code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase : Optional[Any] = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple=8 ) -> List[str]: '''simple docstring''' snake_case__ :int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case__ :Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase_ ( __snake_case : Any , __snake_case : Dict=5_12 , __snake_case : str=5_12 ) -> Tuple: '''simple docstring''' snake_case__ :List[str] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) snake_case__ :Any = np.array(pil_image.convert("RGB" ) ) snake_case__ :int = arr.astype(np.floataa ) / 1_2_7.5 - 1 snake_case__ :List[Any] = np.transpose(UpperCAmelCase__ , [2, 0, 1] ) snake_case__ :Any = torch.from_numpy(UpperCAmelCase__ ).unsqueeze(0 ) return image class _snake_case ( _a ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) -> Tuple: super().__init__() self.register_modules( unet=_A ,scheduler=_A ,movq=_A ,) snake_case__ :Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: # get the original timestep using init_timestep snake_case__ :Optional[int] = min(int(num_inference_steps * strength ) ,_A ) snake_case__ :Tuple = max(num_inference_steps - init_timestep ,0 ) snake_case__ :Dict = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> List[str]: if not isinstance(_A ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}' ) snake_case__ :Any = image.to(device=_A ,dtype=_A ) snake_case__ :Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: snake_case__ :str = image else: if isinstance(_A ,_A ) and len(_A ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(_A )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(_A ,_A ): snake_case__ :int = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_A ) ] snake_case__ :int = torch.cat(_A ,dim=0 ) else: snake_case__ :Tuple = self.movq.encode(_A ).latent_dist.sample(_A ) snake_case__ :int = self.movq.config.scaling_factor * init_latents snake_case__ :List[str] = torch.cat([init_latents] ,dim=0 ) snake_case__ :str = init_latents.shape snake_case__ :Any = randn_tensor(_A ,generator=_A ,device=_A ,dtype=_A ) # get latents snake_case__ :str = self.scheduler.add_noise(_A ,_A ,_A ) snake_case__ :Any = init_latents return latents def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) snake_case__ :int = torch.device(f'cuda:{gpu_id}' ) snake_case__ :Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A ,_A ) def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> Union[str, Any]: if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) snake_case__ :Optional[Any] = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case__ :Dict = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case__ , snake_case__ :Tuple = cpu_offload_with_hook(_A ,_A ,prev_module_hook=_A ) # We'll offload the last model manually. snake_case__ :str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self ) -> int: if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_A ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = 512 ,UpperCamelCase = 512 ,UpperCamelCase = 100 ,UpperCamelCase = 4.0 ,UpperCamelCase = 0.3 ,UpperCamelCase = 1 ,UpperCamelCase = None ,UpperCamelCase = "pil" ,UpperCamelCase = True ,) -> Any: snake_case__ :Dict = self._execution_device snake_case__ :Any = guidance_scale > 1.0 if isinstance(_A ,_A ): snake_case__ :List[str] = torch.cat(_A ,dim=0 ) snake_case__ :Dict = image_embeds.shape[0] if isinstance(_A ,_A ): snake_case__ :List[str] = torch.cat(_A ,dim=0 ) if do_classifier_free_guidance: snake_case__ :Optional[Any] = image_embeds.repeat_interleave(_A ,dim=0 ) snake_case__ :List[Any] = negative_image_embeds.repeat_interleave(_A ,dim=0 ) snake_case__ :Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=_A ) if not isinstance(_A ,_A ): snake_case__ :Tuple = [image] if not all(isinstance(_A ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(_A ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) snake_case__ :str = torch.cat([prepare_image(_A ,_A ,_A ) for i in image] ,dim=0 ) snake_case__ :str = image.to(dtype=image_embeds.dtype ,device=_A ) snake_case__ :Optional[int] = self.movq.encode(_A )["latents"] snake_case__ :int = latents.repeat_interleave(_A ,dim=0 ) self.scheduler.set_timesteps(_A ,device=_A ) snake_case__ , snake_case__ :Optional[Any] = self.get_timesteps(_A ,_A ,_A ) snake_case__ :Union[str, Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) snake_case__ , snake_case__ :List[str] = downscale_height_and_width(_A ,_A ,self.movq_scale_factor ) snake_case__ :Any = self.prepare_latents( _A ,_A ,_A ,_A ,image_embeds.dtype ,_A ,_A ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance snake_case__ :Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case__ :Any = {"image_embeds": image_embeds} snake_case__ :List[str] = self.unet( sample=_A ,timestep=_A ,encoder_hidden_states=_A ,added_cond_kwargs=_A ,return_dict=_A ,)[0] if do_classifier_free_guidance: snake_case__ , snake_case__ :List[Any] = noise_pred.split(latents.shape[1] ,dim=1 ) snake_case__ , snake_case__ :Dict = noise_pred.chunk(2 ) snake_case__ , snake_case__ :List[Any] = variance_pred.chunk(2 ) snake_case__ :int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case__ :List[str] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case__ , snake_case__ :Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case__ :Tuple = self.scheduler.step( _A ,_A ,_A ,generator=_A ,)[0] # post-processing snake_case__ :List[str] = self.movq.decode(_A ,force_not_quantize=_A )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: snake_case__ :str = image * 0.5 + 0.5 snake_case__ :Union[str, Any] = image.clamp(0 ,1 ) snake_case__ :Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": snake_case__ :Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _snake_case ( _A ): _A = ['image_processor', 'tokenizer'] _A = 'BlipImageProcessor' _A = 'AutoTokenizer' def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[Any] = False super().__init__(__UpperCamelCase ,__UpperCamelCase ) snake_case__ :Union[str, Any] = self.image_processor def __call__( self ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = False ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = 0 ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = False ,UpperCamelCase = False ,UpperCamelCase = False ,UpperCamelCase = False ,UpperCamelCase = True ,UpperCamelCase = None ,**UpperCamelCase ,) -> Optional[Any]: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: snake_case__ :Dict = self.tokenizer snake_case__ :int = self.tokenizer( text=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,stride=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,return_overflowing_tokens=__UpperCamelCase ,return_special_tokens_mask=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ,return_length=__UpperCamelCase ,verbose=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ,) return text_encoding # add pixel_values snake_case__ :Union[str, Any] = self.image_processor(__UpperCamelCase ,return_tensors=__UpperCamelCase ) if text is not None: snake_case__ :int = self.tokenizer( text=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,stride=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,return_overflowing_tokens=__UpperCamelCase ,return_special_tokens_mask=__UpperCamelCase ,return_offsets_mapping=__UpperCamelCase ,return_token_type_ids=__UpperCamelCase ,return_length=__UpperCamelCase ,verbose=__UpperCamelCase ,return_tensors=__UpperCamelCase ,**__UpperCamelCase ,) else: snake_case__ :Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> int: return self.tokenizer.batch_decode(*__UpperCamelCase ,**__UpperCamelCase ) def lowerCAmelCase_ ( self ,*UpperCamelCase ,**UpperCamelCase ) -> List[Any]: return self.tokenizer.decode(*__UpperCamelCase ,**__UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :int = self.tokenizer.model_input_names snake_case__ :Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import os import string import sys __UpperCAmelCase : List[str] = 1 << 8 __UpperCAmelCase : List[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 2_7, "up": 6_5 + ARROW_KEY_FLAG, "down": 6_6 + ARROW_KEY_FLAG, "right": 6_7 + ARROW_KEY_FLAG, "left": 6_8 + ARROW_KEY_FLAG, "mod_int": 9_1, "undefined": sys.maxsize, "interrupt": 3, "insert": 5_0, "delete": 5_1, "pg_up": 5_3, "pg_down": 5_4, } __UpperCAmelCase : List[str] = KEYMAP["up"] __UpperCAmelCase : List[str] = KEYMAP["left"] if sys.platform == "win32": __UpperCAmelCase : int = [] __UpperCAmelCase : List[str] = { B"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, B"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, B"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, B"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, B"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(1_0): __UpperCAmelCase : int = ord(str(i)) def lowercase_ ( ) -> List[Any]: '''simple docstring''' if os.name == "nt": import msvcrt snake_case__ :List[Any] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke snake_case__ :Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ :Tuple = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ :Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) snake_case__ :str = chr(KEYMAP["esc"] ) except KeyError: snake_case__ :int = cha[1] else: snake_case__ :List[str] = ch.decode(_UpperCamelCase ) else: snake_case__ :Union[str, Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ :str = sys.stdin.fileno() snake_case__ :Union[str, Any] = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) snake_case__ :Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' snake_case__ :str = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: snake_case__ :int = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: snake_case__ :Union[str, Any] = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase_ ( __snake_case : List[str] ) -> List[str]: '''simple docstring''' return EnvironmentCommand() def lowercase_ ( __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class _snake_case ( __UpperCAmelCase ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Dict: snake_case__ :int = parser.add_parser("env" ) download_parser.set_defaults(func=UpperCamelCase ) download_parser.add_argument( "--accelerate-config_file" ,default=UpperCamelCase ,help="The accelerate config file to use for the default values in the launching script." ,) download_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,*UpperCamelCase ) -> List[Any]: snake_case__ :Union[str, Any] = accelerate_config_file def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = "not installed" if is_safetensors_available(): import safetensors snake_case__ :Dict = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors snake_case__ :Any = f'{safetensors.__version__} but is ignored because of PyTorch version too old.' snake_case__ :Any = "not installed" snake_case__ :Optional[int] = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file snake_case__ :str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase ): snake_case__ :Optional[Any] = load_config_from_file(self._accelerate_config_file ).to_dict() snake_case__ :Optional[Any] = ( "\n".join([f'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase ,UpperCamelCase ) else f'\t{accelerate_config}' ) snake_case__ :int = "not installed" snake_case__ :Tuple = "NA" if is_torch_available(): import torch snake_case__ :Union[str, Any] = torch.__version__ snake_case__ :int = torch.cuda.is_available() snake_case__ :Any = "not installed" snake_case__ :List[Any] = "NA" if is_tf_available(): import tensorflow as tf snake_case__ :int = tf.__version__ try: # deprecated in v2.1 snake_case__ :str = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool snake_case__ :Tuple = bool(tf.config.list_physical_devices("GPU" ) ) snake_case__ :List[str] = "not installed" snake_case__ :int = "not installed" snake_case__ :List[str] = "not installed" snake_case__ :List[Any] = "NA" if is_flax_available(): import flax import jax import jaxlib snake_case__ :Optional[int] = flax.__version__ snake_case__ :str = jax.__version__ snake_case__ :List[Any] = jaxlib.__version__ snake_case__ :Optional[Any] = jax.lib.xla_bridge.get_backend().platform snake_case__ :str = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'{safetensors_version}', "Accelerate version": f'{accelerate_version}', "Accelerate config": f'{accelerate_config_str}', "PyTorch version (GPU?)": f'{pt_version} ({pt_cuda_available})', "Tensorflow version (GPU?)": f'{tf_version} ({tf_cuda_available})', "Flax version (CPU?/GPU?/TPU?)": f'{flax_version} ({jax_backend})', "Jax version": f'{jax_version}', "JaxLib version": f'{jaxlib_version}', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(UpperCamelCase ) ) return info @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=5 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=16 ,UpperCamelCase=2 ,UpperCamelCase=0.02 ,UpperCamelCase=4 ,) -> int: snake_case__ :Union[str, Any] = parent snake_case__ :Union[str, Any] = batch_size snake_case__ :int = seq_length snake_case__ :List[str] = is_training snake_case__ :Optional[int] = use_attention_mask snake_case__ :Dict = use_token_type_ids snake_case__ :Union[str, Any] = use_labels snake_case__ :str = vocab_size snake_case__ :Tuple = hidden_size snake_case__ :List[Any] = num_hidden_layers snake_case__ :Any = num_attention_heads snake_case__ :Optional[Any] = intermediate_size snake_case__ :Union[str, Any] = hidden_act snake_case__ :Any = hidden_dropout_prob snake_case__ :Union[str, Any] = attention_probs_dropout_prob snake_case__ :Union[str, Any] = max_position_embeddings snake_case__ :Tuple = type_vocab_size snake_case__ :Any = type_sequence_label_size snake_case__ :str = initializer_range snake_case__ :int = num_choices def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :str = None if self.use_attention_mask: snake_case__ :Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :Optional[int] = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase__ ,) return config, input_ids, attention_mask def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = self.prepare_config_and_inputs() snake_case__ :List[str] = config_and_inputs snake_case__ :Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _snake_case ( __lowerCAmelCase , unittest.TestCase ): _A = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[Any] = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase_ ( self ) -> int: for model_class_name in self.all_model_classes: snake_case__ :List[Any] = model_class_name.from_pretrained("distilbert-base-uncased" ) snake_case__ :List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :Any = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) snake_case__ :Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) snake_case__ :int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case__ :Optional[int] = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] snake_case__ :Optional[int] = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) snake_case__ :Optional[int] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase__ ,atol=1E-4 ) )
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowercase_ ( ) -> Tuple: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def lowercase_ ( ) -> str: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def lowercase_ ( ) -> int: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head("https://huggingface.co" )
