = [] A__ : str = [] if s == -2: A__ : str = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : Union[str, Any] = s A__ : Tuple = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase__ ) != 0: A__ : Optional[Any] = stack[len(UpperCamelCase__ ) - 1] else: A__ : Dict = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return sorted_nodes def __snake_case ( self ): A__ : int = [] A__ : int = [] A__ : Any = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : Any = -2 A__ : Dict = [] A__ : Optional[Any] = s A__ : Optional[Any] = False A__ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ : str = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ : List[Any] = True if len(UpperCamelCase__ ) != 0: A__ : List[str] = stack[len(UpperCamelCase__ ) - 1] else: A__ : Any = False indirect_parents.append(UpperCamelCase__ ) A__ : Tuple = s A__ : Optional[int] = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = [] A__ : Dict = [] A__ : Optional[int] = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : Any = -2 A__ : Tuple = [] A__ : List[str] = s A__ : Union[str, Any] = False A__ : int = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ : Tuple = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ : Optional[Any] = True if len(UpperCamelCase__ ) != 0: A__ : Union[str, Any] = stack[len(UpperCamelCase__ ) - 1] else: A__ : Dict = False indirect_parents.append(UpperCamelCase__ ) A__ : Union[str, Any] = s A__ : str = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def __snake_case ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): A__ : int = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = time() return end - begin def __snake_case ( self , UpperCamelCase__=-2 ): A__ : List[str] = time() self.bfs(UpperCamelCase__ ) A__ : List[str] = time() return end - begin class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : int = {} def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 ): # check if the u exists if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A__ : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A__ : Any = [[w, u]] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) # the other way round if self.graph.get(UpperCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): if s == d: return [] A__ : Optional[Any] = [] A__ : int = [] if s == -2: A__ : List[Any] = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : List[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: A__ : List[str] = stack[len(UpperCamelCase__ ) - 1] else: A__ : str = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def __snake_case ( self , UpperCamelCase__=-1 ): if c == -1: A__ : Dict = floor(random() * 1_0000 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ : List[str] = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def __snake_case ( self , UpperCamelCase__=-2 ): A__ : List[str] = deque() A__ : str = [] if s == -2: A__ : str = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: A__ : Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __snake_case ( self , UpperCamelCase__ ): return len(self.graph[u] ) def __snake_case ( self ): A__ : List[str] = [] A__ : Optional[int] = [] A__ : Dict = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : List[Any] = -2 A__ : Dict = [] A__ : str = s A__ : str = False A__ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ : Optional[int] = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ : str = True if len(UpperCamelCase__ ) != 0: A__ : str = stack[len(UpperCamelCase__ ) - 1] else: A__ : Optional[Any] = False indirect_parents.append(UpperCamelCase__ ) A__ : Optional[int] = s A__ : Optional[Any] = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = [] A__ : Any = [] A__ : Optional[int] = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) A__ : List[Any] = -2 A__ : List[str] = [] A__ : Optional[Any] = s A__ : Optional[Any] = False A__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ : Any = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ : Tuple = True if len(UpperCamelCase__ ) != 0: A__ : List[Any] = stack[len(UpperCamelCase__ ) - 1] else: A__ : Union[str, Any] = False indirect_parents.append(UpperCamelCase__ ) A__ : Union[str, Any] = s A__ : Union[str, Any] = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def __snake_case ( self ): return list(self.graph ) def __snake_case ( self , UpperCamelCase__=-2 , UpperCamelCase__=-1 ): A__ : List[str] = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) A__ : Any = time() return end - begin def __snake_case ( self , UpperCamelCase__=-2 ): A__ : Union[str, Any] = time() self.bfs(UpperCamelCase__ ) A__ : Optional[int] = time() return end - begin
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { 'nielsr/canine-s': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” _SCREAMING_SNAKE_CASE : Union[str, Any] = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py _SCREAMING_SNAKE_CASE : List[str] = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 0xE000 _SCREAMING_SNAKE_CASE : int = 0xE001 _SCREAMING_SNAKE_CASE : List[str] = 0xE002 _SCREAMING_SNAKE_CASE : List[str] = 0xE003 _SCREAMING_SNAKE_CASE : int = 0xE004 # Maps special codepoints to human-readable names. _SCREAMING_SNAKE_CASE : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. _SCREAMING_SNAKE_CASE : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=False , UpperCamelCase__=2048 , **UpperCamelCase__ , ): A__ : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A__ : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A__ : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token A__ : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A__ : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , model_max_length=UpperCamelCase__ , **UpperCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. A__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A__ : Optional[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } A__ : Optional[int] = UNICODE_VOCAB_SIZE A__ : Dict = len(self._special_codepoints ) @property def __snake_case ( self ): return self._unicode_vocab_size def __snake_case ( self , UpperCamelCase__ ): return list(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(F"invalid token: '{token}'" ) def __snake_case ( self , UpperCamelCase__ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(F"invalid id: {index}" ) def __snake_case ( self , UpperCamelCase__ ): return "".join(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = [self.sep_token_id] A__ : Union[str, Any] = [self.cls_token_id] A__ : int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) A__ : Tuple = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Optional[int] = [self.sep_token_id] A__ : Dict = [self.cls_token_id] A__ : List[str] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): return ()
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @slow @require_torch def __snake_case ( self ): A__ : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) A__ : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A__ : Optional[int] = bertabert.config.encoder.vocab_size A__ : str = tokenizer.sep_token_id A__ : Any = tokenizer.cls_token_id A__ : Optional[int] = 128 A__ : int = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) A__ : Any = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) A__ : Tuple = train_dataset.select(range(32 ) ) A__ : Any = val_dataset.select(range(16 ) ) A__ : List[Any] = 4 def _map_to_encoder_decoder_inputs(UpperCamelCase__ ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ : Dict = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=UpperCamelCase__ , max_length=512 ) A__ : Any = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=UpperCamelCase__ , max_length=128 ) A__ : Optional[Any] = inputs.input_ids A__ : List[Any] = inputs.attention_mask A__ : Optional[Any] = outputs.input_ids A__ : List[Any] = outputs.input_ids.copy() A__ : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A__ : List[Any] = outputs.attention_mask assert all(len(UpperCamelCase__ ) == 512 for x in inputs.input_ids ) assert all(len(UpperCamelCase__ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCamelCase__ ): A__ : int = pred.label_ids A__ : Dict = pred.predictions # all unnecessary tokens are removed A__ : List[str] = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : Dict = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase__ ) )] ) / len(UpperCamelCase__ ) return {"accuracy": accuracy} # map train dataset A__ : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase__ , batch_size=UpperCamelCase__ , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset A__ : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase__ , batch_size=UpperCamelCase__ , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) A__ : Any = self.get_auto_remove_tmp_dir() A__ : Optional[Any] = SeqaSeqTrainingArguments( output_dir=UpperCamelCase__ , per_device_train_batch_size=UpperCamelCase__ , per_device_eval_batch_size=UpperCamelCase__ , predict_with_generate=UpperCamelCase__ , evaluation_strategy='''steps''' , do_train=UpperCamelCase__ , do_eval=UpperCamelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ : List[str] = SeqaSeqTrainer( model=UpperCamelCase__ , args=UpperCamelCase__ , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , tokenizer=UpperCamelCase__ , ) # start training trainer.train()
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> int: """simple docstring""" if hi < 0: A__ : Union[str, Any] = len(__UpperCamelCase ) while lo < hi: A__ : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: A__ : List[Any] = mid + 1 else: A__ : Optional[int] = mid return lo def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> int: """simple docstring""" if hi < 0: A__ : Dict = len(__UpperCamelCase ) while lo < hi: A__ : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: A__ : Dict = mid + 1 else: A__ : int = mid return lo def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_left(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = -1 ) -> None: """simple docstring""" sorted_collection.insert(bisect_right(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int | None: """simple docstring""" A__ : List[Any] = 0 A__ : Union[str, Any] = len(__UpperCamelCase ) - 1 while left <= right: A__ : Dict = left + (right - left) // 2 A__ : Optional[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: A__ : Optional[Any] = midpoint - 1 else: A__ : str = midpoint + 1 return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int | None: """simple docstring""" A__ : Dict = bisect.bisect_left(__UpperCamelCase , __UpperCamelCase ) if index != len(__UpperCamelCase ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : list[int] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> int | None: """simple docstring""" if right < left: return None A__ : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCamelCase , __UpperCamelCase , midpoint + 1 , __UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = input('Enter numbers separated by comma:\n').strip() _SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(int(item) for item in user_input.split(',')) _SCREAMING_SNAKE_CASE : List[Any] = int(input('Enter a single number to be found in the list:\n')) _SCREAMING_SNAKE_CASE : Tuple = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict ) -> bool: """simple docstring""" A__ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack A__ : set[int] = set() return any( node not in visited and depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for node in graph ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict , __UpperCamelCase : int , __UpperCamelCase : set , __UpperCamelCase : set ) -> bool: """simple docstring""" visited.add(__UpperCamelCase ) rec_stk.add(__UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = ["image_processor", "tokenizer"] _lowerCAmelCase = "BlipImageProcessor" _lowerCAmelCase = "AutoTokenizer" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) # add QFormer tokenizer A__ : Tuple = qformer_tokenizer def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ): if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) A__ : Optional[int] = BatchFeature() if text is not None: A__ : str = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) encoding.update(UpperCamelCase__ ) A__ : str = self.qformer_tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Tuple = qformer_text_encoding.pop('''input_ids''' ) A__ : str = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: A__ : List[str] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __snake_case ( self ): A__ : Optional[Any] = self.tokenizer.model_input_names A__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __snake_case ( self , UpperCamelCase__ , **UpperCamelCase__ ): if os.path.isfile(UpperCamelCase__ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ : List[str] = os.path.join(UpperCamelCase__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(UpperCamelCase__ ) return super().save_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def __snake_case ( cls , UpperCamelCase__ , **UpperCamelCase__ ): A__ : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase__ , subfolder='''qformer_tokenizer''' ) A__ : Optional[int] = cls._get_arguments_from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) args.append(UpperCamelCase__ ) return cls(*UpperCamelCase__ )
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Tuple = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase__ ( pl.LightningModule ): '''simple docstring''' def __init__( self , UpperCamelCase__ ): super().__init__() A__ : Dict = model A__ : Union[str, Any] = 2 A__ : Any = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __snake_case ( self ): pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : str ) -> Tuple: """simple docstring""" A__ : List[Any] = LongformerModel.from_pretrained(__UpperCamelCase ) A__ : Optional[int] = LightningModel(__UpperCamelCase ) A__ : List[Any] = torch.load(__UpperCamelCase , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model A__ : Dict = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
55
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **UpperCamelCase__ ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A__ : Optional[int] = deprecated_arg[3:] A__ : List[str] = not kwargs.pop(UpperCamelCase__ ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) A__ : str = kwargs.pop('''tpu_name''' , self.tpu_name ) A__ : int = kwargs.pop('''device_idx''' , self.device_idx ) A__ : Optional[int] = kwargs.pop('''eager_mode''' , self.eager_mode ) A__ : str = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**UpperCamelCase__ ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={"help": "Name of TPU"}, ) _lowerCAmelCase = field( default=0, metadata={"help": "CPU / GPU device index. Defaults to 0."}, ) _lowerCAmelCase = field(default=SCREAMING_SNAKE_CASE_, metadata={"help": "Benchmark models in eager model."} ) _lowerCAmelCase = field( default=SCREAMING_SNAKE_CASE_, metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." }, ) @cached_property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) A__ : List[str] = None if self.tpu: try: if self.tpu_name: A__ : str = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A__ : Optional[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A__ : List[Any] = None return tpu @cached_property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A__ : Union[str, Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) A__ : Any = tf.distribute.OneDeviceStrategy(device=F"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU A__ : str = tf.distribute.OneDeviceStrategy(device=F"/cpu:{self.device_idx}" ) return strategy @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def __snake_case ( self ): requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __snake_case ( self ): return self.n_gpu > 0
55