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase_ ( __snake_case : str , __snake_case : Any ) -> Optional[int]: '''simple docstring''' snake_case__ :Tuple = torch.load(UpperCamelCase__ , map_location="cpu" ) snake_case__ :Union[str, Any] = chkpt["model"] # We have the base model one level deeper than the original XLM repository snake_case__ :int = {} for k, v in state_dict.items(): if "pred_layer" in k: snake_case__ :Any = v else: snake_case__ :List[str] = v snake_case__ :Optional[int] = chkpt["params"] snake_case__ :List[Any] = {n: v for n, v in config.items() if not isinstance(UpperCamelCase__ , (torch.FloatTensor, numpy.ndarray) )} snake_case__ :Union[str, Any] = chkpt["dico_word2id"] snake_case__ :Dict = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model snake_case__ :List[Any] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME snake_case__ :Any = pytorch_dump_folder_path + "/" + CONFIG_NAME snake_case__ :Optional[int] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase__ , indent=2 ) + "\n" ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase__ , indent=2 ) + "\n" ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : str = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _snake_case ( snake_case__ ): _A = 'trajectory_transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self ,UpperCamelCase=100 ,UpperCamelCase=5 ,UpperCamelCase=1 ,UpperCamelCase=1 ,UpperCamelCase=249 ,UpperCamelCase=6 ,UpperCamelCase=17 ,UpperCamelCase=25 ,UpperCamelCase=4 ,UpperCamelCase=4 ,UpperCamelCase=128 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=0.0006 ,UpperCamelCase=512 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-12 ,UpperCamelCase=1 ,UpperCamelCase=True ,UpperCamelCase=1 ,UpperCamelCase=50_256 ,UpperCamelCase=50_256 ,**UpperCamelCase ,) -> Tuple: snake_case__ :Dict = vocab_size snake_case__ :Union[str, Any] = action_weight snake_case__ :Tuple = reward_weight snake_case__ :Optional[Any] = value_weight snake_case__ :Union[str, Any] = max_position_embeddings snake_case__ :Tuple = block_size snake_case__ :Optional[int] = action_dim snake_case__ :str = observation_dim snake_case__ :Dict = transition_dim snake_case__ :Optional[Any] = learning_rate snake_case__ :Optional[int] = n_layer snake_case__ :int = n_head snake_case__ :Any = n_embd snake_case__ :str = embd_pdrop snake_case__ :List[Any] = attn_pdrop snake_case__ :Any = resid_pdrop snake_case__ :Union[str, Any] = initializer_range snake_case__ :List[str] = layer_norm_eps snake_case__ :int = kaiming_initializer_range snake_case__ :int = use_cache super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE )
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( __snake_case : Tuple , __snake_case : Dict , __snake_case : Any ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = MobileBertConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) snake_case__ :Tuple = MobileBertForPreTraining(__snake_case ) # Load weights from tf checkpoint snake_case__ :Union[str, Any] = load_tf_weights_in_mobilebert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = "▁" __UpperCAmelCase : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase : str = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } __UpperCAmelCase : Optional[Any] = { "xlm-roberta-base": 5_1_2, "xlm-roberta-large": 5_1_2, "xlm-roberta-large-finetuned-conll02-dutch": 5_1_2, "xlm-roberta-large-finetuned-conll02-spanish": 5_1_2, "xlm-roberta-large-finetuned-conll03-english": 5_1_2, "xlm-roberta-large-finetuned-conll03-german": 5_1_2, } class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self ,UpperCamelCase ,UpperCamelCase="<s>" ,UpperCamelCase="</s>" ,UpperCamelCase="</s>" ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase = None ,**UpperCamelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it snake_case__ :Optional[int] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token snake_case__ :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,unk_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**UpperCamelCase ,) snake_case__ :Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase ) ) snake_case__ :List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ :List[str] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ :Tuple = 1 snake_case__ :str = len(self.sp_model ) + self.fairseq_offset snake_case__ :Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Optional[int]: snake_case__ :Optional[int] = self.__dict__.copy() snake_case__ :str = None snake_case__ :List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Tuple = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): snake_case__ :str = {} snake_case__ :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ :Dict = [self.cls_token_id] snake_case__ :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :str = [self.sep_token_id] snake_case__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Dict = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: return self.sp_model.encode(UpperCamelCase ,out_type=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ :List[str] = self.sp_model.PieceToId(UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Dict = "".join(UpperCamelCase ).replace(UpperCamelCase ," " ).strip() return out_string def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :List[Any] = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase ,"wb" ) as fi: snake_case__ :List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import numpy # List of input, output pairs __UpperCAmelCase : int = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) __UpperCAmelCase : int = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) __UpperCAmelCase : List[Any] = [2, 4, 1, 5] __UpperCAmelCase : Optional[Any] = len(train_data) __UpperCAmelCase : Tuple = 0.009 def lowercase_ ( __snake_case : int , __snake_case : int="train" ) -> Any: '''simple docstring''' return calculate_hypothesis_value(__snake_case , __snake_case ) - output( __snake_case , __snake_case ) def lowercase_ ( __snake_case : int ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = 0 for i in range(len(__snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowercase_ ( __snake_case : Any , __snake_case : Tuple ) -> str: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowercase_ ( __snake_case : str , __snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any]=m ) -> Tuple: '''simple docstring''' snake_case__ :Union[str, Any] = 0 for i in range(__snake_case ): if index == -1: summation_value += _error(__snake_case ) else: summation_value += _error(__snake_case ) * train_data[i][0][index] return summation_value def lowercase_ ( __snake_case : List[str] ) -> Any: '''simple docstring''' snake_case__ :str = summation_of_cost_derivative(__snake_case , __snake_case ) / m return cost_derivative_value def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case__ :Dict = 0.0_0_0_0_0_2 snake_case__ :List[str] = 0 snake_case__ :Tuple = 0 while True: j += 1 snake_case__ :str = [0, 0, 0, 0] for i in range(0 , len(__snake_case ) ): snake_case__ :Any = get_cost_derivative(i - 1 ) snake_case__ :str = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __snake_case , __snake_case , atol=__snake_case , rtol=__snake_case , ): break snake_case__ :List[str] = temp_parameter_vector print(("Number of iterations:", j) ) def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' for i in range(len(__snake_case ) ): print(("Actual output value:", output(__snake_case , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__snake_case , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __UpperCAmelCase : Any = re.compile(R"\b(a|an|the)\b", re.UNICODE) __UpperCAmelCase : Optional[Any] = None def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :int = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__snake_case , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__snake_case , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowercase_ ( __snake_case : int ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case__ :Optional[Any] = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowercase_ ( __snake_case : str ) -> List[Any]: '''simple docstring''' def remove_articles(__snake_case : List[Any] ): return ARTICLES_REGEX.sub(" " , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : List[str] ): snake_case__ :Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase_ ( __snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' if not s: return [] return normalize_answer(__snake_case ).split() def lowercase_ ( __snake_case : str , __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase_ ( __snake_case : str , __snake_case : int ) -> Dict: '''simple docstring''' snake_case__ :int = get_tokens(__snake_case ) snake_case__ :int = get_tokens(__snake_case ) snake_case__ :int = collections.Counter(__snake_case ) & collections.Counter(__snake_case ) snake_case__ :Optional[int] = sum(common.values() ) if len(__snake_case ) == 0 or len(__snake_case ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case__ :Union[str, Any] = 1.0 * num_same / len(__snake_case ) snake_case__ :List[Any] = 1.0 * num_same / len(__snake_case ) snake_case__ :List[Any] = (2 * precision * recall) / (precision + recall) return fa def lowercase_ ( __snake_case : Dict , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :Optional[int] = {} snake_case__ :int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case__ :str = qa["id"] snake_case__ :Optional[int] = [t for t in qa["answers"]["text"] if normalize_answer(__snake_case )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case__ :Optional[int] = [""] if qid not in preds: print(F'Missing prediction for {qid}' ) continue snake_case__ :Optional[Any] = preds[qid] # Take max over all gold answers snake_case__ :Dict = max(compute_exact(__snake_case , __snake_case ) for a in gold_answers ) snake_case__ :int = max(compute_fa(__snake_case , __snake_case ) for a in gold_answers ) return exact_scores, fa_scores def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Optional[Any]: '''simple docstring''' snake_case__ :Optional[Any] = {} for qid, s in scores.items(): snake_case__ :Any = na_probs[qid] > na_prob_thresh if pred_na: snake_case__ :Optional[Any] = float(not qid_to_has_ans[qid] ) else: snake_case__ :Any = s return new_scores def lowercase_ ( __snake_case : Optional[int] , __snake_case : int , __snake_case : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' if not qid_list: snake_case__ :str = len(__snake_case ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores.values() ) / total), ("f1", 1_00.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: snake_case__ :Tuple = len(__snake_case ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowercase_ ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for k in new_eval: snake_case__ :Tuple = new_eval[k] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : str ) -> int: '''simple docstring''' plt.step(__snake_case , __snake_case , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__snake_case , __snake_case , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(__snake_case ) plt.savefig(__snake_case ) plt.clf() def lowercase_ ( __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Optional[Any]=None , __snake_case : Any=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Tuple = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) snake_case__ :Tuple = 0.0 snake_case__ :List[Any] = 1.0 snake_case__ :Optional[Any] = 0.0 snake_case__ :Optional[Any] = [1.0] snake_case__ :str = [0.0] snake_case__ :int = 0.0 for i, qid in enumerate(__snake_case ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case__ :int = true_pos / float(i + 1 ) snake_case__ :int = true_pos / float(__snake_case ) if i == len(__snake_case ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__snake_case ) recalls.append(__snake_case ) if out_image: plot_pr_curve(__snake_case , __snake_case , __snake_case , __snake_case ) return {"ap": 1_00.0 * avg_prec} def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : int , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' if out_image_dir and not os.path.exists(__snake_case ): os.makedirs(__snake_case ) snake_case__ :List[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case__ :Dict = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) snake_case__ :int = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) snake_case__ :Tuple = {k: float(__snake_case ) for k, v in qid_to_has_ans.items()} snake_case__ :Optional[int] = make_precision_recall_eval( __snake_case , __snake_case , __snake_case , __snake_case , out_image=os.path.join(__snake_case , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__snake_case , __snake_case , "pr_exact" ) merge_eval(__snake_case , __snake_case , "pr_f1" ) merge_eval(__snake_case , __snake_case , "pr_oracle" ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Any ) -> Optional[int]: '''simple docstring''' if not qid_list: return snake_case__ :Optional[Any] = [na_probs[k] for k in qid_list] snake_case__ :Optional[Any] = np.ones_like(__snake_case ) / float(len(__snake_case ) ) plt.hist(__snake_case , weights=__snake_case , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(__snake_case , F'na_prob_hist_{name}.png' ) ) plt.clf() def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ :int = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case__ :str = num_no_ans snake_case__ :Any = cur_score snake_case__ :int = 0.0 snake_case__ :Any = sorted(__snake_case , key=lambda __snake_case : na_probs[k] ) for i, qid in enumerate(__snake_case ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case__ :Any = scores[qid] else: if preds[qid]: snake_case__ :Optional[int] = -1 else: snake_case__ :List[str] = 0 cur_score += diff if cur_score > best_score: snake_case__ :List[str] = cur_score snake_case__ :List[Any] = na_probs[qid] return 1_00.0 * best_score / len(__snake_case ), best_thresh def lowercase_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] ) -> Optional[int]: '''simple docstring''' snake_case__ :Tuple = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :Dict = find_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :Any = best_exact snake_case__ :Tuple = exact_thresh snake_case__ :Any = best_fa snake_case__ :str = fa_thresh def lowercase_ ( ) -> Tuple: '''simple docstring''' with open(OPTS.data_file ) as f: snake_case__ :Any = json.load(__snake_case ) snake_case__ :Any = dataset_json["data"] with open(OPTS.pred_file ) as f: snake_case__ :List[str] = json.load(__snake_case ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case__ :str = json.load(__snake_case ) else: snake_case__ :Optional[Any] = {k: 0.0 for k in preds} snake_case__ :List[str] = make_qid_to_has_ans(__snake_case ) # maps qid to True/False snake_case__ :Tuple = [k for k, v in qid_to_has_ans.items() if v] snake_case__ :List[str] = [k for k, v in qid_to_has_ans.items() if not v] snake_case__ :Any = get_raw_scores(__snake_case , __snake_case ) snake_case__ :List[str] = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) snake_case__ :List[str] = apply_no_ans_threshold(__snake_case , __snake_case , __snake_case , OPTS.na_prob_thresh ) snake_case__ :List[Any] = make_eval_dict(__snake_case , __snake_case ) if has_ans_qids: snake_case__ :Optional[Any] = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , "HasAns" ) if no_ans_qids: snake_case__ :Any = make_eval_dict(__snake_case , __snake_case , qid_list=__snake_case ) merge_eval(__snake_case , __snake_case , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , OPTS.out_image_dir ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__snake_case , __snake_case , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__snake_case , __snake_case ) else: print(json.dumps(__snake_case , indent=2 ) ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import tensorflow as tf from ...tf_utils import shape_list class _snake_case ( tf.keras.layers.Layer ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=1 ,UpperCamelCase=False ,**UpperCamelCase ) -> Any: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = vocab_size snake_case__ :Any = d_embed snake_case__ :Tuple = d_proj snake_case__ :Any = cutoffs + [vocab_size] snake_case__ :str = [0] + self.cutoffs snake_case__ :str = div_val snake_case__ :Dict = self.cutoffs[0] snake_case__ :Tuple = len(self.cutoffs ) - 1 snake_case__ :int = self.shortlist_size + self.n_clusters snake_case__ :List[str] = keep_order snake_case__ :List[Any] = [] snake_case__ :Any = [] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: if self.n_clusters > 0: snake_case__ :int = self.add_weight( shape=(self.n_clusters, self.d_embed) ,initializer="zeros" ,trainable=UpperCamelCase ,name="cluster_weight" ) snake_case__ :str = self.add_weight( shape=(self.n_clusters,) ,initializer="zeros" ,trainable=UpperCamelCase ,name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: snake_case__ :Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_projs_._{i}' ,) self.out_projs.append(UpperCamelCase ) else: self.out_projs.append(UpperCamelCase ) snake_case__ :str = self.add_weight( shape=(self.vocab_size, self.d_embed) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_layers_._{i}_._weight' ,) snake_case__ :Tuple = self.add_weight( shape=(self.vocab_size,) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): snake_case__ :List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case__ :Optional[Any] = self.d_embed // (self.div_val**i) snake_case__ :List[str] = self.add_weight( shape=(d_emb_i, self.d_proj) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_projs_._{i}' ) self.out_projs.append(UpperCamelCase ) snake_case__ :List[Any] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_layers_._{i}_._weight' ,) snake_case__ :List[Any] = self.add_weight( shape=(r_idx - l_idx,) ,initializer="zeros" ,trainable=UpperCamelCase ,name=f'out_layers_._{i}_._bias' ,) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> str: snake_case__ :Any = x if proj is not None: snake_case__ :List[Any] = tf.einsum("ibd,ed->ibe" ,UpperCamelCase ,UpperCamelCase ) return tf.einsum("ibd,nd->ibn" ,UpperCamelCase ,UpperCamelCase ) + b @staticmethod def lowerCAmelCase_ ( UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :int = shape_list(UpperCamelCase ) snake_case__ :Union[str, Any] = tf.range(lp_size[0] ,dtype=target.dtype ) snake_case__ :Tuple = tf.stack([r, target] ,1 ) return tf.gather_nd(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=True ,UpperCamelCase=False ) -> str: snake_case__ :int = 0 if self.n_clusters == 0: snake_case__ :List[str] = self._logit(UpperCamelCase ,self.out_layers[0][0] ,self.out_layers[0][1] ,self.out_projs[0] ) if target is not None: snake_case__ :Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase ,logits=UpperCamelCase ) snake_case__ :int = tf.nn.log_softmax(UpperCamelCase ,axis=-1 ) else: snake_case__ :Optional[int] = shape_list(UpperCamelCase ) snake_case__ :str = [] snake_case__ :int = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): snake_case__ :List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: snake_case__ :Optional[int] = (target >= l_idx) & (target < r_idx) snake_case__ :Any = tf.where(UpperCamelCase ) snake_case__ :List[Any] = tf.boolean_mask(UpperCamelCase ,UpperCamelCase ) - l_idx if self.div_val == 1: snake_case__ :Union[str, Any] = self.out_layers[0][0][l_idx:r_idx] snake_case__ :int = self.out_layers[0][1][l_idx:r_idx] else: snake_case__ :int = self.out_layers[i][0] snake_case__ :str = self.out_layers[i][1] if i == 0: snake_case__ :Optional[int] = tf.concat([cur_W, self.cluster_weight] ,0 ) snake_case__ :Union[str, Any] = tf.concat([cur_b, self.cluster_bias] ,0 ) snake_case__ :Optional[Any] = self._logit(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,self.out_projs[0] ) snake_case__ :Optional[Any] = tf.nn.log_softmax(UpperCamelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: snake_case__ :int = tf.boolean_mask(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[Any] = self._gather_logprob(UpperCamelCase ,UpperCamelCase ) else: snake_case__ :Any = self._logit(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,self.out_projs[i] ) snake_case__ :Union[str, Any] = tf.nn.log_softmax(UpperCamelCase ) snake_case__ :str = self.cutoffs[0] + i - 1 # No probability for the head cluster snake_case__ :Dict = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase ) if target is not None: snake_case__ :Union[str, Any] = tf.boolean_mask(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = tf.boolean_mask(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = self._gather_logprob(UpperCamelCase ,UpperCamelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase ,-cur_logprob ,shape_list(UpperCamelCase ) ) snake_case__ :List[str] = tf.concat(UpperCamelCase ,axis=-1 ) if target is not None: if return_mean: snake_case__ :int = tf.reduce_mean(UpperCamelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase ,name=self.name ,aggregation="mean" if return_mean else "" ) return out
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
from __future__ import annotations def lowercase_ ( __snake_case : dict , __snake_case : str ) -> set[str]: '''simple docstring''' snake_case__ :Tuple = set(__snake_case ), [start] while stack: snake_case__ :Dict = stack.pop() explored.add(__snake_case ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__snake_case ) return explored __UpperCAmelCase : Optional[int] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCAmelCase : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCAmelCase : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCAmelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) __UpperCAmelCase : List[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) __UpperCAmelCase : Tuple = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __UpperCAmelCase : Tuple = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) __UpperCAmelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCAmelCase : Tuple = np.expand_dims(test_image, axis=0) __UpperCAmelCase : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCAmelCase : Dict = "Normal" if result[0][0] == 1: __UpperCAmelCase : Tuple = "Abnormality detected"
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class _snake_case ( _A ): _A = 'distilbert' _A = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self ,UpperCamelCase=30_522 ,UpperCamelCase=512 ,UpperCamelCase=False ,UpperCamelCase=6 ,UpperCamelCase=12 ,UpperCamelCase=768 ,UpperCamelCase=4 * 768 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase="gelu" ,UpperCamelCase=0.02 ,UpperCamelCase=0.1 ,UpperCamelCase=0.2 ,UpperCamelCase=0 ,**UpperCamelCase ,) -> List[Any]: snake_case__ :str = vocab_size snake_case__ :Union[str, Any] = max_position_embeddings snake_case__ :List[str] = sinusoidal_pos_embds snake_case__ :Tuple = n_layers snake_case__ :Optional[Any] = n_heads snake_case__ :Dict = dim snake_case__ :List[str] = hidden_dim snake_case__ :str = dropout snake_case__ :int = attention_dropout snake_case__ :Any = activation snake_case__ :List[Any] = initializer_range snake_case__ :Optional[int] = qa_dropout snake_case__ :Union[str, Any] = seq_classif_dropout super().__init__(**UpperCamelCase ,pad_token_id=UpperCamelCase ) class _snake_case ( _A ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ :Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ :List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : int = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _snake_case ( _A ): _A = 'xlm' _A = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self ,UpperCamelCase=30_145 ,UpperCamelCase=2_048 ,UpperCamelCase=12 ,UpperCamelCase=16 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=1 ,UpperCamelCase=True ,UpperCamelCase=512 ,UpperCamelCase=2_048**-0.5 ,UpperCamelCase=1E-12 ,UpperCamelCase=0.02 ,UpperCamelCase=0 ,UpperCamelCase=1 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=5 ,UpperCamelCase=True ,UpperCamelCase="first" ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=0.1 ,UpperCamelCase=5 ,UpperCamelCase=5 ,UpperCamelCase=0 ,UpperCamelCase=0 ,UpperCamelCase=2 ,UpperCamelCase=0 ,**UpperCamelCase ,) -> Tuple: snake_case__ :Optional[Any] = vocab_size snake_case__ :Tuple = emb_dim snake_case__ :Optional[int] = n_layers snake_case__ :Optional[int] = n_heads snake_case__ :Optional[int] = dropout snake_case__ :Union[str, Any] = attention_dropout snake_case__ :Dict = gelu_activation snake_case__ :str = sinusoidal_embeddings snake_case__ :Union[str, Any] = causal snake_case__ :List[Any] = asm snake_case__ :List[Any] = n_langs snake_case__ :Dict = use_lang_emb snake_case__ :List[str] = layer_norm_eps snake_case__ :Dict = bos_index snake_case__ :Optional[int] = eos_index snake_case__ :Tuple = pad_index snake_case__ :Union[str, Any] = unk_index snake_case__ :Dict = mask_index snake_case__ :List[Any] = is_encoder snake_case__ :Any = max_position_embeddings snake_case__ :Any = embed_init_std snake_case__ :Tuple = init_std snake_case__ :List[str] = summary_type snake_case__ :List[Any] = summary_use_proj snake_case__ :int = summary_activation snake_case__ :int = summary_proj_to_labels snake_case__ :Tuple = summary_first_dropout snake_case__ :Optional[Any] = start_n_top snake_case__ :int = end_n_top snake_case__ :Optional[int] = mask_token_id snake_case__ :Optional[int] = lang_id if "n_words" in kwargs: snake_case__ :int = kwargs["n_words"] super().__init__(pad_token_id=UpperCamelCase ,bos_token_id=UpperCamelCase ,**UpperCamelCase ) class _snake_case ( _A ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ :Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ :Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[int] = 1_6 __UpperCAmelCase : List[Any] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :str = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :int = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :str = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : Optional[Any] , __snake_case : Any ) -> int: '''simple docstring''' snake_case__ :int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :int = config["lr"] snake_case__ :int = int(config["num_epochs"] ) snake_case__ :List[Any] = int(config["seed"] ) snake_case__ :List[str] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ :Dict = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :List[Any] = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Optional[Any] = 1 snake_case__ :Optional[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Dict = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :List[Any] = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ :List[str] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :List[str] = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Optional[int] = 0 # Now we train the model snake_case__ :List[Any] = evaluate.load("glue" , "mrpc" ) snake_case__ :Tuple = 0 snake_case__ :List[str] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :int = model(**__snake_case ) snake_case__ :List[Any] = outputs.loss snake_case__ :Tuple = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case__ :Optional[int] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :Optional[int] = model(**__snake_case ) snake_case__ :Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ :Any = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __snake_case ) snake_case__ :List[Any] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: snake_case__ :List[str] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> List[str]: '''simple docstring''' snake_case__ :Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=__snake_case , default=__snake_case , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=3 , help="Number of train epochs." , ) snake_case__ :int = parser.parse_args() snake_case__ :Optional[int] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :List[str] = name snake_case__ :Any = value snake_case__ :Optional[int] = weight def __repr__( self ) -> Any: return f'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def lowerCAmelCase_ ( self ) -> Union[str, Any]: return self.value def lowerCAmelCase_ ( self ) -> Optional[Any]: return self.name def lowerCAmelCase_ ( self ) -> Optional[Any]: return self.weight def lowerCAmelCase_ ( self ) -> Dict: return self.value / self.weight def lowercase_ ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : str ) -> str: '''simple docstring''' snake_case__ :List[str] = [] for i in range(len(__snake_case ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowercase_ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = sorted(__snake_case , key=__snake_case , reverse=__snake_case ) snake_case__ :Optional[int] = [] snake_case__ :Tuple = 0.0, 0.0 for i in range(len(__snake_case ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowercase_ ( ) -> Dict: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowercase_ ( __snake_case : str ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = os.path.join(args.tf_model_dir , "parameters.json" ) snake_case__ :List[Any] = json.loads(open(__snake_case ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): snake_case__ :Any = args.output + ".pt" snake_case__ :Optional[Any] = OrderedDict() with tf.device("/CPU:0" ): snake_case__ :Union[str, Any] = tf.train.load_checkpoint(args.tf_model_dir ) snake_case__ :List[Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case__ :Tuple = reader.get_tensor(__snake_case ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): snake_case__ :List[str] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): snake_case__ :List[str] = 8 snake_case__ :Union[str, Any] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[Any] = torch.tensor(__snake_case ) elif key_name.startswith("model/moe" ): snake_case__ :Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): snake_case__ :List[str] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player snake_case__ :int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Any = torch.tensor(__snake_case ) elif key_name.endswith("/softmlp/kernel" ): snake_case__ :Tuple = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player snake_case__ :List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): snake_case__ :List[str] = key_name[-9:-7] for i in range(16 ): snake_case__ :List[Any] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) snake_case__ :Optional[int] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/mlp" ): snake_case__ :Any = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): snake_case__ :Dict = "model.blocks.%d.feed_forward.mlp.wi.weight" % player snake_case__ :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.endswith("/p1/bias" ): snake_case__ :Dict = "model.blocks.%d.feed_forward.mlp.wi.bias" % player snake_case__ :Any = vnp.copy() # same because it is one dimensional snake_case__ :Union[str, Any] = torch.tensor(__snake_case ) elif key_name.endswith("/p2/kernel" ): snake_case__ :Optional[Any] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player snake_case__ :Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :str = torch.tensor(__snake_case ) elif key_name.endswith("/p2/bias" ): snake_case__ :Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wo.bias" % player snake_case__ :Optional[Any] = vnp.copy() # same because it is one dimensional snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name.startswith("model/ln" ): snake_case__ :Optional[Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ :Tuple = "model.blocks.