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" A__ : List[Any] = set() # Replace all the whitespace in our sentence A__ : Optional[int] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(__UpperCamelCase ) == 26 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" A__ : int = [False] * 26 for char in input_str: if char.islower(): A__ : Tuple = True elif char.isupper(): A__ : Union[str, Any] = True return all(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" from timeit import timeit A__ : str = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=__UpperCamelCase ) ) print(timeit('''is_pangram_faster()''' , setup=__UpperCamelCase ) ) print(timeit('''is_pangram_fastest()''' , setup=__UpperCamelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" A__ , A__ : Optional[int] = image.size A__ , A__ : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A__ : Optional[int] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) A__ : Tuple = np.array(__UpperCamelCase ).astype(np.floataa ) / 2_5_5.0 A__ : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) A__ : List[str] = torch.from_numpy(__UpperCamelCase ) return 2.0 * image - 1.0 class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ): super().__init__() self.register_modules(vqvae=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ): if isinstance(UpperCamelCase__ , PIL.Image.Image ): A__ : str = 1 elif isinstance(UpperCamelCase__ , torch.Tensor ): A__ : Dict = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase__ )}" ) if isinstance(UpperCamelCase__ , PIL.Image.Image ): A__ : Any = preprocess(UpperCamelCase__ ) A__ , A__ : List[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image A__ : List[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) A__ : List[str] = next(self.unet.parameters() ).dtype A__ : str = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) A__ : Dict = image.to(device=self.device , dtype=UpperCamelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCamelCase__ , device=self.device ) A__ : Union[str, Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler A__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : Optional[Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Dict = {} if accepts_eta: A__ : Tuple = eta for t in self.progress_bar(UpperCamelCase__ ): # concat latents and low resolution image in the channel dimension. A__ : List[str] = torch.cat([latents, image] , dim=1 ) A__ : List[Any] = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual A__ : List[str] = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 A__ : Dict = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # decode the image latents with the VQVAE A__ : int = self.vqvae.decode(UpperCamelCase__ ).sample A__ : Union[str, Any] = torch.clamp(UpperCamelCase__ , -1.0 , 1.0 ) A__ : Optional[int] = image / 2 + 0.5 A__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : List[str] = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
55
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : int=False ) -> Any: """simple docstring""" A__ : str = '''backbone.''' if is_semantic else '''''' A__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", '''beit.embeddings.cls_token'''), (F"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : str=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): A__ : Optional[Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values A__ : str = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) A__ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) A__ : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) A__ : Dict = in_proj_weight[ : config.hidden_size, : ] A__ : int = q_bias A__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Tuple = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) A__ : Any = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) A__ : Dict = gamma_a A__ : str = gamma_a def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" A__ : int = dct.pop(__UpperCamelCase ) A__ : Any = val def SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" A__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str=False ) -> str: """simple docstring""" A__ : List[str] = False if '''rvlcdip''' in checkpoint_url else True A__ : int = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase , use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ : Union[str, Any] = 10_24 A__ : List[Any] = 40_96 A__ : Any = 24 A__ : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: A__ : Tuple = 16 A__ : Union[str, Any] = '''huggingface/label-files''' A__ : int = '''rvlcdip-id2label.json''' A__ : Dict = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : int = idalabel A__ : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ : int = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' )['''model'''] A__ : List[str] = create_rename_keys(__UpperCamelCase , has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , has_lm_head=__UpperCamelCase ) # load HuggingFace model A__ : Optional[Any] = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image A__ : Optional[int] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCamelCase ) A__ : Optional[Any] = prepare_img() A__ : Any = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) A__ : List[str] = encoding['''pixel_values'''] A__ : Union[str, Any] = model(__UpperCamelCase ) A__ : Dict = outputs.logits # verify logits A__ : str = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: A__ : int = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: A__ : Dict = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__UpperCamelCase , ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase , __UpperCamelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__UpperCamelCase , ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) _SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCamelCase__ ): A__ : str = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[Any] = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCamelCase__ ): A__ : Dict = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = FlaxAutoModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ : str = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A__ : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() @slow def __snake_case ( self ): for model_name in ["roberta-base", "roberta-large"]: A__ : Any = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A__ : List[str] = FlaxRobertaModel.from_pretrained(UpperCamelCase__ ) A__ : Optional[int] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCamelCase__ ): return model(**UpperCamelCase__ ) eval(**UpperCamelCase__ ).block_until_ready() def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , '''bert-base is not a local folder and is not a valid model identifier''' ): A__ : Union[str, Any] = FlaxAutoModel.from_pretrained('''bert-base''' ) def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A__ : Dict = FlaxAutoModel.from_pretrained(UpperCamelCase__ , revision='''aaaaaa''' ) def __snake_case ( self ): with self.assertRaisesRegex( UpperCamelCase__ , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): A__ : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __snake_case ( self ): with self.assertRaisesRegex(UpperCamelCase__ , '''Use `from_pt=True` to load this model''' ): A__ : Optional[int] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" A__ , A__ : List[str] = 1, 1 A__ : List[Any] = [] for i in range(1 , n + 1 ): A__ : List[str] = prev_numerator + 2 * prev_denominator A__ : Tuple = prev_numerator + prev_denominator if len(str(__UpperCamelCase ) ) > len(str(__UpperCamelCase ) ): result.append(__UpperCamelCase ) A__ : Optional[Any] = numerator A__ : Any = denominator return len(__UpperCamelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
55
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
1
_SCREAMING_SNAKE_CASE : str = [0, 2, 4, 6, 8] _SCREAMING_SNAKE_CASE : int = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : list[int] , __UpperCamelCase : int ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A__ : Tuple = 0 for digit in range(10 ): A__ : int = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __UpperCamelCase , __UpperCamelCase ) return result A__ : List[str] = 0 for digita in range(10 ): A__ : List[Any] = digita if (remainder + digita) % 2 == 0: A__ : str = ODD_DIGITS else: A__ : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: A__ : Optional[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __UpperCamelCase , __UpperCamelCase , ) return result def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 9 ) -> int: """simple docstring""" A__ : Any = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCamelCase , 0 , [0] * length , __UpperCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> int: """simple docstring""" if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Union[str, Any]: """simple docstring""" for char in word: A__ : int = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" A__ : Tuple = set() for token in tokens: A__ : Any = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A__ : Any = list(__UpperCamelCase ) return word_list def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : set() ) -> Union[str, Any]: """simple docstring""" if not chinese_word_set: return bert_tokens A__ : Any = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A__ : Dict = bert_tokens A__ , A__ : Optional[Any] = 0, len(__UpperCamelCase ) while start < end: A__ : Dict = True if is_chinese(bert_word[start] ): A__ : Tuple = min(end - start , __UpperCamelCase ) for i in range(__UpperCamelCase , 1 , -1 ): A__ : List[str] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): A__ : Dict = '''##''' + bert_word[j] A__ : str = start + i A__ : Tuple = False break if single_word: start += 1 return bert_word def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : LTP , __UpperCamelCase : BertTokenizer ) -> Tuple: """simple docstring""" A__ : Optional[Any] = [] for i in range(0 , len(__UpperCamelCase ) , 1_00 ): A__ : str = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws A__ : List[Any] = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ : str = [] for i in range(0 , len(__UpperCamelCase ) , 1_00 ): A__ : Dict = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__UpperCamelCase , truncation=__UpperCamelCase , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A__ : Tuple = [] for input_ids, chinese_word in zip(__UpperCamelCase , __UpperCamelCase ): A__ : Optional[int] = [] for id in input_ids: A__ : List[str] = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A__ : List[Any] = add_sub_symbol(__UpperCamelCase , __UpperCamelCase ) A__ : Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A__ : List[str] = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> str: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: A__ : Any = f.readlines() A__ : List[str] = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A__ : List[Any] = LTP(args.ltp ) # faster in GPU device A__ : List[Any] = BertTokenizer.from_pretrained(args.bert ) A__ : Optional[Any] = prepare_ref(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: A__ : Optional[Any] = [json.dumps(__UpperCamelCase ) + '''\n''' for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) _SCREAMING_SNAKE_CASE : int = parser.parse_args() main(args)
55
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
1
from collections import namedtuple import requests from lxml import html # type: ignore _SCREAMING_SNAKE_CASE : Union[str, Any] = namedtuple('covid_data', 'cases deaths recovered') def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: """simple docstring""" A__ : str = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__UpperCamelCase ).content ).xpath(__UpperCamelCase ) ) _SCREAMING_SNAKE_CASE : Tuple = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Namespace ) -> List[str]: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _SCREAMING_SNAKE_CASE : List[str] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod def __snake_case ( UpperCamelCase__ ): A__ : Dict = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=UpperCamelCase__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , ): A__ : List[Any] = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"Loading model {model_type}" ) A__ : Tuple = model_type A__ : List[str] = tf_checkpoint A__ : List[Any] = pytorch_dump_output A__ : Dict = config A__ : Any = finetuning_task_name def __snake_case ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCamelCase__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) if "ckpt" in self._tf_checkpoint.lower(): A__ : Tuple = self._tf_checkpoint A__ : Optional[Any] = '''''' else: A__ : List[str] = self._tf_checkpoint A__ : Tuple = '''''' convert_transfo_xl_checkpoint_to_pytorch( UpperCamelCase__ , self._config , self._pytorch_dump_output , UpperCamelCase__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCamelCase__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] _SCREAMING_SNAKE_CASE : Any = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" A__ : int = torch.load(__UpperCamelCase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=rename_keys_prefix ) -> int: """simple docstring""" A__ : Dict = OrderedDict() A__ : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A__ : Optional[int] = key for name_pair in rename_keys_prefix: A__ : Dict = new_key.replace(name_pair[0] , name_pair[1] ) A__ : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A__ : str = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[str] ) -> str: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: A__ : str = '''pretraining''' if "vcr" in checkpoint_path: A__ : int = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: A__ : List[str] = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: A__ : Optional[Any] = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: A__ : Any = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: A__ : int = {'''visual_embedding_dim''': 5_12} A__ : str = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A__ : Union[str, Any] = {'''visual_embedding_dim''': 20_48} A__ : List[Any] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A__ : Tuple = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} A__ : Optional[int] = '''vqa''' elif "nlvr" in checkpoint_path: A__ : Dict = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } A__ : Optional[int] = '''nlvr''' A__ : str = VisualBertConfig(**__UpperCamelCase ) # Load State Dict A__ : int = load_state_dict(__UpperCamelCase ) A__ : Optional[Any] = get_new_dict(__UpperCamelCase , __UpperCamelCase ) if model_type == "pretraining": A__ : Optional[int] = VisualBertForPreTraining(__UpperCamelCase ) elif model_type == "vqa": A__ : Union[str, Any] = VisualBertForQuestionAnswering(__UpperCamelCase ) elif model_type == "nlvr": A__ : Tuple = VisualBertForVisualReasoning(__UpperCamelCase ) elif model_type == "multichoice": A__ : List[str] = VisualBertForMultipleChoice(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Save Checkpoints Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') _SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = LayoutLMTokenizer _lowerCAmelCase = LayoutLMTokenizerFast _lowerCAmelCase = True _lowerCAmelCase = True def __snake_case ( self ): super().setUp() A__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self , **UpperCamelCase__ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = '''UNwant\u00E9d,running''' A__ : Optional[int] = '''unwanted, running''' return input_text, output_text def __snake_case ( self ): A__ : List[str] = self.tokenizer_class(self.vocab_file ) A__ : Any = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def __snake_case ( self ): pass