%d.feed_forward.norm.bias" % player snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :Dict = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): snake_case__ :Optional[int] = "model.blocks.%d.feed_forward.norm.weight" % player snake_case__ :str = vnp.copy() # same because it is one dimensional snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/att" ): snake_case__ :Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): snake_case__ :List[str] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case__ :str = state[:, 0, :, :] snake_case__ :Optional[int] = state[:, 1, :, :] snake_case__ :Any = state[:, 2, :, :] snake_case__ :Dict = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :List[str] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :int = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player snake_case__ :List[Any] = torch.tensor(__snake_case ) snake_case__ :Optional[int] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player snake_case__ :Union[str, Any] = torch.tensor(__snake_case ) snake_case__ :Any = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player snake_case__ :int = torch.tensor(__snake_case ) elif key_name.endswith("/o/kernel" ): snake_case__ :Dict = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player snake_case__ :Union[str, Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.startswith("model/an" ): snake_case__ :int = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ :str = "model.blocks.%d.self_attn.norm.bias" % player snake_case__ :Tuple = vnp.copy() # same because it is one dimensional snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name.endswith("/g" ): snake_case__ :Any = "model.blocks.%d.self_attn.norm.weight" % player snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :Optional[Any] = torch.tensor(__snake_case ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): snake_case__ :List[str] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] snake_case__ :Optional[Any] = "model.%s.weight" % nlayer snake_case__ :str = vnp.copy() # same in embedded snake_case__ :str = torch.tensor(__snake_case ) if key_name.startswith("model/wte" ): snake_case__ :str = "lm_head.weight" snake_case__ :str = vnp.copy() # same in embedded snake_case__ :Optional[int] = torch.tensor(__snake_case ) elif key_name.startswith("model/wob" ): snake_case__ :List[str] = "final_logits_bias" snake_case__ :Any = vnp.copy() # same in embedded snake_case__ :int = state.reshape((1, -1) ) snake_case__ :List[str] = torch.tensor(__snake_case ) elif key_name == "model/dense/kernel": snake_case__ :Optional[int] = "model.last_project.weight" snake_case__ :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ :Tuple = torch.tensor(__snake_case ) elif key_name == "model/dense_1/bias": snake_case__ :str = "model.last_project.bias" snake_case__ :List[str] = vnp.copy() # same because it is one dimensional snake_case__ :int = torch.tensor(__snake_case ) torch.save(__snake_case , args.output ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[str]=10 ) -> Optional[Any]: '''simple docstring''' snake_case__ :Any = [] for _ in range(__snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any]=10 ) -> str: '''simple docstring''' snake_case__ :List[Any] = [] for step in range(__snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ :Union[str, Any] = os.path.join(__snake_case , "schedule.bin" ) torch.save(scheduler.state_dict() , __snake_case ) snake_case__ :List[Any] = torch.load(__snake_case ) scheduler.load_state_dict(__snake_case ) return lrs @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for a, b in zip(UpperCamelCase ,UpperCamelCase ): self.assertAlmostEqual(UpperCamelCase ,UpperCamelCase ,delta=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Union[str, Any] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=UpperCamelCase ) snake_case__ :List[Any] = torch.tensor([0.4, 0.2, -0.5] ) snake_case__ :int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case__ :List[str] = AdamW(params=[w] ,lr=2E-1 ,weight_decay=0.0 ) for _ in range(100 ): snake_case__ :str = criterion(UpperCamelCase ,UpperCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :int = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=UpperCamelCase ) snake_case__ :Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) snake_case__ :Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping snake_case__ :Any = Adafactor( params=[w] ,lr=1E-2 ,eps=(1E-30, 1E-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=UpperCamelCase ,weight_decay=0.0 ,relative_step=UpperCamelCase ,scale_parameter=UpperCamelCase ,warmup_init=UpperCamelCase ,) for _ in range(1_000 ): snake_case__ :Any = criterion(UpperCamelCase ,UpperCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1E-2 ) @require_torch class _snake_case ( unittest.TestCase ): _A = nn.Linear(50 , 50 ) if is_torch_available() else None _A = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _A = 10 def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> int: self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ) for a, b in zip(UpperCamelCase ,UpperCamelCase ): self.assertAlmostEqual(UpperCamelCase ,UpperCamelCase ,delta=UpperCamelCase ,msg=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Dict = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) snake_case__ :Dict = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): snake_case__ :List[Any] = data snake_case__ :List[str] = scheduler_func(self.optimizer ,**UpperCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) snake_case__ :int = unwrap_schedule(UpperCamelCase ,self.num_steps ) self.assertListAlmostEqual( UpperCamelCase ,UpperCamelCase ,tol=1E-2 ,msg=f'failed for {scheduler_func} in normal scheduler' ,) snake_case__ :str = scheduler_func(self.optimizer ,**UpperCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase ) # wrap to test picklability of the schedule snake_case__ :Dict = unwrap_and_save_reload_schedule(UpperCamelCase ,self.num_steps ) self.assertListEqual(UpperCamelCase ,UpperCamelCase ,msg=f'failed for {scheduler_func} in save and reload' ) class _snake_case : def __init__( self ,UpperCamelCase ) -> List[str]: snake_case__ :Any = fn def __call__( self ,*UpperCamelCase ,**UpperCamelCase ) -> Dict: return self.fn(*UpperCamelCase ,**UpperCamelCase ) @classmethod def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: snake_case__ :Dict = list(map(self ,scheduler.lr_lambdas ) )
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
from statistics import mean import numpy as np def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : list , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :str = 0 # Number of processes finished snake_case__ :List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. snake_case__ :str = [0] * no_of_process # List to include calculation results snake_case__ :Any = [0] * no_of_process # Sort by arrival time. snake_case__ :Tuple = [burst_time[i] for i in np.argsort(__snake_case )] snake_case__ :Optional[Any] = [process_name[i] for i in np.argsort(__snake_case )] arrival_time.sort() while no_of_process > finished_process_count: snake_case__ :str = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: snake_case__ :Optional[int] = arrival_time[i] snake_case__ :Dict = 0 # Index showing the location of the process being performed snake_case__ :Optional[int] = 0 # Saves the current response ratio. snake_case__ :List[str] = 0 for i in range(0 , __snake_case ): if finished_process[i] == 0 and arrival_time[i] <= current_time: snake_case__ :int = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: snake_case__ :Dict = temp snake_case__ :List[Any] = i # Calculate the turn around time snake_case__ :List[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. snake_case__ :List[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : list , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :Any = [0] * no_of_process for i in range(0 , __snake_case ): snake_case__ :Optional[Any] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = 5 __UpperCAmelCase : Any = ["A", "B", "C", "D", "E"] __UpperCAmelCase : str = [1, 2, 3, 4, 5] __UpperCAmelCase : Any = [1, 2, 3, 4, 5] __UpperCAmelCase : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __UpperCAmelCase : Tuple = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Tuple , __snake_case : Tuple=False ) -> str: '''simple docstring''' snake_case__ :Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ :Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowercase_ ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[Any]=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case__ :List[str] = "" else: snake_case__ :List[Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ :Dict = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) snake_case__ :Dict = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict snake_case__ :Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ :List[str] = in_proj_bias[: config.hidden_size] snake_case__ :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ :List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowercase_ ( __snake_case : Dict , __snake_case : int , __snake_case : Tuple ) -> Tuple: '''simple docstring''' snake_case__ :Optional[int] = dct.pop(__snake_case ) snake_case__ :Dict = val def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ :Optional[int] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase_ ( __snake_case : Tuple , __snake_case : List[Any] ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ :Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ :Optional[int] = 10_00 snake_case__ :Tuple = "huggingface/label-files" snake_case__ :Union[str, Any] = "imagenet-1k-id2label.json" snake_case__ :Dict = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) snake_case__ :int = {int(__snake_case ): v for k, v in idalabel.items()} snake_case__ :List[str] = idalabel snake_case__ :Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case__ :int = int(deit_name[-6:-4] ) snake_case__ :str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): snake_case__ :Union[str, Any] = 1_92 snake_case__ :Optional[Any] = 7_68 snake_case__ :Tuple = 12 snake_case__ :int = 3 elif deit_name[9:].startswith("small" ): snake_case__ :Any = 3_84 snake_case__ :Union[str, Any] = 15_36 snake_case__ :List[Any] = 12 snake_case__ :Optional[Any] = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): snake_case__ :Tuple = 10_24 snake_case__ :int = 40_96 snake_case__ :List[Any] = 24 snake_case__ :Any = 16 # load original model from timm snake_case__ :Optional[Any] = timm.create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ :str = timm_model.state_dict() snake_case__ :Any = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) # load HuggingFace model snake_case__ :List[Any] = DeiTForImageClassificationWithTeacher(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ :List[str] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ :str = DeiTImageProcessor(size=__snake_case , crop_size=config.image_size ) snake_case__ :List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ) snake_case__ :str = encoding["pixel_values"] snake_case__ :List[str] = model(__snake_case ) snake_case__ :Optional[Any] = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCAmelCase : Optional[int] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _snake_case ( unittest.TestCase ): _A = JukeboxTokenizer _A = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCAmelCase_ ( self ) -> str: import torch snake_case__ :Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) snake_case__ :int = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case__ :List[str] = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCAmelCase_ ( self ) -> Dict: import torch snake_case__ :Tuple = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) snake_case__ :Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off snake_case__ :Optional[int] = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] ,EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] ,EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] ,EXPECTED_OUTPUT[2] ) )
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
def lowercase_ ( ) -> Dict: '''simple docstring''' for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowercase_ ( __snake_case : List[Any] ) -> List[str]: '''simple docstring''' snake_case__ :Dict = 1 snake_case__ :Tuple = 2 while i * i <= n: snake_case__ :str = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowercase_ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(__snake_case ) > 5_00 ) if __name__ == "__main__": print(solution())
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from __future__ import annotations def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = len(__snake_case ) // 2 # choose the middle 3 elements snake_case__ :List[str] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
from abc import ABC, abstractmethod from typing import List, Optional class _snake_case ( _A ): def __init__( self ) -> str: # test for the above condition self.test() def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :List[str] = 0 snake_case__ :str = False while not completed: if counter == 1: self.reset() snake_case__ :Optional[int] = self.advance() if not self.does_advance(UpperCamelCase ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) snake_case__ :Union[str, Any] = self.update(UpperCamelCase ) counter += 1 if counter > 10_000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowerCAmelCase_ ( self ) -> Dict: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[int]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCAmelCase_ ( self ) -> Tuple: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCAmelCase_ ( self ) -> str: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCAmelCase_ ( self ,UpperCamelCase=False ) -> Any: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> str: super(UpperCamelCase ,self ).__init__() if not isinstance(UpperCamelCase ,UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(UpperCamelCase ,UpperCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) snake_case__ :List[Any] = token_ids snake_case__ :List[str] = len(self.token_ids ) snake_case__ :Optional[Any] = -1 # the index of the currently fulfilled step snake_case__ :Dict = False def lowerCAmelCase_ ( self ) -> List[str]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[int]: if not isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: if not isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}' ) snake_case__ :Tuple = False snake_case__ :str = False snake_case__ :Tuple = False if self.does_advance(UpperCamelCase ): self.fulfilled_idx += 1 snake_case__ :int = True if self.fulfilled_idx == (self.seqlen - 1): snake_case__ :List[Any] = True snake_case__ :Tuple = completed else: # failed to make progress. snake_case__ :List[Any] = True self.reset() return stepped, completed, reset def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Union[str, Any] = False snake_case__ :Union[str, Any] = 0 def lowerCAmelCase_ ( self ) -> List[Any]: return self.seqlen - (self.fulfilled_idx + 1) def lowerCAmelCase_ ( self ,UpperCamelCase=False ) -> Optional[Any]: snake_case__ :Tuple = PhrasalConstraint(self.token_ids ) if stateful: snake_case__ :str = self.seqlen snake_case__ :Optional[Any] = self.fulfilled_idx snake_case__ :List[str] = self.completed return new_constraint class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=True ) -> Tuple: snake_case__ :Optional[int] = max([len(UpperCamelCase ) for one in nested_token_ids] ) snake_case__ :Union[str, Any] = {} for token_ids in nested_token_ids: snake_case__ :Tuple = root for tidx, token_id in enumerate(UpperCamelCase ): if token_id not in level: snake_case__ :Tuple = {} snake_case__ :List[str] = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase ,UpperCamelCase ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f' {nested_token_ids}.' ) snake_case__ :List[Any] = root def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :str = self.trie for current_token in current_seq: snake_case__ :Any = start[current_token] snake_case__ :Union[str, Any] = list(start.keys() ) return next_tokens def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: snake_case__ :str = self.next_tokens(UpperCamelCase ) return len(UpperCamelCase ) == 0 def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: snake_case__ :int = list(root.values() ) if len(UpperCamelCase ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase ) for nn in next_nodes] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :Any = self.count_leaves(UpperCamelCase ) return len(UpperCamelCase ) != leaf_count class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> int: super(UpperCamelCase ,self ).__init__() if not isinstance(UpperCamelCase ,UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(UpperCamelCase ,UpperCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(UpperCamelCase ,UpperCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) snake_case__ :Dict = DisjunctiveTrie(UpperCamelCase ) snake_case__ :List[Any] = nested_token_ids snake_case__ :Tuple = self.trie.max_height snake_case__ :Tuple = [] snake_case__ :str = False def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[Any] = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase ) == 0: return None else: return token_list def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: if not isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}' ) snake_case__ :Optional[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCAmelCase_ ( self ,UpperCamelCase ) -> str: if not isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}' ) snake_case__ :Optional[int] = False snake_case__ :Tuple = False snake_case__ :Dict = False if self.does_advance(UpperCamelCase ): self.current_seq.append(UpperCamelCase ) snake_case__ :Optional[Any] = True else: snake_case__ :Optional[int] = True self.reset() snake_case__ :Dict = self.trie.reached_leaf(self.current_seq ) snake_case__ :Any = completed return stepped, completed, reset def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Optional[Any] = False snake_case__ :Optional[int] = [] def lowerCAmelCase_ ( self ) -> List[str]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCAmelCase_ ( self ,UpperCamelCase=False ) -> Optional[Any]: snake_case__ :Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: snake_case__ :str = self.seqlen snake_case__ :Tuple = self.current_seq snake_case__ :Optional[Any] = self.completed return new_constraint class _snake_case : def __init__( self ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Dict = constraints # max # of steps required to fulfill a given constraint snake_case__ :Any = max([c.seqlen for c in constraints] ) snake_case__ :Dict = len(UpperCamelCase ) snake_case__ :int = False self.init_state() def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[int] = [] snake_case__ :Tuple = None snake_case__ :Any = [constraint.copy(stateful=UpperCamelCase ) for constraint in self.constraints] def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" snake_case__ :int = constraint.advance() if isinstance(UpperCamelCase ,UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase ,UpperCamelCase ): token_list.extend(UpperCamelCase ) else: snake_case__ :List[Any] = self.inprogress_constraint.advance() if isinstance(UpperCamelCase ,UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase ,UpperCamelCase ): token_list.extend(UpperCamelCase ) if len(UpperCamelCase ) == 0: return None else: return token_list def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint snake_case__ :Optional[Any] = self.add(UpperCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: if not isinstance(UpperCamelCase ,UpperCamelCase ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) snake_case__ :Optional[Any] = False, False if self.completed: snake_case__ :List[Any] = True snake_case__ :str = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state snake_case__ :Dict = self.inprogress_constraint.update(UpperCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase ) ) snake_case__ :Any = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) snake_case__ :str = None if len(self.pending_constraints ) == 0: # we're done! snake_case__ :int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase ): snake_case__ :Union[str, Any] = pending_constraint.update(UpperCamelCase ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(UpperCamelCase ) snake_case__ :Union[str, Any] = None if not complete and stepped: snake_case__ :Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". snake_case__ :List[str] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. snake_case__ :int = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCAmelCase_ ( self ,UpperCamelCase=True ) -> Optional[int]: snake_case__ :List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: snake_case__ :Optional[Any] = [ constraint.copy(stateful=UpperCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: snake_case__ :List[Any] = self.inprogress_constraint.copy(stateful=UpperCamelCase ) snake_case__ :str = [constraint.copy() for constraint in self.pending_constraints] return new_state
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number | (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowercase_ ( __snake_case : int , __snake_case : int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __UpperCAmelCase : Union[str, Any] = "scheduler_config.json" class _snake_case ( _A ): _A = 1 _A = 2 _A = 3 _A = 4 _A = 5 _A = 6 _A = 7 _A = 8 _A = 9 _A = 10 _A = 11 _A = 12 _A = 13 _A = 14 @dataclass class _snake_case ( _A ): _A = 42 class _snake_case : _A = SCHEDULER_CONFIG_NAME _A = [] _A = True @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase=False ,**UpperCamelCase ,) -> Tuple: snake_case__ :str = cls.load_config( pretrained_model_name_or_path=UpperCamelCase ,subfolder=UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,return_commit_hash=UpperCamelCase ,**UpperCamelCase ,) return cls.from_config(UpperCamelCase ,return_unused_kwargs=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,**UpperCamelCase ) -> Union[str, Any]: self.save_config(save_directory=UpperCamelCase ,push_to_hub=UpperCamelCase ,**UpperCamelCase ) @property def lowerCAmelCase_ ( self ) -> Optional[Any]: return self._get_compatibles() @classmethod def lowerCAmelCase_ ( cls ) -> str: snake_case__ :Dict = list(set([cls.__name__] + cls._compatibles ) ) snake_case__ :Optional[int] = importlib.import_module(__name__.split("." )[0] ) snake_case__ :int = [ getattr(UpperCamelCase ,UpperCamelCase ) for c in compatible_classes_str if hasattr(UpperCamelCase ,UpperCamelCase ) ] return compatible_classes
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __UpperCAmelCase : Tuple = data_utils.TransfoXLTokenizer __UpperCAmelCase : Union[str, Any] = data_utils.TransfoXLCorpus __UpperCAmelCase : Optional[Any] = data_utils __UpperCAmelCase : Optional[Any] = data_utils def lowercase_ ( __snake_case : List[str] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__snake_case , "rb" ) as fp: snake_case__ :Optional[int] = pickle.load(__snake_case , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) snake_case__ :Tuple = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) snake_case__ :Union[str, Any] = corpus.vocab.__dict__ torch.save(__snake_case , __snake_case ) snake_case__ :str = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , __snake_case ) snake_case__ :str = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(__snake_case , __snake_case ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model snake_case__ :Tuple = os.path.abspath(__snake_case ) snake_case__ :int = os.path.abspath(__snake_case ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": snake_case__ :Dict = TransfoXLConfig() else: snake_case__ :List[Any] = TransfoXLConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) snake_case__ :str = TransfoXLLMHeadModel(__snake_case ) snake_case__ :Any = load_tf_weights_in_transfo_xl(__snake_case , __snake_case , __snake_case ) # Save pytorch-model snake_case__ :Dict = os.path.join(__snake_case , __snake_case ) snake_case__ :int = os.path.join(__snake_case , __snake_case ) print(F'Save PyTorch model to {os.path.abspath(__snake_case )}' ) torch.save(model.state_dict() , __snake_case ) print(F'Save configuration file to {os.path.abspath(__snake_case )}' ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __UpperCAmelCase : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
def lowercase_ ( __snake_case : int ) -> str: '''simple docstring''' if isinstance(__snake_case , __snake_case ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__snake_case , __snake_case ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" snake_case__ :Optional[int] = False if num < 0: snake_case__ :Optional[int] = True snake_case__ :List[str] = -num snake_case__ :list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__snake_case ) for e in binary ) return "0b" + "".join(str(__snake_case ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import argparse import os import re import packaging.version __UpperCAmelCase : Dict = "examples/" __UpperCAmelCase : int = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCAmelCase : Any = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } __UpperCAmelCase : Dict = "README.md" def lowercase_ ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple ) -> Any: '''simple docstring''' with open(__snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case__ :Optional[int] = f.read() snake_case__ :Optional[Any] = REPLACE_PATTERNS[pattern] snake_case__ :Dict = replace.replace("VERSION" , __snake_case ) snake_case__ :Union[str, Any] = re_pattern.sub(__snake_case , __snake_case ) with open(__snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__snake_case ) def lowercase_ ( __snake_case : Any ) -> int: '''simple docstring''' for folder, directories, fnames in os.walk(__snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__snake_case , __snake_case ) , __snake_case , pattern="examples" ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : str=False ) -> int: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__snake_case , __snake_case , __snake_case ) if not patch: update_version_in_examples(__snake_case ) def lowercase_ ( ) -> str: '''simple docstring''' snake_case__ :int = "🤗 Transformers currently provides the following architectures" snake_case__ :List[Any] = "1. Want to contribute a new model?" with open(__snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case__ :str = f.readlines() # Find the start of the list. snake_case__ :Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 snake_case__ :List[str] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): snake_case__ :Union[str, Any] = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(__snake_case , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__snake_case ) def lowercase_ ( ) -> Dict: '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: snake_case__ :Optional[Any] = f.read() snake_case__ :int = REPLACE_PATTERNS["init"][0].search(__snake_case ).groups()[0] return packaging.version.parse(__snake_case ) def lowercase_ ( __snake_case : List[str]=False ) -> Tuple: '''simple docstring''' snake_case__ :Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: snake_case__ :List[str] = default_version.base_version elif patch: snake_case__ :Optional[Any] = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: snake_case__ :List[str] = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. snake_case__ :List[str] = input(F'Which version are you releasing? [{default_version}]' ) if len(__snake_case ) == 0: snake_case__ :Optional[Any] = default_version print(F'Updating version to {version}.' ) global_version_update(__snake_case , patch=__snake_case ) def lowercase_ ( ) -> str: '''simple docstring''' snake_case__ :Dict = get_version() snake_case__ :Optional[Any] = F'{current_version.major}.{current_version.minor + 1}.0.dev0' snake_case__ :int = current_version.base_version # Check with the user we got that right. snake_case__ :Union[str, Any] = input(F'Which version are we developing now? [{dev_version}]' ) if len(__snake_case ) == 0: snake_case__ :Tuple = dev_version print(F'Updating version to {version}.' ) global_version_update(__snake_case ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCAmelCase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class _snake_case ( datasets.BuilderConfig ): _A = None class _snake_case ( datasets.ArrowBasedBuilder ): _A = PandasConfig def lowerCAmelCase_ ( self ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) snake_case__ :Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase ,(str, list, tuple) ): snake_case__ :List[Any] = data_files if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :int = [dl_manager.iter_files(UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"files": files} )] snake_case__ :Tuple = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive snake_case__ :Optional[Any] = [dl_manager.iter_files(UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase ,gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase_ ( self ,UpperCamelCase ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ :Any = table_cast(UpperCamelCase ,self.config.features.arrow_schema ) return pa_table def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: for i, file in enumerate(itertools.chain.from_iterable(UpperCamelCase ) ): with open(UpperCamelCase ,"rb" ) as f: snake_case__ :Optional[int] = pa.Table.from_pandas(pd.read_pickle(UpperCamelCase ) ) yield i, self._cast_table(UpperCamelCase )
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __UpperCAmelCase : Union[str, Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] __UpperCAmelCase : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowercase_ ( ) -> str: '''simple docstring''' snake_case__ :List[str] = calculate_rouge(__snake_case , __snake_case , bootstrap_aggregation=__snake_case , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(__snake_case , __snake_case ) snake_case__ :Optional[int] = calculate_rouge(__snake_case , __snake_case , bootstrap_aggregation=__snake_case , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = "rougeLsum" snake_case__ :Optional[Any] = calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case , rouge_keys=[k] )[k] snake_case__ :Optional[Any] = calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ) -> str: '''simple docstring''' snake_case__ :str = ["rouge1", "rouge2", "rougeL"] snake_case__ :Optional[Any] = calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case , rouge_keys=__snake_case ) snake_case__ :Union[str, Any] = calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case , rouge_keys=__snake_case ) assert score_sep == score_no_sep def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] snake_case__ :Optional[Any] = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case ) == calculate_rouge(__snake_case , __snake_case , newline_sep=__snake_case ) def lowercase_ ( ) -> List[Any]: '''simple docstring''' snake_case__ :Optional[Any] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] snake_case__ :Optional[int] = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] snake_case__ :Any = calculate_rouge(__snake_case , __snake_case , rouge_keys=["rougeLsum"] , newline_sep=__snake_case )["rougeLsum"] snake_case__ :Union[str, Any] = calculate_rouge(__snake_case , __snake_case , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = Path("examples/seq2seq/test_data/wmt_en_ro" ) snake_case__ :Any = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(__snake_case , __snake_case ) snake_case__ :List[str] = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=__snake_case ) assert isinstance(__snake_case , __snake_case )