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=2 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , ): A__ : Dict = parent A__ : Tuple = batch_size A__ : int = patch_size A__ : int = max_length A__ : Tuple = num_mel_bins A__ : List[Any] = is_training A__ : List[Any] = use_labels A__ : Any = hidden_size A__ : Optional[int] = num_hidden_layers A__ : List[Any] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : List[str] = hidden_act A__ : Dict = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : Dict = type_sequence_label_size A__ : List[Any] = initializer_range A__ : List[str] = scope A__ : List[Any] = frequency_stride A__ : str = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ : str = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 A__ : int = (self.max_length - self.patch_size) // self.time_stride + 1 A__ : Any = frequency_out_dimension * time_out_dimension A__ : Dict = num_patches + 2 def __snake_case ( self ): A__ : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) A__ : Tuple = None if self.use_labels: A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = self.get_config() return config, input_values, labels def __snake_case ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = ASTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self ): A__ : Any = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Optional[int] = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __snake_case ( self ): A__ : Union[str, Any] = ASTModelTester(self ) A__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Tuple = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = model_class(UpperCamelCase__ ) A__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Dict = [*signature.parameters.keys()] A__ : List[Any] = ['''input_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : int = ASTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Tuple = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) A__ , A__ : List[Any] = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def __snake_case ( self ): A__ : Union[str, Any] = self.default_feature_extractor A__ : Optional[Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(UpperCamelCase__ ) A__ : str = self.default_feature_extractor A__ , A__ : Optional[int] = prepare_audio() A__ : Optional[Any] = audio.squeeze().numpy() A__ : Any = feature_extractor(UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Optional[Any] = model(**UpperCamelCase__ ) # verify the logits A__ : Optional[int] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : str = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : Dict = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE : Any = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = RobertaTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : int = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : str = add_prefix_space A__ : int = pre_tok_class(**UpperCamelCase__ ) A__ : Any = add_prefix_space A__ : Dict = '''post_processor''' A__ : str = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: A__ : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ : Tuple = tuple(state['''sep'''] ) if "cls" in state: A__ : Tuple = tuple(state['''cls'''] ) A__ : Any = False if state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Dict = add_prefix_space A__ : Optional[Any] = True if state.get('''trim_offsets''' , UpperCamelCase__ ) != trim_offsets: A__ : Tuple = trim_offsets A__ : Union[str, Any] = True if changes_to_apply: A__ : Optional[Any] = getattr(UpperCamelCase__ , state.pop('''type''' ) ) A__ : Union[str, Any] = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property def __snake_case ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __snake_case ( self , UpperCamelCase__ ): A__ : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value A__ : List[str] = value def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : List[str] = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : Tuple = kwargs.get('''is_split_into_words''' , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : Optional[int] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : List[str] = [self.sep_token_id] A__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _SCREAMING_SNAKE_CASE : Optional[Any] = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _SCREAMING_SNAKE_CASE : Optional[Any] = { 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A__ : str = bs[:] A__ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCamelCase ) cs.append(2**8 + n ) n += 1 A__ : List[Any] = [chr(__UpperCamelCase ) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" A__ : Any = set() A__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : int = char return pairs class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ): A__ : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A__ : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A__ : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token A__ : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A__ : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token A__ : Optional[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A__ : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: A__ : Optional[int] = json.load(UpperCamelCase__ ) A__ : Optional[Any] = {v: k for k, v in self.encoder.items()} A__ : int = errors # how to handle errors in decoding A__ : List[Any] = bytes_to_unicode() A__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: A__ : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] A__ : Tuple = [tuple(merge.split() ) for merge in bpe_merges] A__ : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A__ : List[Any] = {} A__ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A__ : Dict = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __snake_case ( self ): return len(self.encoder ) def __snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __snake_case ( self , UpperCamelCase__ ): if token in self.cache: return self.cache[token] A__ : List[str] = tuple(UpperCamelCase__ ) A__ : Union[str, Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A__ : List[Any] = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : str = bigram A__ : str = [] A__ : List[str] = 0 while i < len(UpperCamelCase__ ): try: A__ : List[str] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Optional[int] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : List[str] = tuple(UpperCamelCase__ ) A__ : Union[str, Any] = new_word if len(UpperCamelCase__ ) == 1: break else: A__ : Union[str, Any] = get_pairs(UpperCamelCase__ ) A__ : Optional[int] = ''' '''.join(UpperCamelCase__ ) A__ : Any = word return word def __snake_case ( self , UpperCamelCase__ ): A__ : str = [] for token in re.findall(self.pat , UpperCamelCase__ ): A__ : int = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def __snake_case ( self , UpperCamelCase__ ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def __snake_case ( self , UpperCamelCase__ ): return self.decoder.get(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : str = ''''''.join(UpperCamelCase__ ) A__ : int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return A__ : str = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : Tuple = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) A__ : Tuple = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) A__ : Optional[int] = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : List[str] = [self.cls_token_id] A__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = [self.sep_token_id] A__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ): A__ : int = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): A__ : List[Any] = ''' ''' + text return (text, kwargs)
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase__ : '''simple docstring''' @property def __snake_case ( self ): return self.get_dummy_input() @property def __snake_case ( self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def __snake_case ( self , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ): A__ : Optional[int] = 4 A__ : List[Any] = 32 A__ : Union[str, Any] = (32, 32) A__ : int = torch.manual_seed(0 ) A__ : str = torch.device(UpperCamelCase__ ) A__ : Optional[Any] = (batch_size, num_channels) + sizes A__ : Tuple = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ ) A__ : Dict = {'''hidden_states''': hidden_states} if include_temb: A__ : Optional[Any] = 128 A__ : str = randn_tensor((batch_size, temb_channels) , generator=UpperCamelCase__ , device=UpperCamelCase__ ) if include_res_hidden_states_tuple: A__ : Dict = torch.manual_seed(1 ) A__ : Any = (randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=UpperCamelCase__ ),) if include_encoder_hidden_states: A__ : str = floats_tensor((batch_size, 32, 32) ).to(UpperCamelCase__ ) if include_skip_sample: A__ : Optional[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCamelCase__ , device=UpperCamelCase__ ) return dummy_input def __snake_case ( self ): A__ : Union[str, Any] = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": A__ : Tuple = 32 if self.block_type == "mid": init_dict.pop('''out_channels''' ) A__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : List[Any] = self.prepare_init_args_and_inputs_for_common() A__ : Any = self.block_class(**UpperCamelCase__ ) unet_block.to(UpperCamelCase__ ) unet_block.eval() with torch.no_grad(): A__ : int = unet_block(**UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) A__ : List[str] = output[0, -1, -3:, -3:] A__ : Dict = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) assert torch_all_close(output_slice.flatten() , UpperCamelCase__ , atol=5e-3 ) @unittest.skipIf(torch_device == '''mps''' , '''Training is not supported in mps''' ) def __snake_case ( self ): A__ , A__ : List[str] = self.prepare_init_args_and_inputs_for_common() A__ : Any = self.block_class(**UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() A__ : Any = model(**UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = output[0] A__ : Union[str, Any] = torch.device(UpperCamelCase__ ) A__ : str = randn_tensor(output.shape , device=UpperCamelCase__ ) A__ : List[str] = torch.nn.functional.mse_loss(UpperCamelCase__ , UpperCamelCase__ ) loss.backward()
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _SCREAMING_SNAKE_CASE : Union[str, Any] = object() # For specifying empty leaf dict `{}` _SCREAMING_SNAKE_CASE : Optional[Any] = object() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ) -> List[str]: """simple docstring""" A__ : Optional[int] = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): A__ : Tuple = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" def replace(__UpperCamelCase : Any , __UpperCamelCase : Tuple ): for rule, replacement in rules: if _match(__UpperCamelCase , __UpperCamelCase ): return replacement return val return replace def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __UpperCamelCase )), (("transformer", "wte", "embedding"), P('''mp''' , __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Any: """simple docstring""" A__ : Optional[Any] = _get_partition_rules() A__ : Dict = _replacement_rules(__UpperCamelCase ) A__ : Optional[int] = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} A__ : Tuple = {k: replace(__UpperCamelCase , __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ = None ): if components is None: A__ : Optional[int] = [] A__ : Dict = list(UpperCamelCase__ ) def __len__( self ): return len(self.__components ) def __str__( self ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self , UpperCamelCase__ ): A__ : Optional[int] = len(self ) if size == len(UpperCamelCase__ ): A__ : Optional[int] = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('''must have the same size''' ) def __sub__( self , UpperCamelCase__ ): A__ : Optional[Any] = len(self ) if size == len(UpperCamelCase__ ): A__ : List[Any] = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , (float, int) ): A__ : Optional[Any] = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A__ : Optional[int] = len(self ) A__ : List[Any] = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('''invalid operand!''' ) def __snake_case ( self ): return Vector(self.__components ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): assert -len(self.__components ) <= pos < len(self.__components ) A__ : Tuple = value def __snake_case ( self ): if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) A__ : Tuple = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = False ): A__ : Dict = self * other A__ : Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) return Vector([0] * dimension ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" assert isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , __UpperCamelCase )) A__ : Union[str, Any] = [0] * dimension A__ : str = 1 return Vector(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : Vector , __UpperCamelCase : Vector ) -> Vector: """simple docstring""" assert ( isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) and (isinstance(__UpperCamelCase , (int, float) )) ) return x * scalar + y def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Vector: """simple docstring""" random.seed(__UpperCamelCase ) A__ : Optional[Any] = [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = matrix A__ : Optional[int] = w A__ : Any = h def __str__( self ): A__ : Optional[int] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : Dict = [] for i in range(self.__height ): A__ : Any = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , UpperCamelCase__ ): if self.__width == other.width() and self.__height == other.height(): A__ : List[str] = [] for i in range(self.__height ): A__ : int = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , UpperCamelCase__ ): ... @overload def __mul__( self , UpperCamelCase__ ): ... def __mul__( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A__ : Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): A__ : Optional[Any] = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A__ : List[str] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def __snake_case ( self ): return self.__height def __snake_case ( self ): return self.__width def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if 0 <= x < self.__height and 0 <= y < self.__width: A__ : Any = value else: raise Exception('''change_component: indices out of bounds''' ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) A__ : int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A__ : Any = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('''Indices out of bounds''' ) def __snake_case ( self ): if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Matrix: """simple docstring""" A__ : list[list[float]] = [[0] * n for _ in range(__UpperCamelCase )] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> Matrix: """simple docstring""" random.seed(__UpperCamelCase ) A__ : list[list[float]] = [ [random.randint(__UpperCamelCase , __UpperCamelCase ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase ) ] return Matrix(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Optional[int] = tempfile.mkdtemp() A__ : Optional[int] = BlipImageProcessor() A__ : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) A__ : List[str] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) A__ : Union[str, Any] = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __snake_case ( self , **UpperCamelCase__ ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): A__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A__ : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): A__ : List[str] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A__ : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A__ : Dict = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A__ : Tuple = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.get_image_processor() A__ : Any = self.get_tokenizer() A__ : Optional[int] = self.get_qformer_tokenizer() A__ : List[str] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = self.prepare_image_inputs() A__ : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) A__ : List[str] = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : str = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : Union[str, Any] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : List[Any] = '''lower newer''' A__ : Union[str, Any] = processor(text=UpperCamelCase__ ) A__ : List[Any] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) A__ : Dict = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Optional[Any] = self.get_tokenizer() A__ : List[Any] = self.get_qformer_tokenizer() A__ : int = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[int] = '''lower newer''' A__ : Optional[int] = self.prepare_image_inputs() A__ : Any = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): A__ : List[str] = self.get_image_processor() A__ : Tuple = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Any = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Optional[int] = processor.batch_decode(UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[int] = self.get_image_processor() A__ : Optional[int] = self.get_tokenizer() A__ : str = self.get_qformer_tokenizer() A__ : Optional[int] = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A__ : Optional[Any] = '''lower newer''' A__ : Any = self.prepare_image_inputs() A__ : Dict = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = RoCBertTokenizer _lowerCAmelCase = None _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def __snake_case ( self ): super().setUp() A__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A__ : int = {} A__ : Dict = {} for i, value in enumerate(UpperCamelCase__ ): A__ : int = i A__ : Any = i A__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) A__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : Tuple = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCamelCase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __snake_case ( self ): A__ : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : List[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Any = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __snake_case ( self ): A__ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A__ : Union[str, Any] = {} for i, token in enumerate(UpperCamelCase__ ): A__ : List[str] = i A__ : Dict = RoCBertWordpieceTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __snake_case ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __snake_case ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __snake_case ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __snake_case ( self ): A__ : Tuple = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A__ : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[int] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ : Dict = tokenizer_r.encode_plus( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , ) A__ : Tuple = tokenizer_r.do_lower_case if hasattr(UpperCamelCase__ , '''do_lower_case''' ) else False A__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __snake_case ( self ): A__ : int = ['''的''', '''人''', '''有'''] A__ : Tuple = ''''''.join(UpperCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] = True A__ : List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : List[str] = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : str = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : int = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = False A__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : Tuple = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCamelCase__ ) ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): A__ : int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : str = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase__ ) A__ : List[str] = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __snake_case ( self ): A__ : Tuple = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): A__ : Union[str, Any] = '''你好,你是谁''' A__ : Optional[int] = tokenizer.tokenize(UpperCamelCase__ ) A__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) A__ : int = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) A__ : Any = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) A__ : Dict = tokenizer.prepare_for_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Any = tokenizer.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
55
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
55
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : Dict = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] _SCREAMING_SNAKE_CASE : Optional[int] = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } _SCREAMING_SNAKE_CASE : int = {f"""funnel-transformer/{name}""": 5_1_2 for name in _model_names} _SCREAMING_SNAKE_CASE : Dict = {f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = FunnelTokenizer _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = 2 def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__="##" , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , clean_text=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , wordpieces_prefix=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase__ ) != tokenize_chinese_chars ): A__ : Tuple = getattr(UpperCamelCase__ , normalizer_state.pop('''type''' ) ) A__ : int = do_lower_case A__ : Tuple = strip_accents A__ : Any = tokenize_chinese_chars A__ : Dict = normalizer_class(**UpperCamelCase__ ) A__ : Union[str, Any] = do_lower_case def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : int = [self.sep_token_id] A__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Tuple = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
55
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : str = 1_6 _SCREAMING_SNAKE_CASE : Tuple = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[int]: """simple docstring""" A__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Optional[int] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : int = 16 elif accelerator.mixed_precision != "no": A__ : Any = 8 else: A__ : Union[str, Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Optional[int] = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Dict = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : List[str] = 2 # Initialize accelerator A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : Dict = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : Optional[Any] = int(config['''batch_size'''] ) A__ : int = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE A__ : Dict = MAX_GPU_BATCH_SIZE set_seed(__UpperCamelCase ) A__ , A__ : int = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Dict = model(**__UpperCamelCase ) A__ : Dict = outputs.loss A__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() A__ : Optional[int] = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**__UpperCamelCase ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Optional[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__UpperCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples A__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Dict = parser.parse_args() A__ : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ShapEPipeline _lowerCAmelCase = ["prompt"] _lowerCAmelCase = ["prompt"] _lowerCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _lowerCAmelCase = False @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return self.time_input_dim * 4 @property def __snake_case ( self ): return 8 @property def __snake_case ( self ): A__ : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } A__ : int = PriorTransformer(**UpperCamelCase__ ) return model @property def __snake_case ( self ): torch.manual_seed(0 ) A__ : int = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } A__ : Any = ShapERenderer(**UpperCamelCase__ ) return model def __snake_case ( self ): A__ : Optional[int] = self.dummy_prior A__ : Dict = self.dummy_text_encoder A__ : Optional[int] = self.dummy_tokenizer A__ : Optional[int] = self.dummy_renderer A__ : List[str] = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1024 , prediction_type='''sample''' , use_karras_sigmas=UpperCamelCase__ , clip_sample=UpperCamelCase__ , clip_sample_range=1.0 , ) A__ : Optional[Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=0 ): if str(UpperCamelCase__ ).startswith('''mps''' ): A__ : Optional[int] = torch.manual_seed(UpperCamelCase__ ) else: A__ : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ : List[Any] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __snake_case ( self ): A__ : Tuple = '''cpu''' A__ : str = self.get_dummy_components() A__ : Any = self.pipeline_class(**UpperCamelCase__ ) A__ : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A__ : Optional[Any] = output.images[0] A__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ : Optional[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __snake_case ( self ): A__ : Dict = torch_device == '''cpu''' A__ : Any = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , ) def __snake_case ( self ): A__ : Dict = self.get_dummy_components() A__ : Dict = self.pipeline_class(**UpperCamelCase__ ) A__ : Optional[int] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[int] = 1 A__ : List[Any] = 2 A__ : Any = self.get_dummy_inputs(UpperCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: A__ : List[str] = batch_size * [inputs[key]] A__ : Optional[int] = pipe(**UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): A__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) A__ : Dict = ShapEPipeline.from_pretrained('''openai/shap-e''' ) A__ : Any = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Union[str, Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(0 ) A__ : str = pipe( '''a shark''' , generator=UpperCamelCase__ , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
55
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "microsoft/speecht5_tts" _lowerCAmelCase = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _lowerCAmelCase = "text_reader" _lowerCAmelCase = SpeechTaProcessor _lowerCAmelCase = SpeechTaForTextToSpeech _lowerCAmelCase = SpeechTaHifiGan _lowerCAmelCase = ["text"] _lowerCAmelCase = ["audio"] def __snake_case ( self ): if self.post_processor is None: A__ : int = '''microsoft/speecht5_hifigan''' super().setup() def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): A__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors='''pt''' , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) A__ : List[Any] = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) A__ : Dict = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _SCREAMING_SNAKE_CASE : List[str] = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } _SCREAMING_SNAKE_CASE : Dict = { 'gpt-neox-20b': 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__="<|endoftext|>" , UpperCamelCase__=False , **UpperCamelCase__ , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: A__ : Union[str, Any] = getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) A__ : List[Any] = add_prefix_space A__ : Any = pre_tok_class(**UpperCamelCase__ ) A__ : List[Any] = add_prefix_space def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ = None ): A__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: A__ : Tuple = input_ids[-self.model_max_length :] return input_ids
55
1
from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : dict , __UpperCamelCase : str , __UpperCamelCase : set , __UpperCamelCase : set , __UpperCamelCase : dict , __UpperCamelCase : dict , __UpperCamelCase : PriorityQueue , __UpperCamelCase : dict , __UpperCamelCase : float | int , ) -> float | int: """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue A__ : List[str] = cst_fwd.get(__UpperCamelCase , np.inf ) A__ : str = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A__ : Any = new_cost_f A__ : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A__ : str = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : dict , __UpperCamelCase : dict ) -> int: """simple docstring""" A__ : Optional[int] = -1 A__ : int = set() A__ : Optional[int] = set() A__ : Tuple = {source: 0} A__ : List[Any] = {destination: 0} A__ : Any = {source: None} A__ : Dict = {destination: None} A__ : PriorityQueue[Any] = PriorityQueue() A__ : PriorityQueue[Any] = PriorityQueue() A__ : int = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A__ , A__ : Any = queue_forward.get() visited_forward.add(__UpperCamelCase ) A__ , A__ : Optional[int] = queue_backward.get() visited_backward.add(__UpperCamelCase ) A__ : List[Any] = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) A__ : Dict = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A__ : Tuple = shortest_distance return shortest_path_distance _SCREAMING_SNAKE_CASE : Union[str, Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } _SCREAMING_SNAKE_CASE : Optional[int] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
55
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "deformable_detr" _lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=300 , UpperCamelCase__=1024 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=1024 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=False , UpperCamelCase__=300 , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=0.2_5 , UpperCamelCase__=False , **UpperCamelCase__ , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A__ : int = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = backbone_config.get('''model_type''' ) A__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] A__ : Optional[int] = config_class.from_dict(UpperCamelCase__ ) A__ : Tuple = use_timm_backbone A__ : int = backbone_config A__ : List[Any] = num_channels A__ : List[Any] = num_queries A__ : str = max_position_embeddings A__ : Tuple = d_model A__ : int = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : Optional[Any] = encoder_attention_heads A__ : List[Any] = decoder_ffn_dim A__ : Tuple = decoder_layers A__ : Optional[Any] = decoder_attention_heads A__ : List[str] = dropout A__ : str = attention_dropout A__ : List[Any] = activation_dropout A__ : Any = activation_function A__ : Optional[Any] = init_std A__ : Union[str, Any] = init_xavier_std A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = auxiliary_loss A__ : str = position_embedding_type A__ : List[Any] = backbone A__ : Optional[Any] = use_pretrained_backbone A__ : Any = dilation # deformable attributes A__ : List[Any] = num_feature_levels A__ : List[str] = encoder_n_points A__ : int = decoder_n_points A__ : List[Any] = two_stage A__ : Dict = two_stage_num_proposals A__ : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A__ : List[str] = class_cost A__ : List[Any] = bbox_cost A__ : Any = giou_cost # Loss coefficients A__ : List[str] = mask_loss_coefficient A__ : Union[str, Any] = dice_loss_coefficient A__ : List[Any] = bbox_loss_coefficient A__ : Tuple = giou_loss_coefficient A__ : Optional[Any] = eos_coefficient A__ : List[Any] = focal_alpha A__ : List[str] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.encoder_attention_heads @property def __snake_case ( self ): return self.d_model def __snake_case ( self ): A__ : List[str] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : Tuple = self.backbone_config.to_dict() A__ : Optional[int] = self.__class__.model_type return output
55