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : List[str] = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from collections.abc import Sequence from queue import Queue class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ) -> Tuple: snake_case__ :Any = start snake_case__ :int = end snake_case__ :str = val snake_case__ :Union[str, Any] = (start + end) // 2 snake_case__ :List[Any] = left snake_case__ :int = right def __repr__( self ) -> int: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[Any] = collection snake_case__ :str = function if self.collection: snake_case__ :Any = self._build_tree(0 ,len(UpperCamelCase ) - 1 ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: self._update_tree(self.root ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: return self._query_range(self.root ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: if start == end: return SegmentTreeNode(UpperCamelCase ,UpperCamelCase ,self.collection[start] ) snake_case__ :List[Any] = (start + end) // 2 snake_case__ :Dict = self._build_tree(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = self._build_tree(mid + 1 ,UpperCamelCase ) return SegmentTreeNode(UpperCamelCase ,UpperCamelCase ,self.fn(left.val ,right.val ) ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: if node.start == i and node.end == i: snake_case__ :Optional[Any] = val return if i <= node.mid: self._update_tree(node.left ,UpperCamelCase ,UpperCamelCase ) else: self._update_tree(node.right ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = self.fn(node.left.val ,node.right.val ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,UpperCamelCase ,UpperCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,UpperCamelCase ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,UpperCamelCase ) ,) else: # range in right child tree return self._query_range(node.right ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: if self.root is not None: snake_case__ :Optional[int] = Queue() queue.put(self.root ) while not queue.empty(): snake_case__ :Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 5_0) __UpperCAmelCase : Dict = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase_ ( *__snake_case : Tuple ): '''simple docstring''' with open(__snake_case , "r" ) as fh: fcntl.flock(__snake_case , fcntl.LOCK_EX ) try: print(*__snake_case ) finally: fcntl.flock(__snake_case , fcntl.LOCK_UN ) __UpperCAmelCase : Optional[int] = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __UpperCAmelCase : Union[str, Any] = torch.device("cuda", local_rank) __UpperCAmelCase : str = socket.gethostname() __UpperCAmelCase : Optional[int] = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCAmelCase : str = dist.get_rank() __UpperCAmelCase : Optional[Any] = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __UpperCAmelCase : Any = pytest.mark.integration __UpperCAmelCase : List[str] = {"comet"} __UpperCAmelCase : List[str] = importlib.util.find_spec("fairseq") is not None __UpperCAmelCase : Optional[int] = {"code_eval"} __UpperCAmelCase : Optional[Any] = os.name == "nt" __UpperCAmelCase : Tuple = {"bertscore", "frugalscore", "perplexity"} __UpperCAmelCase : str = importlib.util.find_spec("transformers") is not None def lowercase_ ( __snake_case : str ) -> str: '''simple docstring''' @wraps(__snake_case ) def wrapper(self : Union[str, Any] , __snake_case : Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , __snake_case ) return wrapper def lowercase_ ( __snake_case : str ) -> Any: '''simple docstring''' @wraps(__snake_case ) def wrapper(self : Any , __snake_case : Any ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , __snake_case ) return wrapper def lowercase_ ( __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' @wraps(__snake_case ) def wrapper(self : Optional[int] , __snake_case : Tuple ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , __snake_case ) return wrapper def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :List[str] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _A , _A , _A ) @local class _snake_case ( parameterized.TestCase ): _A = {} _A = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[Any] = "[...]" snake_case__ :List[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" ,UpperCamelCase ) ).module_path ) snake_case__ :Union[str, Any] = datasets.load.import_main_class(metric_module.__name__ ,dataset=UpperCamelCase ) # check parameters snake_case__ :Optional[int] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCamelCase ,metric_module.__name__ ): with self.use_local_metrics(): try: snake_case__ :Tuple = doctest.testmod(UpperCamelCase ,verbose=UpperCamelCase ,raise_on_error=UpperCamelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @slow def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Dict: snake_case__ :List[Any] = "[...]" snake_case__ :Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" ,UpperCamelCase ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case__ :str = doctest.testmod(UpperCamelCase ,verbose=UpperCamelCase ,raise_on_error=UpperCamelCase ) self.assertEqual(results.failed ,0 ) self.assertGreater(results.attempted ,1 ) @contextmanager def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase ): yield else: yield @contextmanager def lowerCAmelCase_ ( self ) -> Dict: def load_local_metric(UpperCamelCase ,*UpperCamelCase ,**UpperCamelCase ): return load_metric(os.path.join("metrics" ,UpperCamelCase ) ,*UpperCamelCase ,**UpperCamelCase ) with patch("datasets.load_metric" ) as mock_load_metric: snake_case__ :Any = load_local_metric yield @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ) -> Any: def wrapper(UpperCamelCase ): snake_case__ :Optional[Any] = contextmanager(UpperCamelCase ) snake_case__ :Optional[Any] = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def lowercase_ ( __snake_case : List[Any] ) -> int: '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _snake_case ( _A ): def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[str]: assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: snake_case__ :List[Any] = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def lowercase_ ( __snake_case : Dict ) -> Dict: '''simple docstring''' import torch def bert_cos_score_idf(__snake_case : List[Any] , __snake_case : Tuple , *__snake_case : Optional[int] , **__snake_case : List[Any] ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__snake_case ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: snake_case__ :Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def lowercase_ ( __snake_case : Union[str, Any] ) -> Optional[int]: '''simple docstring''' def load_from_checkpoint(__snake_case : List[Any] ): class _snake_case : def lowerCAmelCase_ ( self ,UpperCamelCase ,*UpperCamelCase ,**UpperCamelCase ) -> Dict: assert len(UpperCamelCase ) == 2 snake_case__ :int = [0.19, 0.92] return scores, sum(UpperCamelCase ) / len(UpperCamelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: snake_case__ :Union[str, Any] = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: snake_case__ :Union[str, Any] = load_from_checkpoint yield def lowercase_ ( ) -> List[str]: '''simple docstring''' snake_case__ :Optional[Any] = load_metric(os.path.join("metrics" , "seqeval" ) ) snake_case__ :List[str] = "ERROR" snake_case__ :Dict = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(__snake_case , match=re.escape(__snake_case ) ): metric.compute(predictions=[] , references=[] , scheme=__snake_case )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
def lowercase_ ( ) -> List[str]: '''simple docstring''' snake_case__ :Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case__ :Dict = 6 snake_case__ :Tuple = 1 snake_case__ :Optional[int] = 19_01 snake_case__ :List[str] = 0 while year < 20_01: day += 7 if (year % 4 == 0 and year % 1_00 != 0) or (year % 4_00 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case__ :Tuple = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case__ :List[str] = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case__ :List[Any] = day - days_per_month[month - 2] if month > 12: year += 1 snake_case__ :str = 1 if year < 20_01 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _snake_case : def __init__( self ,UpperCamelCase = "cpu" ,UpperCamelCase = "openai/clip-vit-large-patch14" ) -> None: snake_case__ :str = device snake_case__ :Union[str, Any] = CLIPTokenizerFast.from_pretrained(UpperCamelCase ) snake_case__ :Any = [0.48145466, 0.4578275, 0.40821073] snake_case__ :Any = [0.26862954, 0.26130258, 0.27577711] snake_case__ :Optional[int] = torchvision.transforms.Normalize(self.image_mean ,self.image_std ) snake_case__ :str = torchvision.transforms.Resize(224 ) snake_case__ :Optional[int] = torchvision.transforms.CenterCrop(224 ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Any: snake_case__ :str = self.resize(UpperCamelCase ) snake_case__ :List[str] = self.center_crop(UpperCamelCase ) snake_case__ :List[str] = self.normalize(UpperCamelCase ) return images def __call__( self ,UpperCamelCase=None ,UpperCamelCase=None ,**UpperCamelCase ) -> Union[str, Any]: snake_case__ :Optional[Any] = self.tokenizer(text=UpperCamelCase ,**UpperCamelCase ) snake_case__ :Tuple = self.preprocess_img(UpperCamelCase ) snake_case__ :Optional[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _snake_case ( nn.Module ): def __init__( self ,UpperCamelCase=10 ,UpperCamelCase=0.01 ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase="image" ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=False ,UpperCamelCase=False ,) -> None: super().__init__() snake_case__ :Optional[Any] = None snake_case__ :Any = device if device else get_device() if vqgan: snake_case__ :Tuple = vqgan else: snake_case__ :Optional[Any] = load_vqgan(self.device ,conf_path=UpperCamelCase ,ckpt_path=UpperCamelCase ) self.vqgan.eval() if clip: snake_case__ :List[str] = clip else: snake_case__ :Optional[Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) snake_case__ :Optional[int] = ProcessorGradientFlow(device=self.device ) snake_case__ :Union[str, Any] = iterations snake_case__ :str = lr snake_case__ :List[Any] = log snake_case__ :List[str] = make_grid snake_case__ :List[Any] = return_val snake_case__ :Union[str, Any] = quantize snake_case__ :List[Any] = self.vqgan.decoder.z_shape def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=5 ,UpperCamelCase=True ) -> Union[str, Any]: snake_case__ :Union[str, Any] = [] if output_path is None: snake_case__ :Dict = "./animation.gif" if input_path is None: snake_case__ :Optional[Any] = self.save_path snake_case__ :Union[str, Any] = sorted(glob(input_path + "/*" ) ) if not len(UpperCamelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(UpperCamelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) snake_case__ :List[str] = total_duration / len(UpperCamelCase ) snake_case__ :str = [frame_duration] * len(UpperCamelCase ) if extend_frames: snake_case__ :Dict = 1.5 snake_case__ :List[str] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(UpperCamelCase ) ) imageio.mimsave(UpperCamelCase ,UpperCamelCase ,duration=UpperCamelCase ) print(f'gif saved to {output_path}' ) def lowerCAmelCase_ ( self ,UpperCamelCase=None ,UpperCamelCase=None ) -> str: if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError snake_case__ :Dict = preprocess(Image.open(UpperCamelCase ) ,target_image_size=256 ).to(self.device ) snake_case__ :Tuple = preprocess_vqgan(UpperCamelCase ) snake_case__ :int = self.vqgan.encode(UpperCamelCase ) return z def lowerCAmelCase_ ( self ,UpperCamelCase ) -> List[Any]: snake_case__ :Tuple = self.latent.detach().requires_grad_() snake_case__ :Dict = base_latent + transform_vector if self.quantize: snake_case__ :str = self.vqgan.quantize(UpperCamelCase ) else: snake_case__ :int = trans_latent return self.vqgan.decode(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> Union[str, Any]: snake_case__ :Tuple = self.clip_preprocessor(text=UpperCamelCase ,images=UpperCamelCase ,return_tensors="pt" ,padding=UpperCamelCase ) snake_case__ :Tuple = self.clip(**UpperCamelCase ) snake_case__ :Optional[Any] = clip_outputs.logits_per_image if weights is not None: snake_case__ :str = similarity_logits * weights return similarity_logits.sum() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :List[str] = self._get_clip_similarity(pos_prompts["prompts"] ,UpperCamelCase ,weights=(1 / pos_prompts["weights"]) ) if neg_prompts: snake_case__ :Tuple = self._get_clip_similarity(neg_prompts["prompts"] ,UpperCamelCase ,weights=neg_prompts["weights"] ) else: snake_case__ :str = torch.tensor([1] ,device=self.device ) snake_case__ :Optional[int] = -torch.log(UpperCamelCase ) + torch.log(UpperCamelCase ) return loss def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: snake_case__ :int = torch.randn_like(self.latent ,requires_grad=UpperCamelCase ,device=self.device ) snake_case__ :Any = torch.optim.Adam([vector] ,lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case__ :Tuple = self._add_vector(UpperCamelCase ) snake_case__ :Union[str, Any] = loop_post_process(UpperCamelCase ) snake_case__ :Optional[Any] = self._get_CLIP_loss(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) print("CLIP loss" ,UpperCamelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: wandb.init(reinit=UpperCamelCase ,project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: snake_case__ :List[str] = Image.open(UpperCamelCase ) snake_case__ :int = image.resize((256, 256) ) wandb.log("Original Image" ,wandb.Image(UpperCamelCase ) ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> int: if not prompts: return [] snake_case__ :int = [] snake_case__ :Any = [] if isinstance(UpperCamelCase ,UpperCamelCase ): snake_case__ :int = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(UpperCamelCase ,(tuple, list) ): snake_case__ :List[Any] = prompt[0] snake_case__ :List[Any] = float(prompt[1] ) elif ":" in prompt: snake_case__ :str = prompt.split(":" ) snake_case__ :int = float(UpperCamelCase ) else: snake_case__ :int = prompt snake_case__ :Tuple = 1.0 processed_prompts.append(UpperCamelCase ) weights.append(UpperCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase ,device=self.device ), } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=None ,) -> Union[str, Any]: if image_path: snake_case__ :Tuple = self._get_latent(UpperCamelCase ) else: snake_case__ :str = torch.randn(self.latent_dim ,device=self.device ) if self.log: self._init_logging(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." snake_case__ :Dict = self.process_prompts(UpperCamelCase ) snake_case__ :Optional[Any] = self.process_prompts(UpperCamelCase ) if save_final and save_path is None: snake_case__ :Any = os.path.join("./outputs/" ,"_".join(pos_prompts["prompts"] ) ) if not os.path.exists(UpperCamelCase ): os.makedirs(UpperCamelCase ) else: snake_case__ :str = save_path + "_" + get_timestamp() os.makedirs(UpperCamelCase ) snake_case__ :Any = save_path snake_case__ :List[Any] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(UpperCamelCase ) ) snake_case__ :int = loop_post_process(UpperCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) ): if show_intermediate: show_pil(UpperCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path ,f'iter_{iter:03d}.png' ) ) if self.log: wandb.log({"Image": wandb.Image(UpperCamelCase )} ) if show_final: show_pil(UpperCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path ,f'iter_{iter:03d}_final.png' ) )
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="resnet50" ,UpperCamelCase=3 ,UpperCamelCase=32 ,UpperCamelCase=3 ,UpperCamelCase=True ,UpperCamelCase=True ,) -> Optional[Any]: snake_case__ :List[str] = parent snake_case__ :Dict = out_indices if out_indices is not None else [4] snake_case__ :List[str] = stage_names snake_case__ :str = out_features snake_case__ :Union[str, Any] = backbone snake_case__ :int = batch_size snake_case__ :List[str] = image_size snake_case__ :Optional[Any] = num_channels snake_case__ :Any = use_pretrained_backbone snake_case__ :Tuple = is_training def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :List[str] = self.get_config() return config, pixel_values def lowerCAmelCase_ ( self ) -> str: return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = TimmBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ :List[str] = model(UpperCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[Any] = self.prepare_config_and_inputs() snake_case__ :List[Any] = config_and_inputs snake_case__ :str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class _snake_case ( _A , _A , _A , unittest.TestCase ): _A = (TimmBackbone,) if is_torch_available() else () _A = {'feature-extraction': TimmBackbone} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = TimmBackboneModelTester(self ) snake_case__ :Optional[Any] = ConfigTester(self ,config_class=UpperCamelCase ,has_text_modality=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = "resnet18" snake_case__ :int = "microsoft/resnet-18" snake_case__ :List[Any] = AutoBackbone.from_pretrained(UpperCamelCase ,use_timm_backbone=UpperCamelCase ) snake_case__ :List[Any] = AutoBackbone.from_pretrained(UpperCamelCase ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) snake_case__ :str = AutoBackbone.from_pretrained(UpperCamelCase ,use_timm_backbone=UpperCamelCase ,out_indices=[1, 2, 3] ) snake_case__ :str = AutoBackbone.from_pretrained(UpperCamelCase ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowerCAmelCase_ ( self ) -> Optional[int]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCAmelCase_ ( self ) -> str: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowerCAmelCase_ ( self ) -> int: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowerCAmelCase_ ( self ) -> Tuple: pass @unittest.skip("Safetensors is not supported by timm." ) def lowerCAmelCase_ ( self ) -> str: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :Tuple = model_class(UpperCamelCase ) snake_case__ :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :List[str] = [*signature.parameters.keys()] snake_case__ :Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Any = True snake_case__ :str = self.has_attentions # no need to test all models as different heads yield the same functionality snake_case__ :Tuple = self.all_model_classes[0] snake_case__ :str = model_class(UpperCamelCase ) model.to(UpperCamelCase ) snake_case__ :Optional[int] = self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = model(**UpperCamelCase ) snake_case__ :Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models snake_case__ :Dict = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: snake_case__ :Optional[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=UpperCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ :List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Tuple = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None snake_case__ :Optional[Any] = copy.deepcopy(UpperCamelCase ) snake_case__ :List[str] = None snake_case__ :List[Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[Any] = model(**UpperCamelCase ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights snake_case__ :Tuple = copy.deepcopy(UpperCamelCase ) snake_case__ :Tuple = False snake_case__ :Tuple = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Optional[int] = model(**UpperCamelCase )
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = 32 ,UpperCamelCase = True ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = True ,UpperCamelCase = [0.48145466, 0.4578275, 0.40821073] ,UpperCamelCase = [0.26862954, 0.26130258, 0.27577711] ,UpperCamelCase = True ,UpperCamelCase=7 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=3 ,) -> Any: snake_case__ :Union[str, Any] = parent snake_case__ :str = do_resize snake_case__ :str = size if size is not None else {"shortest_edge": 288} snake_case__ :Tuple = size_divisor snake_case__ :Optional[int] = do_rescale snake_case__ :Tuple = rescale_factor snake_case__ :List[Any] = do_normalize snake_case__ :List[str] = do_center_crop snake_case__ :List[Any] = image_mean snake_case__ :Optional[int] = image_std snake_case__ :Any = do_pad snake_case__ :List[str] = batch_size snake_case__ :Tuple = num_channels snake_case__ :List[str] = min_resolution snake_case__ :Union[str, Any] = max_resolution def lowerCAmelCase_ ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=False ) -> Optional[int]: if not batched: snake_case__ :int = self.size["shortest_edge"] snake_case__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase ,Image.Image ): snake_case__ :Optional[Any] = image.size else: snake_case__ :Dict = image.shape[1], image.shape[2] snake_case__ :Any = size / min(UpperCamelCase ,UpperCamelCase ) if h < w: snake_case__ :Union[str, Any] = size, scale * w else: snake_case__ :Dict = scale * h, size snake_case__ :Union[str, Any] = int((1_333 / 800) * size ) if max(UpperCamelCase ,UpperCamelCase ) > max_size: snake_case__ :int = max_size / max(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = newh * scale snake_case__ :List[Any] = neww * scale snake_case__ :Optional[int] = int(newh + 0.5 ), int(neww + 0.5 ) snake_case__ :Dict = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: snake_case__ :Union[str, Any] = [] for image in image_inputs: snake_case__ :Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case__ :Tuple = max(UpperCamelCase ,key=lambda UpperCamelCase : item[0] )[0] snake_case__ :List[Any] = max(UpperCamelCase ,key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( _A , unittest.TestCase ): _A = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :str = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase ,"image_std" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size_divisor" ) ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> List[Any]: # Initialize image processor snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :Optional[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image processor snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :str = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ :int = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :Optional[int] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image processor snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :str = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :List[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values snake_case__ :List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched snake_case__ :str = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values snake_case__ :List[str] = self.image_processor_tester.get_expected_values(UpperCamelCase ,batched=UpperCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase_ ( __snake_case : str ) -> None: '''simple docstring''' snake_case__ :List[Any] = analyze_text(__snake_case ) snake_case__ :List[str] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. snake_case__ :int = sum(single_char_strings.values() ) # one length string snake_case__ :Optional[int] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: snake_case__ :Union[str, Any] = single_char_strings[ch] snake_case__ :Dict = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string snake_case__ :int = sum(two_char_strings.values() ) snake_case__ :List[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: snake_case__ :str = cha + cha if sequence in two_char_strings: snake_case__ :Dict = two_char_strings[sequence] snake_case__ :Any = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def lowercase_ ( __snake_case : str ) -> tuple[dict, dict]: '''simple docstring''' snake_case__ :List[str] = Counter() # type: ignore snake_case__ :List[str] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase_ ( ) -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __UpperCAmelCase : Any = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Optional[int] = { "camembert-base": 5_1_2, } __UpperCAmelCase : int = "▁" class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] _A = CamembertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="</s>" ,UpperCamelCase="</s>" ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase=["<s>NOTUSED", "</s>NOTUSED"] ,**UpperCamelCase ,) -> int: # Mask token behave like a normal word, i.e. include the space before it snake_case__ :List[str] = AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase ) if isinstance(UpperCamelCase ,UpperCamelCase ) else mask_token super().__init__( UpperCamelCase ,tokenizer_file=UpperCamelCase ,bos_token=UpperCamelCase ,eos_token=UpperCamelCase ,sep_token=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,additional_special_tokens=UpperCamelCase ,**UpperCamelCase ,) snake_case__ :int = vocab_file snake_case__ :Dict = False if not self.vocab_file else True def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :str = [self.sep_token_id] snake_case__ :List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case__ :Dict = os.path.join( UpperCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file ,UpperCamelCase ) return (out_vocab_file,)
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCAmelCase : List[Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCAmelCase : Tuple = logging.getLogger() def lowercase_ ( ) -> Dict: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) snake_case__ :Tuple = parser.parse_args() return args.f def lowercase_ ( __snake_case : Any , __snake_case : Any="eval" ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Any = os.path.join(__snake_case , F'{split}_results.json' ) if os.path.exists(__snake_case ): with open(__snake_case , "r" ) as f: return json.load(__snake_case ) raise ValueError(F'can\'t find {path}' ) __UpperCAmelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _snake_case ( _A ): def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[int] = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_flax_glue.main() snake_case__ :Optional[int] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) @slow def lowerCAmelCase_ ( self ) -> str: snake_case__ :Union[str, Any] = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_clm_flax.main() snake_case__ :Tuple = get_results(UpperCamelCase ) self.assertLess(result["eval_perplexity"] ,100 ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Optional[Any] = self.get_auto_remove_tmp_dir() snake_case__ :List[Any] = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_summarization_flax.main() snake_case__ :str = get_results(UpperCamelCase ,split="test" ) self.assertGreaterEqual(result["test_rouge1"] ,10 ) self.assertGreaterEqual(result["test_rouge2"] ,2 ) self.assertGreaterEqual(result["test_rougeL"] ,7 ) self.assertGreaterEqual(result["test_rougeLsum"] ,7 ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_mlm_flax.main() snake_case__ :Optional[Any] = get_results(UpperCamelCase ) self.assertLess(result["eval_perplexity"] ,42 ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Dict = self.get_auto_remove_tmp_dir() snake_case__ :Any = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_ta_mlm_flax.main() snake_case__ :Union[str, Any] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.42 ) @slow def lowerCAmelCase_ ( self ) -> Dict: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu snake_case__ :Any = 7 if get_gpu_count() > 1 else 2 snake_case__ :Dict = self.get_auto_remove_tmp_dir() snake_case__ :Any = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_flax_ner.main() snake_case__ :List[str] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_accuracy"] ,0.75 ) self.assertGreaterEqual(result["eval_f1"] ,0.3 ) @slow def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = self.get_auto_remove_tmp_dir() snake_case__ :int = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(UpperCamelCase ,"argv" ,UpperCamelCase ): run_qa.main() snake_case__ :Optional[int] = get_results(UpperCamelCase ) self.assertGreaterEqual(result["eval_f1"] ,30 ) self.assertGreaterEqual(result["eval_exact"] ,30 )
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = KandinskyVaaControlnetImgaImgPipeline _A = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _A = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] _A = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _A = False @property def lowerCAmelCase_ ( self ) -> Tuple: return 32 @property def lowerCAmelCase_ ( self ) -> str: return 32 @property def lowerCAmelCase_ ( self ) -> List[str]: return self.time_input_dim @property def lowerCAmelCase_ ( self ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self ) -> List[Any]: return 100 @property def lowerCAmelCase_ ( self ) -> Dict: torch.manual_seed(0 ) snake_case__ :Optional[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case__ :List[Any] = UNetaDConditionModel(**UpperCamelCase ) return model @property def lowerCAmelCase_ ( self ) -> str: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) snake_case__ :Dict = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase_ ( self ) -> Any: snake_case__ :str = self.dummy_unet snake_case__ :List[Any] = self.dummy_movq snake_case__ :List[Any] = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case__ :List[str] = DDIMScheduler(**UpperCamelCase ) snake_case__ :Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> Optional[int]: snake_case__ :Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ :int = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( UpperCamelCase ) # create init_image snake_case__ :Optional[int] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) snake_case__ :List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] snake_case__ :Any = Image.fromarray(np.uinta(UpperCamelCase ) ).convert("RGB" ).resize((256, 256) ) # create hint snake_case__ :int = floats_tensor((1, 3, 64, 64) ,rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if str(UpperCamelCase ).startswith("mps" ): snake_case__ :int = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Tuple = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :List[Any] = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase_ ( self ) -> int: snake_case__ :Dict = "cpu" snake_case__ :Union[str, Any] = self.get_dummy_components() snake_case__ :Dict = self.pipeline_class(**UpperCamelCase ) snake_case__ :Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Optional[int] = pipe(**self.get_dummy_inputs(UpperCamelCase ) ) snake_case__ :Dict = output.images snake_case__ :List[Any] = pipe( **self.get_dummy_inputs(UpperCamelCase ) ,return_dict=UpperCamelCase ,)[0] snake_case__ :Union[str, Any] = image[0, -3:, -3:, -1] snake_case__ :Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ :Union[str, Any] = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) snake_case__ :str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case__ :Any = init_image.resize((512, 512) ) snake_case__ :int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) snake_case__ :Tuple = torch.from_numpy(np.array(UpperCamelCase ) ).float() / 255.0 snake_case__ :List[Any] = hint.permute(2 ,0 ,1 ).unsqueeze(0 ) snake_case__ :Dict = "A robot, 4k photo" snake_case__ :Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase ) snake_case__ :Dict = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" ,torch_dtype=torch.floataa ) snake_case__ :Optional[Any] = pipeline.to(UpperCamelCase ) pipeline.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case__ :Dict = pipe_prior( UpperCamelCase ,image=UpperCamelCase ,strength=0.85 ,generator=UpperCamelCase ,negative_prompt="" ,).to_tuple() snake_case__ :Union[str, Any] = pipeline( image=UpperCamelCase ,image_embeds=UpperCamelCase ,negative_image_embeds=UpperCamelCase ,hint=UpperCamelCase ,generator=UpperCamelCase ,num_inference_steps=100 ,height=512 ,width=512 ,strength=0.5 ,output_type="np" ,) snake_case__ :Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCamelCase ,UpperCamelCase )