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=16 , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=14 , UpperCamelCase__=10 , UpperCamelCase__=19 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=True , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 2, 3, 4, 5] , UpperCamelCase__=25 , UpperCamelCase__=5 , ): A__ : Optional[int] = d_model A__ : Dict = parent A__ : List[Any] = batch_size A__ : Dict = prediction_length A__ : List[Any] = context_length A__ : Union[str, Any] = cardinality A__ : int = num_time_features A__ : Optional[Any] = lags_sequence A__ : Optional[Any] = embedding_dimension A__ : Any = is_training A__ : Dict = hidden_size A__ : List[Any] = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : List[str] = context_length A__ : Any = prediction_length + label_length A__ : List[str] = label_length A__ : str = moving_average A__ : List[str] = autocorrelation_factor def __snake_case ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __snake_case ( self , UpperCamelCase__ ): A__ : int = config.context_length + max(config.lags_sequence ) A__ : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) A__ : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) A__ : int = floats_tensor([self.batch_size, _past_length] ) A__ : Optional[int] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs A__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) A__ : Optional[int] = floats_tensor([self.batch_size, config.prediction_length] ) A__ : str = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __snake_case ( self ): A__ : Tuple = self.get_config() A__ : Tuple = self.prepare_autoformer_inputs_dict(UpperCamelCase__ ) return config, inputs_dict def __snake_case ( self ): A__ , A__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = AutoformerModel(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() A__ : List[str] = model(**UpperCamelCase__ ) A__ : Any = outputs.encoder_last_hidden_state A__ : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: A__ : Tuple = model.get_encoder() encoder.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoformerEncoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) A__ , A__ , A__ , A__ , A__ : str = model.create_network_inputs(**UpperCamelCase__ ) A__ , A__ : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) A__ : Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) A__ : List[Any] = encoder(inputs_embeds=UpperCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) A__ : Dict = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) A__ : Optional[Any] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) A__ : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) A__ : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : str = model.get_decoder() decoder.save_pretrained(UpperCamelCase__ ) A__ : str = AutoformerDecoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) A__ : Any = decoder( trend=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _lowerCAmelCase = (AutoformerForPrediction,) if is_torch_available() else () _lowerCAmelCase = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : List[str] = AutoformerModelTester(self ) A__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: A__ : int = model_class(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) A__ , A__ : int = model_class.from_pretrained(UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase__ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ : Optional[Any] = inspect.signature(getattr(UpperCamelCase__ , '''forward''' ) ) # The main input is the name of the argument after `self` A__ : Tuple = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : str = model_class(UpperCamelCase__ ) A__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : List[str] = [*signature.parameters.keys()] A__ : int = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Dict = True A__ : int = getattr(self.model_tester , '''seq_length''' , UpperCamelCase__ ) A__ : Union[str, Any] = getattr(self.model_tester , '''decoder_seq_length''' , UpperCamelCase__ ) A__ : Tuple = getattr(self.model_tester , '''encoder_seq_length''' , UpperCamelCase__ ) A__ : Dict = getattr(self.model_tester , '''d_model''' , UpperCamelCase__ ) A__ : Dict = getattr(self.model_tester , '''num_attention_heads''' , UpperCamelCase__ ) A__ : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: A__ : List[Any] = True A__ : Optional[int] = False A__ : Union[str, Any] = True A__ : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : List[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Dict = True A__ : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Any = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) A__ : Union[str, Any] = len(UpperCamelCase__ ) A__ : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # decoder attentions A__ : str = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions A__ : Optional[Any] = outputs.cross_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine A__ : Optional[int] = True A__ : Optional[int] = True A__ : Tuple = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase__ ) ) A__ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __snake_case ( self ): super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any]="train-batch.pt" ) -> str: """simple docstring""" A__ : Dict = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__UpperCamelCase , repo_type='''dataset''' ) A__ : Tuple = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) return batch @require_torch @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : int = prepare_batch() with torch.no_grad(): A__ : Any = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] A__ : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Any = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def __snake_case ( self ): A__ : Tuple = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : Optional[Any] = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): A__ : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state A__ : Tuple = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase__ ) A__ : Dict = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def __snake_case ( self ): A__ : int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) A__ : int = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): A__ : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) A__ : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase__ ) A__ : str = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=UpperCamelCase__ ) A__ : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase__ , rtol=1e-1 ) )
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = 0 A__ : Optional[Any] = len(__UpperCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" if len(__UpperCamelCase ) <= 1: return arr, 0 A__ : Optional[int] = len(__UpperCamelCase ) // 2 A__ : List[str] = arr[0:mid] A__ : Union[str, Any] = arr[mid:] A__ , A__ : List[Any] = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) A__ , A__ : Dict = _count_cross_inversions(__UpperCamelCase , __UpperCamelCase ) A__ : Any = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" A__ : str = [] A__ : Tuple = 0 while i < len(__UpperCamelCase ) and j < len(__UpperCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" A__ : List[str] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) A__ : int = count_inversions_bf(__UpperCamelCase ) A__ , A__ : int = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __UpperCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() A__ : Optional[Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Dict = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) # an empty list should also have zero inversions A__ : Union[str, Any] = [] A__ : Union[str, Any] = count_inversions_bf(__UpperCamelCase ) A__ , A__ : Any = count_inversions_recursive(__UpperCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __UpperCamelCase ) if __name__ == "__main__": main()
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Union[str, Any] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "falcon" _lowerCAmelCase = ["past_key_values"] def __init__( self , UpperCamelCase__=6_5024 , UpperCamelCase__=4544 , UpperCamelCase__=32 , UpperCamelCase__=71 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0_2 , UpperCamelCase__=True , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=11 , UpperCamelCase__=11 , **UpperCamelCase__ , ): A__ : List[Any] = vocab_size # Backward compatibility with n_embed kwarg A__ : Union[str, Any] = kwargs.pop('''n_embed''' , UpperCamelCase__ ) A__ : Optional[Any] = hidden_size if n_embed is None else n_embed A__ : Any = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : List[str] = layer_norm_epsilon A__ : List[str] = initializer_range A__ : Optional[int] = use_cache A__ : str = hidden_dropout A__ : Dict = attention_dropout A__ : Optional[Any] = bos_token_id A__ : List[Any] = eos_token_id A__ : List[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads A__ : Tuple = alibi A__ : Tuple = new_decoder_architecture A__ : Optional[Any] = multi_query # Ignored when new_decoder_architecture is True A__ : Optional[Any] = parallel_attn A__ : int = bias super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @property def __snake_case ( self ): return self.hidden_size // self.num_attention_heads @property def __snake_case ( self ): return not self.alibi
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def SCREAMING_SNAKE_CASE ( __UpperCamelCase : BertModel , __UpperCamelCase : str , __UpperCamelCase : str ) -> Optional[int]: """simple docstring""" A__ : Any = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') A__ : Any = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) A__ : str = model.state_dict() def to_tf_var_name(__UpperCamelCase : str ): for patt, repl in iter(__UpperCamelCase ): A__ : Tuple = name.replace(__UpperCamelCase , __UpperCamelCase ) return F"bert/{name}" def create_tf_var(__UpperCamelCase : np.ndarray , __UpperCamelCase : str , __UpperCamelCase : tf.Session ): A__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) A__ : str = tf.get_variable(dtype=__UpperCamelCase , shape=tensor.shape , name=__UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A__ : Tuple = to_tf_var_name(__UpperCamelCase ) A__ : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A__ : Any = torch_tensor.T A__ : int = create_tf_var(tensor=__UpperCamelCase , name=__UpperCamelCase , session=__UpperCamelCase ) tf.keras.backend.set_value(__UpperCamelCase , __UpperCamelCase ) A__ : List[Any] = session.run(__UpperCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(__UpperCamelCase , __UpperCamelCase )}" ) A__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__UpperCamelCase , os.path.join(__UpperCamelCase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any]=None ) -> List[str]: """simple docstring""" A__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__UpperCamelCase , required=__UpperCamelCase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__UpperCamelCase , default=__UpperCamelCase , required=__UpperCamelCase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__UpperCamelCase , required=__UpperCamelCase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__UpperCamelCase , required=__UpperCamelCase , help='''Directory in which to save tensorflow model''' ) A__ : Dict = parser.parse_args(__UpperCamelCase ) A__ : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
55
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None def __snake_case ( self ): A__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) A__ : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(UpperCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(UpperCamelCase__ ) A__ : Dict = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) A__ : Optional[int] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __snake_case ( self ): A__ : str = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
55
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __snake_case ( self ): A__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''width_multiplier''' ) ) class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=64 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__="swish" , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0_2 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=10 , UpperCamelCase__=None , UpperCamelCase__=0.2_5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , ): A__ : Optional[int] = parent A__ : List[str] = batch_size A__ : str = image_size A__ : Dict = patch_size A__ : Optional[int] = num_channels A__ : List[Any] = make_divisible(512 * width_multiplier , divisor=8 ) A__ : Optional[Any] = hidden_act A__ : Any = conv_kernel_size A__ : str = output_stride A__ : Any = classifier_dropout_prob A__ : Union[str, Any] = use_labels A__ : str = is_training A__ : Tuple = num_labels A__ : str = initializer_range A__ : List[Any] = scope A__ : List[str] = width_multiplier A__ : int = ffn_dropout A__ : Union[str, Any] = attn_dropout def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Union[str, Any] = None A__ : Optional[Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.num_labels ) A__ : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __snake_case ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = MobileViTVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Dict = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = self.num_labels A__ : List[Any] = MobileViTVaForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = self.num_labels A__ : Optional[Any] = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A__ : Union[str, Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __snake_case ( self ): A__ : List[str] = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self ): A__ : List[str] = MobileViTVaModelTester(self ) A__ : int = MobileViTVaConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __snake_case ( self ): pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __snake_case ( self ): pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __snake_case ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __snake_case ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __snake_case ( self ): pass def __snake_case ( self ): A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[int] = model_class(UpperCamelCase__ ) A__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : List[str] = [*signature.parameters.keys()] A__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Union[str, Any] = outputs.hidden_states A__ : Any = 5 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. A__ : str = 2 for i in range(len(UpperCamelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : List[Any] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[int] = MobileViTVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Dict: """simple docstring""" A__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __snake_case ( self ): A__ : int = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( UpperCamelCase__ ) A__ : Dict = self.default_image_processor A__ : List[Any] = prepare_img() A__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : List[Any] = model(**UpperCamelCase__ ) # verify the logits A__ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : List[Any] = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def __snake_case ( self ): A__ : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A__ : int = model.to(UpperCamelCase__ ) A__ : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A__ : List[str] = prepare_img() A__ : int = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Dict = model(**UpperCamelCase__ ) A__ : Any = outputs.logits # verify the logits A__ : Any = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def __snake_case ( self ): A__ : str = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A__ : Tuple = model.to(UpperCamelCase__ ) A__ : int = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) A__ : Tuple = prepare_img() A__ : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Union[str, Any] = model(**UpperCamelCase__ ) A__ : Optional[int] = outputs.logits.detach().cpu() A__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(50, 60)] ) A__ : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) A__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) A__ : str = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = (UniPCMultistepScheduler,) _lowerCAmelCase = (("num_inference_steps", 25),) def __snake_case ( self , **UpperCamelCase__ ): A__ : Optional[int] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCamelCase__ ) return config def __snake_case ( self , UpperCamelCase__=0 , **UpperCamelCase__ ): A__ : List[Any] = dict(self.forward_default_kwargs ) A__ : List[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) A__ : Optional[int] = self.dummy_sample A__ : Tuple = 0.1 * sample A__ : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ : int = self.get_scheduler_config(**UpperCamelCase__ ) A__ : Optional[int] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A__ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A__ : Optional[int] = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ : Union[str, Any] = sample, sample for t in range(UpperCamelCase__ , time_step + scheduler.config.solver_order + 1 ): A__ : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A__ : Dict = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self , UpperCamelCase__=0 , **UpperCamelCase__ ): A__ : int = dict(self.forward_default_kwargs ) A__ : List[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) A__ : int = self.dummy_sample A__ : Optional[int] = 0.1 * sample A__ : str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: A__ : Optional[int] = self.get_scheduler_config() A__ : Union[str, Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A__ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A__ : Dict = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] A__ : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A__ : Any = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case ( self , UpperCamelCase__=None , **UpperCamelCase__ ): if scheduler is None: A__ : List[str] = self.scheduler_classes[0] A__ : str = self.get_scheduler_config(**UpperCamelCase__ ) A__ : Dict = scheduler_class(**UpperCamelCase__ ) A__ : Dict = self.scheduler_classes[0] A__ : Tuple = self.get_scheduler_config(**UpperCamelCase__ ) A__ : List[str] = scheduler_class(**UpperCamelCase__ ) A__ : Tuple = 10 A__ : Tuple = self.dummy_model() A__ : int = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ : Optional[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def __snake_case ( self ): A__ : int = dict(self.forward_default_kwargs ) A__ : Dict = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A__ : Dict = self.get_scheduler_config() A__ : List[Any] = scheduler_class(**UpperCamelCase__ ) A__ : List[str] = self.dummy_sample A__ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , '''set_timesteps''' ): A__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] A__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] A__ : Union[str, Any] = scheduler.timesteps[5] A__ : Optional[int] = scheduler.timesteps[6] A__ : Dict = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A__ : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults A__ : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A__ : int = self.full_loop(scheduler=UpperCamelCase__ ) A__ : List[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 A__ : Union[str, Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ : Any = DEISMultistepScheduler.from_config(scheduler.config ) A__ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ : str = UniPCMultistepScheduler.from_config(scheduler.config ) A__ : Union[str, Any] = self.full_loop(scheduler=UpperCamelCase__ ) A__ : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def __snake_case ( self ): self.check_over_configs(thresholding=UpperCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , ) def __snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def __snake_case ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) A__ : List[str] = self.full_loop( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , ) assert not torch.isnan(UpperCamelCase__ ).any(), "Samples have nan numbers" def __snake_case ( self ): self.check_over_configs(lower_order_final=UpperCamelCase__ ) self.check_over_configs(lower_order_final=UpperCamelCase__ ) def __snake_case ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=0 ) def __snake_case ( self ): A__ : Optional[int] = self.full_loop() A__ : Optional[int] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case ( self ): A__ : str = self.full_loop(prediction_type='''v_prediction''' ) A__ : str = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case ( self ): A__ : Tuple = self.scheduler_classes[0] A__ : Any = self.get_scheduler_config(thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0 ) A__ : Optional[Any] = scheduler_class(**UpperCamelCase__ ) A__ : int = 10 A__ : str = self.dummy_model() A__ : str = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A__ : List[Any] = model(UpperCamelCase__ , UpperCamelCase__ ) A__ : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample assert sample.dtype == torch.floataa def __snake_case ( self , **UpperCamelCase__ ): for scheduler_class in self.scheduler_classes: A__ : List[Any] = self.get_scheduler_config(**UpperCamelCase__ ) A__ : Optional[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[str] = '''''' A__ : int = '''''' A__ : Any = [] A__ : Any = 0 A__ : Optional[int] = 256 A__ : str = 0 A__ : Dict = 0 A__ : List[Any] = 0 A__ : Dict = 0 def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = cva.imread(UpperCamelCase__ , 0 ) A__ : List[Any] = copy.deepcopy(self.img ) A__ , A__ , A__ : List[str] = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) A__ : List[Any] = np.sum(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): A__ : Union[str, Any] = x[i] / self.k self.sk += prk A__ : Any = (self.L - 1) * self.sk if self.rem != 0: A__ : str = int(last % last ) A__ : Any = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCamelCase__ ) A__ : Optional[int] = int(np.ma.count(self.img ) / self.img[1].size ) A__ : Dict = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): A__ : Optional[Any] = self.img[j][i] if num != self.last_list[num]: A__ : List[str] = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __snake_case ( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def __snake_case ( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _SCREAMING_SNAKE_CASE : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
55
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(__UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
55
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any]=False ) -> List[Any]: """simple docstring""" A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Dict = '''''' else: A__ : Any = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ : Tuple = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Dict = in_proj_weight[ : config.hidden_size, : ] A__ : List[Any] = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Dict = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" A__ : Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] = dct.pop(__UpperCamelCase ) A__ : List[Any] = val def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: """simple docstring""" A__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ : Dict = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : str ) -> Dict: """simple docstring""" A__ : List[str] = ViTConfig() A__ : Union[str, Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A__ : Optional[int] = True A__ : int = int(vit_name[-12:-10] ) A__ : List[Any] = int(vit_name[-9:-6] ) else: A__ : Any = 10_00 A__ : str = '''huggingface/label-files''' A__ : Optional[Any] = '''imagenet-1k-id2label.json''' A__ : Any = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Dict = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : int = idalabel A__ : List[str] = {v: k for k, v in idalabel.items()} A__ : List[str] = int(vit_name[-6:-4] ) A__ : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): A__ : List[str] = 1_92 A__ : Optional[Any] = 7_68 A__ : Optional[int] = 12 A__ : Tuple = 3 elif vit_name[9:].startswith('''small''' ): A__ : int = 3_84 A__ : Union[str, Any] = 15_36 A__ : Union[str, Any] = 12 A__ : List[str] = 6 else: pass else: if vit_name[4:].startswith('''small''' ): A__ : List[Any] = 7_68 A__ : Tuple = 23_04 A__ : List[str] = 8 A__ : Union[str, Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): A__ : Optional[int] = 10_24 A__ : List[Any] = 40_96 A__ : List[str] = 24 A__ : Optional[Any] = 16 elif vit_name[4:].startswith('''huge''' ): A__ : Optional[Any] = 12_80 A__ : Dict = 51_20 A__ : Dict = 32 A__ : Optional[Any] = 16 # load original model from timm A__ : Optional[int] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Optional[int] = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) A__ : List[Any] = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": A__ : Optional[Any] = ViTModel(__UpperCamelCase ).eval() else: A__ : List[str] = ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A__ : Optional[Any] = DeiTImageProcessor(size=config.image_size ) else: A__ : int = ViTImageProcessor(size=config.image_size ) A__ : List[str] = image_processor(images=prepare_img() , return_tensors='''pt''' ) A__ : Dict = encoding['''pixel_values'''] A__ : List[str] = model(__UpperCamelCase ) if base_model: A__ : List[Any] = timm_model.forward_features(__UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ : Optional[int] = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1e-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
55
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
1
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE : List[str] = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE : List[Any] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE : Dict = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE : Any = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE : int = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE : int = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE : List[str] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(r'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE : Tuple = re.compile(r'^\s*else:') def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> List[str]: """simple docstring""" if _re_test_backend.search(__UpperCamelCase ) is None: return None A__ : Dict = [b[0] for b in _re_backend.findall(__UpperCamelCase )] backends.sort() return "_and_".join(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A__ : str = f.readlines() A__ : Optional[Any] = 0 while line_index < len(__UpperCamelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCamelCase ): return None # First grab the objects without a specific backend in _import_structure A__ : Union[str, Any] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: A__ : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCamelCase ): A__ : Dict = _re_one_line_import_struct.search(__UpperCamelCase ).groups()[0] A__ : str = re.findall('''\[([^\]]+)\]''' , __UpperCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue A__ : Union[str, Any] = _re_import_struct_key_value.search(__UpperCamelCase ) if single_line_import_search is not None: A__ : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 A__ : List[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): A__ : Tuple = lines[line_index] if _re_import_struct_add_one.search(__UpperCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCamelCase ) is not None: A__ : Dict = _re_import_struct_add_many.search(__UpperCamelCase ).groups()[0].split(''', ''' ) A__ : Optional[Any] = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_between_brackets.search(__UpperCamelCase ) is not None: A__ : int = _re_between_brackets.search(__UpperCamelCase ).groups()[0].split(''', ''' ) A__ : str = [obj[1:-1] for obj in imports if len(__UpperCamelCase ) > 0] objects.extend(__UpperCamelCase ) elif _re_quote_object.search(__UpperCamelCase ) is not None: objects.append(_re_quote_object.search(__UpperCamelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 A__ : Any = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Union[str, Any] = [] while ( line_index < len(__UpperCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): A__ : Optional[int] = lines[line_index] A__ : Union[str, Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : str = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. A__ : int = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Optional[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): A__ : Tuple = lines[line_index] A__ : Optional[Any] = _re_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 A__ : List[str] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Any ) -> int: """simple docstring""" def find_duplicates(__UpperCamelCase : Tuple ): return [k for k, v in collections.Counter(__UpperCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : Any = [] for key in import_dict_objects.keys(): A__ : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) A__ : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : List[Any] = '''base imports''' if key == '''none''' else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : List[Any] = [] for root, _, files in os.walk(__UpperCamelCase ): if "__init__.py" in files: A__ : Tuple = os.path.join(__UpperCamelCase , '''__init__.py''' ) A__ : str = parse_init(__UpperCamelCase ) if objects is not None: A__ : int = analyze_results(*__UpperCamelCase ) if len(__UpperCamelCase ) > 0: A__ : Any = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(__UpperCamelCase ) ) if len(__UpperCamelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : Any = [] for path, directories, files in os.walk(__UpperCamelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCamelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue A__ : List[str] = str((Path(__UpperCamelCase ) / folder).relative_to(__UpperCamelCase ) ) A__ : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCamelCase ) for fname in files: if fname == "__init__.py": continue A__ : Union[str, Any] = str((Path(__UpperCamelCase ) / fname).relative_to(__UpperCamelCase ) ) A__ : List[Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCamelCase ) return submodules _SCREAMING_SNAKE_CASE : Tuple = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" A__ : List[Any] = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(__UpperCamelCase , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) A__ : Optional[Any] = spec.loader.load_module() A__ : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCamelCase ) > 0: A__ : List[Any] = '''\n'''.join(F"- {module}" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
55
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ): A__ : List[Any] = parent A__ : Dict = batch_size A__ : Optional[Any] = num_channels A__ : Optional[Any] = image_size A__ : Optional[Any] = patch_size A__ : List[Any] = text_seq_length A__ : List[Any] = is_training A__ : Optional[int] = use_input_mask A__ : Dict = use_token_type_ids A__ : List[Any] = use_labels A__ : int = vocab_size A__ : Any = hidden_size A__ : List[Any] = num_hidden_layers A__ : Dict = num_attention_heads A__ : int = intermediate_size A__ : Optional[int] = hidden_act A__ : Any = hidden_dropout_prob A__ : Any = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : Optional[Any] = type_vocab_size A__ : Tuple = type_sequence_label_size A__ : Tuple = initializer_range A__ : Dict = coordinate_size A__ : Optional[Any] = shape_size A__ : int = num_labels A__ : Dict = num_choices A__ : Any = scope A__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A__ : Any = text_seq_length A__ : Optional[Any] = (image_size // patch_size) ** 2 + 1 A__ : List[Any] = self.text_seq_length + self.image_seq_length def __snake_case ( self ): A__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ : Tuple = bbox[i, j, 3] A__ : Optional[int] = bbox[i, j, 1] A__ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ : str = bbox[i, j, 2] A__ : List[Any] = bbox[i, j, 0] A__ : List[Any] = t A__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Any = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.text_seq_length] ) A__ : str = None if self.use_token_type_ids: A__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None if self.use_labels: A__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A__ : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image A__ : List[str] = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A__ : Union[str, Any] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A__ : Tuple = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = self.num_labels A__ : List[Any] = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Any = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = self.num_labels A__ : str = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : List[str] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Dict = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ): A__ : Any = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[Any] = config_and_inputs A__ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _lowerCAmelCase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __snake_case ( self ): A__ : str = LayoutLMvaModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : str = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): A__ : Optional[Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): A__ : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): A__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) A__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def __snake_case ( self ): A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Any = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) A__ : Any = self.default_image_processor A__ : Dict = prepare_img() A__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) A__ : Optional[int] = torch.tensor([[1, 2]] ) A__ : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A__ : Dict = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits A__ : Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) A__ : Tuple = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
55
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : int = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str ) -> int: """simple docstring""" if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError('''String lengths must match!''' ) A__ : Any = 0 for chara, chara in zip(__UpperCamelCase , __UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
55
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _SCREAMING_SNAKE_CASE : int = get_tests_dir('fixtures/vocab.json') _SCREAMING_SNAKE_CASE : Tuple = get_tests_dir('fixtures') class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def __snake_case ( self ): A__ : List[Any] = 0 def __snake_case ( self ): A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[Any] = WavaVecaConfig() A__ : Dict = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A__ : Any = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Dict = WavaVecaFeatureExtractor() A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : Optional[int] = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : str = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Optional[int] = WavaVecaFeatureExtractor() A__ : List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A__ : str = WavaVecaProcessor(UpperCamelCase__ , UpperCamelCase__ ) # save in new folder processor.save_pretrained(UpperCamelCase__ ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''r''' ) as f: A__ : List[Any] = json.load(UpperCamelCase__ ) config_dict.pop('''processor_class''' ) with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write(json.dumps(UpperCamelCase__ ) ) A__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(UpperCamelCase__ ) # copy relevant files copyfile(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , '''w''' ) as f: f.write('''{}''' ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A__ : str = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) A__ : int = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A__ : List[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A__ : List[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A__ : Dict = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) A__ : int = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __snake_case ( self ): try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : Any = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : str = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : str = CustomTokenizer(UpperCamelCase__ ) A__ : Optional[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase__ ) A__ : Union[str, Any] = AutoProcessor.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = False class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "AutoFeatureExtractor" _lowerCAmelCase = "AutoTokenizer" _lowerCAmelCase = False try: AutoConfig.register('''custom''' , UpperCamelCase__ ) AutoFeatureExtractor.register(UpperCamelCase__ , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoProcessor.register(UpperCamelCase__ , UpperCamelCase__ ) # If remote code is not set, the default is to use local classes. A__ : List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A__ : Any = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A__ : Union[str, Any] = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=UpperCamelCase__ ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __snake_case ( self ): A__ : str = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __snake_case ( self ): A__ : Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __snake_case ( cls ): A__ : List[str] = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def __snake_case ( cls ): try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __snake_case ( self ): A__ : Optional[Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A__ : List[Any] = WavaVecaProcessor.from_pretrained(F"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): A__ : int = WavaVecaProcessor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase__ , '''test-processor-org''' ) , push_to_hub=UpperCamelCase__ , use_auth_token=self._token , organization='''valid_org''' , ) A__ : List[str] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase__ , getattr(new_processor.feature_extractor , UpperCamelCase__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __snake_case ( self ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: A__ : List[Any] = os.path.join(UpperCamelCase__ , '''vocab.txt''' ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A__ : Union[str, Any] = CustomTokenizer(UpperCamelCase__ ) A__ : List[Any] = CustomProcessor(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F"{USER}/test-dynamic-processor" , token=self._token ) A__ : Union[str, Any] = Repository(UpperCamelCase__ , clone_from=F"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(UpperCamelCase__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase__ , '''tokenizer_config.json''' ) ) as f: A__ : Optional[int] = json.load(UpperCamelCase__ ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase__ , '''custom_processing.py''' ) ) ) repo.push_to_hub() A__ : Tuple = AutoProcessor.from_pretrained(F"{USER}/test-dynamic-processor" , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
55
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "swin2sr" _lowerCAmelCase = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , UpperCamelCase__=64 , UpperCamelCase__=1 , UpperCamelCase__=3 , UpperCamelCase__=180 , UpperCamelCase__=[6, 6, 6, 6, 6, 6] , UpperCamelCase__=[6, 6, 6, 6, 6, 6] , UpperCamelCase__=8 , UpperCamelCase__=2.0 , UpperCamelCase__=True , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__="gelu" , UpperCamelCase__=False , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-5 , UpperCamelCase__=2 , UpperCamelCase__=1.0 , UpperCamelCase__="1conv" , UpperCamelCase__="pixelshuffle" , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase__ ) A__ : Dict = image_size A__ : Dict = patch_size A__ : List[str] = num_channels A__ : Dict = embed_dim A__ : Dict = depths A__ : List[str] = len(UpperCamelCase__ ) A__ : Union[str, Any] = num_heads A__ : Any = window_size A__ : Tuple = mlp_ratio A__ : str = qkv_bias A__ : List[str] = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : List[Any] = drop_path_rate A__ : Tuple = hidden_act A__ : Dict = use_absolute_embeddings A__ : Any = layer_norm_eps A__ : Any = initializer_range A__ : Any = upscale A__ : int = img_range A__ : Optional[Any] = resi_connection A__ : Optional[int] = upsampler
55
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @staticmethod @abstractmethod def __snake_case ( UpperCamelCase__ ): raise NotImplementedError() @abstractmethod def __snake_case ( self ): raise NotImplementedError()
55
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" A__ : Optional[int] = 3_84 if "tiny" in model_name: A__ : Any = [3, 3, 9, 3] A__ : Union[str, Any] = [96, 1_92, 3_84, 7_68] if "small" in model_name: A__ : int = [3, 3, 27, 3] A__ : Dict = [96, 1_92, 3_84, 7_68] if "base" in model_name: A__ : Tuple = [3, 3, 27, 3] A__ : List[Any] = [1_28, 2_56, 5_12, 10_24] A__ : Union[str, Any] = 5_12 if "large" in model_name: A__ : int = [3, 3, 27, 3] A__ : Union[str, Any] = [1_92, 3_84, 7_68, 15_36] A__ : Optional[Any] = 7_68 if "xlarge" in model_name: A__ : Dict = [3, 3, 27, 3] A__ : str = [2_56, 5_12, 10_24, 20_48] A__ : List[str] = 10_24 # set label information A__ : Any = 1_50 A__ : Optional[int] = '''huggingface/label-files''' A__ : Union[str, Any] = '''ade20k-id2label.json''' A__ : List[Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) A__ : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A__ : Any = {v: k for k, v in idalabel.items()} A__ : int = ConvNextConfig( depths=__UpperCamelCase , hidden_sizes=__UpperCamelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) A__ : int = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Dict: """simple docstring""" A__ : Optional[Any] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" A__ : Optional[Any] = dct.pop(__UpperCamelCase ) A__ : Dict = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" A__ : int = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } A__ : Dict = model_name_to_url[model_name] A__ : str = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location='''cpu''' )['''state_dict'''] A__ : Dict = get_upernet_config(__UpperCamelCase ) A__ : Union[str, Any] = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A__ : int = state_dict.pop(__UpperCamelCase ) if "bn" in key: A__ : Union[str, Any] = key.replace('''bn''' , '''batch_norm''' ) A__ : Union[str, Any] = val # rename keys A__ : List[str] = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image A__ : List[Any] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' A__ : int = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) A__ : Union[str, Any] = SegformerImageProcessor() A__ : Union[str, Any] = processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): A__ : Dict = model(__UpperCamelCase ) if model_name == "upernet-convnext-tiny": A__ : Union[str, Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": A__ : List[str] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": A__ : Any = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": A__ : Union[str, Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": A__ : List[Any] = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(F"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(F"openmmlab/{model_name}" ) processor.push_to_hub(F"openmmlab/{model_name}" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=[30, 30] , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.0_2 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=8 , UpperCamelCase__=10 , ): A__ : Optional[int] = parent A__ : List[Any] = batch_size A__ : Dict = image_size A__ : Any = patch_size A__ : Dict = num_channels A__ : List[Any] = is_training A__ : int = use_labels A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : str = hidden_act A__ : str = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Optional[int] = type_sequence_label_size A__ : Any = initializer_range A__ : Optional[int] = num_labels A__ : Union[str, Any] = scope A__ : Union[str, Any] = n_targets A__ : Dict = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens A__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) A__ : List[str] = num_patches + 1 + self.num_detection_tokens def __snake_case ( self ): A__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) A__ : int = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) A__ : Tuple = [] for i in range(self.batch_size ): A__ : List[Any] = {} A__ : Tuple = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=UpperCamelCase__ ) A__ : Any = torch.rand(self.n_targets , 4 , device=UpperCamelCase__ ) labels.append(UpperCamelCase__ ) A__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Tuple = YolosModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : Any = YolosForObjectDetection(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ ) A__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) A__ : Union[str, Any] = model(pixel_values=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __snake_case ( self ): A__ : Optional[int] = self.prepare_config_and_inputs() A__ , A__ , A__ : Optional[Any] = config_and_inputs A__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () _lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ): A__ : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": A__ : str = [] for i in range(self.model_tester.batch_size ): A__ : int = {} A__ : Dict = torch.ones( size=(self.model_tester.n_targets,) , device=UpperCamelCase__ , dtype=torch.long ) A__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=UpperCamelCase__ , dtype=torch.float ) labels.append(UpperCamelCase__ ) A__ : Dict = labels return inputs_dict def __snake_case ( self ): A__ : List[Any] = YolosModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): # YOLOS does not use inputs_embeds pass def __snake_case ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def __snake_case ( self ): A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : List[str] = model_class(UpperCamelCase__ ) A__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] = [*signature.parameters.keys()] A__ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __snake_case ( self ): A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : Tuple = True # in YOLOS, the seq_len is different A__ : List[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: A__ : Any = True A__ : Optional[int] = False A__ : Optional[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[str] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[int] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Tuple = True A__ : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A__ : List[Any] = len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : List[str] = True A__ : List[Any] = True A__ : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Tuple = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase__ ) ) A__ : List[str] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __snake_case ( self ): def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : int = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] = outputs.hidden_states A__ : int = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # YOLOS has a different seq_length A__ : Union[str, Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : Optional[int] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*UpperCamelCase__ ) @slow def __snake_case ( self ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Union[str, Any] = YolosModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" A__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self ): return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __snake_case ( self ): A__ : Tuple = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(UpperCamelCase__ ) A__ : str = self.default_image_processor A__ : Tuple = prepare_img() A__ : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ : Any = model(inputs.pixel_values ) # verify outputs A__ : List[Any] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=UpperCamelCase__ , ) A__ : Optional[int] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify postprocessing A__ : Dict = image_processor.post_process_object_detection( UpperCamelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] A__ : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(UpperCamelCase__ ) A__ : str = [75, 75, 17, 63, 17] A__ : Tuple = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(UpperCamelCase__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , UpperCamelCase__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , UpperCamelCase__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , UpperCamelCase__ ) )
55
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE_, R"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ", ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): if self.framework == "tf": A__ : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": A__ : Any = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ) else: raise ValueError('''Unsupported framework''' ) return masked_index def __snake_case ( self , UpperCamelCase__ ): A__ : Dict = self.get_masked_index(UpperCamelCase__ ) A__ : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __snake_case ( self , UpperCamelCase__ ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ): if return_tensors is None: A__ : str = self.framework A__ : str = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.ensure_exactly_one_mask_token(UpperCamelCase__ ) return model_inputs def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = self.model(**UpperCamelCase__ ) A__ : List[str] = model_inputs['''input_ids'''] return model_outputs def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=5 , UpperCamelCase__=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: A__ : Union[str, Any] = target_ids.shape[0] A__ : str = model_outputs['''input_ids'''][0] A__ : Tuple = model_outputs['''logits'''] if self.framework == "tf": A__ : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] A__ : Dict = outputs.numpy() A__ : Tuple = outputs[0, masked_index, :] A__ : str = stable_softmax(UpperCamelCase__ , axis=-1 ) if target_ids is not None: A__ : int = tf.gather_nd(tf.squeeze(UpperCamelCase__ , 0 ) , target_ids.reshape(-1 , 1 ) ) A__ : str = tf.expand_dims(UpperCamelCase__ , 0 ) A__ : str = tf.math.top_k(UpperCamelCase__ , k=UpperCamelCase__ ) A__ , A__ : List[str] = topk.values.numpy(), topk.indices.numpy() else: A__ : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample A__ : List[Any] = outputs[0, masked_index, :] A__ : Tuple = logits.softmax(dim=-1 ) if target_ids is not None: A__ : str = probs[..., target_ids] A__ , A__ : Tuple = probs.topk(UpperCamelCase__ ) A__ : Union[str, Any] = [] A__ : str = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): A__ : Optional[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place A__ : List[str] = input_ids.numpy().copy() if target_ids is not None: A__ : Any = target_ids[p].tolist() A__ : List[str] = p # Filter padding out: A__ : Dict = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back A__ : Any = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) A__ : str = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(UpperCamelCase__ ) result.append(UpperCamelCase__ ) if single_mask: return result[0] return result def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__=None ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Dict = [targets] try: A__ : Any = self.tokenizer.get_vocab() except Exception: A__ : Tuple = {} A__ : str = [] for target in targets: A__ : int = vocab.get(UpperCamelCase__ , UpperCamelCase__ ) if id_ is None: A__ : Tuple = self.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , max_length=1 , truncation=UpperCamelCase__ , )['''input_ids'''] if len(UpperCamelCase__ ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " '''We cannot replace it with anything meaningful, ignoring it''' ) continue A__ : int = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) A__ : str = list(set(UpperCamelCase__ ) ) if len(UpperCamelCase__ ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) A__ : Optional[int] = np.array(UpperCamelCase__ ) return target_ids def __snake_case ( self , UpperCamelCase__=None , UpperCamelCase__=None ): A__ : Tuple = {} if targets is not None: A__ : Any = self.get_target_ids(UpperCamelCase__ , UpperCamelCase__ ) A__ : List[Any] = target_ids if top_k is not None: A__ : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): A__ : Any = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) == 1: return outputs[0] return outputs
55
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Optional[int] = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : int = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
_SCREAMING_SNAKE_CASE : List[str] = range(2, 2_0 + 1) _SCREAMING_SNAKE_CASE : Optional[Any] = [1_0**k for k in range(ks[-1] + 1)] _SCREAMING_SNAKE_CASE : dict[int, dict[int, list[list[int]]]] = {} def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] ) -> int: """simple docstring""" A__ : Tuple = sum(a_i[j] for j in range(__UpperCamelCase , len(__UpperCamelCase ) ) ) A__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) , __UpperCamelCase ) ) ) A__ , A__ : Optional[int] = 0, 0 A__ : List[Any] = n - i A__ : Any = memo.get(__UpperCamelCase ) if sub_memo is not None: A__ : Optional[int] = sub_memo.get(__UpperCamelCase ) if jumps is not None and len(__UpperCamelCase ) > 0: # find and make the largest jump without going over A__ : List[Any] = -1 for _k in range(len(__UpperCamelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A__ : List[str] = _k break if max_jump >= 0: A__ , A__ , A__ : List[Any] = jumps[max_jump] # since the difference between jumps is cached, add c A__ : int = diff + c for j in range(min(__UpperCamelCase , len(__UpperCamelCase ) ) ): A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) if new_c > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A__ : List[Any] = [] else: A__ : Optional[Any] = {c: []} A__ : int = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A__ , A__ : str = next_term(__UpperCamelCase , k - 1 , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A__ , A__ : str = compute(__UpperCamelCase , __UpperCamelCase , i + dn , __UpperCamelCase ) diff += _diff dn += terms_jumped A__ : str = sub_memo[c] # keep jumps sorted by # of terms skipped A__ : List[Any] = 0 while j < len(__UpperCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__UpperCamelCase , (diff, dn, k) ) return (diff, dn) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : int ) -> Any: """simple docstring""" if i >= n: return 0, i if k > len(__UpperCamelCase ): a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A__ : Optional[Any] = i A__ , A__ , A__ : Dict = 0, 0, 0 for j in range(len(__UpperCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A__ : int = ds_c + ds_b diff += addend A__ : List[Any] = 0 for j in range(__UpperCamelCase ): A__ : Optional[Any] = a_i[j] + addend A__ , A__ : List[str] = divmod(__UpperCamelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return diff, i - start_i def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) -> Tuple: """simple docstring""" for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): A__ : Any = digits[j] + addend if s >= 10: A__ , A__ : Union[str, Any] = divmod(__UpperCamelCase , 10 ) A__ : Optional[int] = addend // 10 + quotient else: A__ : Any = s A__ : Dict = addend // 10 if addend == 0: break while addend > 0: A__ , A__ : Dict = divmod(__UpperCamelCase , 10 ) digits.append(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**15 ) -> int: """simple docstring""" A__ : List[Any] = [1] A__ : Dict = 1 A__ : Tuple = 0 while True: A__ , A__ : List[str] = next_term(__UpperCamelCase , 20 , i + dn , __UpperCamelCase ) dn += terms_jumped if dn == n - i: break A__ : List[str] = 0 for j in range(len(__UpperCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
55
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , ) -> str: """simple docstring""" A__ : Union[str, Any] = { '''7z''': (seven_zip_file, SevenZipExtractor), '''bz2''': (bza_file, BzipaExtractor), '''gzip''': (gz_file, GzipExtractor), '''lz4''': (lza_file, LzaExtractor), '''tar''': (tar_file, TarExtractor), '''xz''': (xz_file, XzExtractor), '''zip''': (zip_file, ZipExtractor), '''zstd''': (zstd_file, ZstdExtractor), } A__ , A__ : List[Any] = input_paths_and_base_extractors[compression_format] if input_path is None: A__ : Tuple = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) assert base_extractor.is_extractable(__UpperCamelCase ) A__ : List[str] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') base_extractor.extract(__UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A__ : List[str] = file_path.read_text(encoding='''utf-8''' ) else: A__ : Any = output_path.read_text(encoding='''utf-8''' ) A__ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( '''compression_format, is_archive''' , [ ('''7z''', True), ('''bz2''', False), ('''gzip''', False), ('''lz4''', False), ('''tar''', True), ('''xz''', False), ('''zip''', True), ('''zstd''', False), ] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , ) -> List[str]: """simple docstring""" A__ : List[Any] = { '''7z''': seven_zip_file, '''bz2''': bza_file, '''gzip''': gz_file, '''lz4''': lza_file, '''tar''': tar_file, '''xz''': xz_file, '''zip''': zip_file, '''zstd''': zstd_file, } A__ : Any = input_paths[compression_format] if input_path is None: A__ : Optional[Any] = F"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__UpperCamelCase ) A__ : Dict = Extractor.infer_extractor_format(__UpperCamelCase ) assert extractor_format is not None A__ : Optional[Any] = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''') Extractor.extract(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name A__ : Optional[int] = file_path.read_text(encoding='''utf-8''' ) else: A__ : Union[str, Any] = output_path.read_text(encoding='''utf-8''' ) A__ : Any = text_file.read_text(encoding='''utf-8''' ) assert extracted_file_content == expected_file_content @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Tuple: """simple docstring""" import tarfile A__ : Any = tmp_path / '''data_dot_dot''' directory.mkdir() A__ : Optional[Any] = directory / '''tar_file_with_dot_dot.tar''' with tarfile.TarFile(__UpperCamelCase , '''w''' ) as f: f.add(__UpperCamelCase , arcname=os.path.join('''..''' , text_file.name ) ) return path @pytest.fixture def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" import tarfile A__ : int = tmp_path / '''data_sym_link''' directory.mkdir() A__ : List[Any] = directory / '''tar_file_with_sym_link.tar''' os.symlink('''..''' , directory / '''subdir''' , target_is_directory=__UpperCamelCase ) with tarfile.TarFile(__UpperCamelCase , '''w''' ) as f: f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( '''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" A__ : int = { '''tar_file_with_dot_dot''': tar_file_with_dot_dot, '''tar_file_with_sym_link''': tar_file_with_sym_link, } A__ : str = insecure_tar_files[insecure_tar_file] A__ : Dict = tmp_path / '''extracted''' TarExtractor.extract(__UpperCamelCase , __UpperCamelCase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> List[str]: """simple docstring""" A__ : Any = tmpdir / '''not_a_zip_file''' # From: https://github.com/python/cpython/pull/5053 A__ : int = ( b'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00''' b'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I''' b'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07''' b'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82''' ) with not_a_zip_file.open('''wb''' ) as f: f.write(__UpperCamelCase ) assert zipfile.is_zipfile(str(__UpperCamelCase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__UpperCamelCase ) # but we're right
55
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int=False ) -> Tuple: """simple docstring""" try: A__ : Dict = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A__ : Tuple = default else: # KEY is set, convert it to True or False. try: A__ : Union[str, Any] = strtobool(__UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value _SCREAMING_SNAKE_CASE : Union[str, Any] = parse_flag_from_env('RUN_SLOW', default=False) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" return unittest.skip('''Test was skipped''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Dict: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> str: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None ) -> Optional[Any]: """simple docstring""" if test_case is None: return partial(__UpperCamelCase , version=__UpperCamelCase ) return unittest.skipUnless(is_torch_version('''>=''' , __UpperCamelCase ) , F"test requires torch version >= {version}" )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any ) -> Tuple: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__UpperCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__UpperCamelCase ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = True @classmethod def __snake_case ( cls ): A__ : Tuple = tempfile.mkdtemp() @classmethod def __snake_case ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __snake_case ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase__ ) class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , UpperCamelCase__ ): A__ : Tuple = mocks if isinstance(UpperCamelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Any: """simple docstring""" A__ : int = AcceleratorState() A__ : Any = tensor[None].clone().to(state.device ) A__ : Optional[int] = gather(__UpperCamelCase ).cpu() A__ : Any = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __UpperCamelCase ): return False return True class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A__ : List[Any] = returncode A__ : Union[str, Any] = stdout A__ : Dict = stderr async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" while True: A__ : Tuple = await stream.readline() if line: callback(__UpperCamelCase ) else: break async def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=False , __UpperCamelCase : List[Any]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__UpperCamelCase ) ) A__ : int = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A__ : List[Any] = [] A__ : str = [] def tee(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any]="" ): A__ : Optional[Any] = line.decode('''utf-8''' ).rstrip() sink.append(__UpperCamelCase ) if not quiet: print(__UpperCamelCase , __UpperCamelCase , file=__UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __UpperCamelCase : tee(__UpperCamelCase , __UpperCamelCase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__UpperCamelCase , ) return _RunOutput(await p.wait() , __UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=1_80 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Dict=True ) -> _RunOutput: """simple docstring""" A__ : Dict = asyncio.get_event_loop() A__ : Optional[Any] = loop.run_until_complete( _stream_subprocess(__UpperCamelCase , env=__UpperCamelCase , stdin=__UpperCamelCase , timeout=__UpperCamelCase , quiet=__UpperCamelCase , echo=__UpperCamelCase ) ) A__ : Union[str, Any] = ''' '''.join(__UpperCamelCase ) if result.returncode > 0: A__ : Optional[Any] = '''\n'''.join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" try: A__ : List[Any] = subprocess.check_output(__UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__UpperCamelCase , '''decode''' ): A__ : Any = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}" ) from e
55
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 4_00_00_00 ) -> int: """simple docstring""" A__ : Any = [0, 1] A__ : Optional[int] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ : int = 0 for j in range(len(__UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
55
import numpy as np _SCREAMING_SNAKE_CASE : Any = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class UpperCamelCase__ : '''simple docstring''' def __init__( self ): A__ : List[Any] = np.array(UpperCamelCase__ ) def __snake_case ( self , UpperCamelCase__ ): A__ , A__ : Any = np.where(letter == self.SQUARE ) A__ : int = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ ): A__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __snake_case ( self , UpperCamelCase__ ): A__ : List[str] = message.lower() A__ : str = message.replace(''' ''' , '''''' ) A__ : Union[str, Any] = message.replace('''j''' , '''i''' ) A__ : List[Any] = np.empty((2, len(UpperCamelCase__ )) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : Any = self.letter_to_numbers(message[letter_index] ) A__ : Optional[Any] = numbers[0] A__ : List[str] = numbers[1] A__ : List[str] = first_step.reshape(2 * len(UpperCamelCase__ ) ) A__ : List[Any] = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Dict = int(second_step[numbers_index * 2] ) A__ : List[str] = int(second_step[(numbers_index * 2) + 1] ) A__ : Dict = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = encoded_message + letter return encoded_message def __snake_case ( self , UpperCamelCase__ ): A__ : str = message.lower() message.replace(''' ''' , '''''' ) A__ : List[Any] = np.empty(2 * len(UpperCamelCase__ ) ) for letter_index in range(len(UpperCamelCase__ ) ): A__ : List[str] = self.letter_to_numbers(message[letter_index] ) A__ : Dict = numbers[0] A__ : int = numbers[1] A__ : Optional[Any] = first_step.reshape((2, len(UpperCamelCase__ )) ) A__ : int = '''''' for numbers_index in range(len(UpperCamelCase__ ) ): A__ : Tuple = int(second_step[0, numbers_index] ) A__ : Dict = int(second_step[1, numbers_index] ) A__ : List[str] = self.numbers_to_letter(UpperCamelCase__ , UpperCamelCase__ ) A__ : Tuple = decoded_message + letter return decoded_message
55
1