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
from math import pi, sqrt def lowercase_ ( __snake_case : float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(__snake_case ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(__snake_case ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase_ ( ) -> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(__snake_case ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase : str = 1.0 while num: __UpperCAmelCase : List[str] = float(input("Gamma of: ")) print(F'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> List[Any]: super().__init__() snake_case__ :Union[str, Any] = nn.ModuleList(UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = True ,) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(UpperCamelCase ,UpperCamelCase ,self.nets ) ): snake_case__ :List[str] = controlnet( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,) # merge samples if i == 0: snake_case__ :Optional[int] = down_samples, mid_sample else: snake_case__ :Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCamelCase ,UpperCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = False ,UpperCamelCase = None ,) -> Union[str, Any]: snake_case__ :List[str] = 0 snake_case__ :Optional[int] = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCamelCase ,is_main_process=UpperCamelCase ,save_function=UpperCamelCase ,safe_serialization=UpperCamelCase ,variant=UpperCamelCase ,) idx += 1 snake_case__ :List[Any] = model_path_to_save + f'_{idx}' @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,**UpperCamelCase ) -> Dict: snake_case__ :List[Any] = 0 snake_case__ :int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case__ :Any = pretrained_model_path while os.path.isdir(UpperCamelCase ): snake_case__ :List[str] = ControlNetModel.from_pretrained(UpperCamelCase ,**UpperCamelCase ) controlnets.append(UpperCamelCase ) idx += 1 snake_case__ :Optional[Any] = pretrained_model_path + f'_{idx}' logger.info(f'{len(UpperCamelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(UpperCamelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(UpperCamelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(UpperCamelCase )
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _snake_case : _A = PegasusConfig _A = {} _A = 'gelu' def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=False ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=40 ,UpperCamelCase=2 ,UpperCamelCase=1 ,UpperCamelCase=0 ,) -> int: snake_case__ :Tuple = parent snake_case__ :Any = batch_size snake_case__ :Optional[Any] = seq_length snake_case__ :Tuple = is_training snake_case__ :Union[str, Any] = use_labels snake_case__ :int = vocab_size snake_case__ :Dict = hidden_size snake_case__ :List[Any] = num_hidden_layers snake_case__ :Any = num_attention_heads snake_case__ :str = intermediate_size snake_case__ :int = hidden_dropout_prob snake_case__ :Optional[Any] = attention_probs_dropout_prob snake_case__ :List[str] = max_position_embeddings snake_case__ :Dict = eos_token_id snake_case__ :Optional[int] = pad_token_id snake_case__ :Any = bos_token_id def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :int = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) snake_case__ :Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) snake_case__ :List[Any] = tf.concat([input_ids, eos_tensor] ,axis=1 ) snake_case__ :Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ :str = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) snake_case__ :Optional[Any] = prepare_pegasus_inputs_dict(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return config, inputs_dict def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[str] = TFPegasusModel(config=UpperCamelCase ).get_decoder() snake_case__ :Optional[Any] = inputs_dict["input_ids"] snake_case__ :str = input_ids[:1, :] snake_case__ :Tuple = inputs_dict["attention_mask"][:1, :] snake_case__ :Any = inputs_dict["head_mask"] snake_case__ :Any = 1 # first forward pass snake_case__ :Any = model(UpperCamelCase ,attention_mask=UpperCamelCase ,head_mask=UpperCamelCase ,use_cache=UpperCamelCase ) snake_case__ :Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case__ :Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) snake_case__ :Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and snake_case__ :Optional[Any] = tf.concat([input_ids, next_tokens] ,axis=-1 ) snake_case__ :List[Any] = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) snake_case__ :Optional[int] = model(UpperCamelCase ,attention_mask=UpperCamelCase )[0] snake_case__ :str = model(UpperCamelCase ,attention_mask=UpperCamelCase ,past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice snake_case__ :Optional[Any] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) snake_case__ :str = output_from_no_past[:, -3:, random_slice_idx] snake_case__ :str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase ,UpperCamelCase ,rtol=1E-3 ) def lowercase_ ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Dict=None , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , ) -> Tuple: '''simple docstring''' if attention_mask is None: snake_case__ :List[Any] = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case__ :Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case__ :Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case__ :str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case__ :Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _snake_case ( _A , _A , unittest.TestCase ): _A = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _A = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _A = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _A = True _A = False _A = False def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Dict = TFPegasusModelTester(self ) snake_case__ :Any = ConfigTester(self ,config_class=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Any: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _snake_case ( unittest.TestCase ): _A = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] _A = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _A = 'google/pegasus-xsum' @cached_property def lowerCAmelCase_ ( self ) -> Tuple: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Any: snake_case__ :Optional[Any] = self.translate_src_text(**UpperCamelCase ) assert self.expected_text == generated_words def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> str: snake_case__ :Dict = self.tokenizer(self.src_text ,**UpperCamelCase ,padding=UpperCamelCase ,return_tensors="tf" ) snake_case__ :str = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=UpperCamelCase ,) snake_case__ :int = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=UpperCamelCase ) return generated_words @slow def lowerCAmelCase_ ( self ) -> Any: self._assert_generated_batch_equal_expected()
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' if n == 1 or not isinstance(__snake_case , __snake_case ): return 0 elif n == 2: return 1 else: snake_case__ :Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' snake_case__ :List[str] = 0 snake_case__ :Dict = 2 while digits < n: index += 1 snake_case__ :List[str] = len(str(fibonacci(__snake_case ) ) ) return index def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' return fibonacci_digits_index(__snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
from PIL import Image def lowercase_ ( __snake_case : Image , __snake_case : int ) -> Image: '''simple docstring''' snake_case__ :int = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(__snake_case : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 __UpperCAmelCase : Dict = change_contrast(img, 1_7_0) cont_img.save("image_data/lena_high_contrast.png", format="png")
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _snake_case : _A = XGLMConfig _A = {} _A = 'gelu' def __init__( self ,UpperCamelCase ,UpperCamelCase=14 ,UpperCamelCase=7 ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=True ,UpperCamelCase=99 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=4 ,UpperCamelCase=37 ,UpperCamelCase="gelu" ,UpperCamelCase=0.1 ,UpperCamelCase=0.1 ,UpperCamelCase=512 ,UpperCamelCase=0.02 ,) -> Optional[int]: snake_case__ :List[str] = parent snake_case__ :List[Any] = batch_size snake_case__ :Optional[Any] = seq_length snake_case__ :Any = is_training snake_case__ :List[str] = use_input_mask snake_case__ :List[Any] = use_labels snake_case__ :str = vocab_size snake_case__ :Dict = d_model snake_case__ :str = num_hidden_layers snake_case__ :Optional[int] = num_attention_heads snake_case__ :List[str] = ffn_dim snake_case__ :Any = activation_function snake_case__ :Union[str, Any] = activation_dropout snake_case__ :List[str] = attention_dropout snake_case__ :Optional[int] = max_position_embeddings snake_case__ :List[str] = initializer_range snake_case__ :Any = None snake_case__ :str = 0 snake_case__ :List[Any] = 2 snake_case__ :List[Any] = 1 def lowerCAmelCase_ ( self ) -> int: return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) snake_case__ :Union[str, Any] = None if self.use_input_mask: snake_case__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ :Union[str, Any] = self.get_config() snake_case__ :Tuple = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase_ ( self ) -> Dict: return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=UpperCamelCase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=UpperCamelCase ,) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() ( snake_case__ ) :List[str] = config_and_inputs snake_case__ :List[Any] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _snake_case ( _A , _A , unittest.TestCase ): _A = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _A = (TFXGLMForCausalLM,) if is_tf_available() else () _A = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[Any] = TFXGLMModelTester(self ) snake_case__ :Optional[int] = ConfigTester(self ,config_class=UpperCamelCase ,n_embd=37 ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def lowerCAmelCase_ ( self ) -> List[Any]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :List[Any] = TFXGLMModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def lowerCAmelCase_ ( self ) -> List[str]: super().test_resize_token_embeddings() @require_tf class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ,UpperCamelCase=True ) -> str: snake_case__ :str = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case__ :Optional[Any] = tf.convert_to_tensor([[2, 268, 9_865]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ :Any = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on snake_case__ :Dict = model.generate(UpperCamelCase ,do_sample=UpperCamelCase ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case__ :Tuple = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) snake_case__ :Optional[int] = tokenizer("Today is a nice day and" ,return_tensors="tf" ) snake_case__ :int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): snake_case__ :Tuple = model.generate(UpperCamelCase ,do_sample=UpperCamelCase ,seed=[7, 0] ) snake_case__ :str = tokenizer.decode(output_ids[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :str = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) snake_case__ :str = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) snake_case__ :Any = "left" # use different length sentences to test batching snake_case__ :List[str] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] snake_case__ :Optional[int] = tokenizer(UpperCamelCase ,return_tensors="tf" ,padding=UpperCamelCase ) snake_case__ :Dict = inputs["input_ids"] snake_case__ :Any = model.generate(input_ids=UpperCamelCase ,attention_mask=inputs["attention_mask"] ,max_new_tokens=12 ) snake_case__ :Any = tokenizer(sentences[0] ,return_tensors="tf" ).input_ids snake_case__ :str = model.generate(input_ids=UpperCamelCase ,max_new_tokens=12 ) snake_case__ :Union[str, Any] = tokenizer(sentences[1] ,return_tensors="tf" ).input_ids snake_case__ :str = model.generate(input_ids=UpperCamelCase ,max_new_tokens=12 ) snake_case__ :List[Any] = tokenizer.batch_decode(UpperCamelCase ,skip_special_tokens=UpperCamelCase ) snake_case__ :Optional[int] = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :List[str] = tokenizer.decode(output_padded[0] ,skip_special_tokens=UpperCamelCase ) snake_case__ :Any = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCamelCase ,UpperCamelCase ) self.assertListEqual(UpperCamelCase ,[non_padded_sentence, padded_sentence] )
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
import math def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(__snake_case ) * math.sqrt(__snake_case ) == num def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' snake_case__ :str = 0 snake_case__ :str = n while left <= right: snake_case__ :Optional[int] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: snake_case__ :Union[str, Any] = mid - 1 else: snake_case__ :Union[str, Any] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
from __future__ import annotations from random import random class _snake_case : def __init__( self ,UpperCamelCase = None ) -> Union[str, Any]: snake_case__ :Optional[Any] = value snake_case__ :Optional[int] = random() snake_case__ :Node | None = None snake_case__ :Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return f'\'{self.value}: {self.prior:.5}\'' else: return pformat( {f'{self.value}: {self.prior:.5}': (self.left, self.right)} ,indent=1 ) def __str__( self ) -> str: snake_case__ :List[Any] = str(self.value ) + " " snake_case__ :List[Any] = str(self.left or "" ) snake_case__ :Dict = str(self.right or "" ) return value + left + right def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: snake_case__ :Union[str, Any] = split(root.left , __snake_case ) return left, root else: snake_case__ :int = split(root.right , __snake_case ) return root, right def lowercase_ ( __snake_case : Node | None , __snake_case : Node | None ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: snake_case__ :List[str] = merge(left.right , __snake_case ) return left else: snake_case__ :Dict = merge(__snake_case , right.left ) return right def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: '''simple docstring''' snake_case__ :Optional[int] = Node(__snake_case ) snake_case__ :Dict = split(__snake_case , __snake_case ) return merge(merge(__snake_case , __snake_case ) , __snake_case ) def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Node | None: '''simple docstring''' snake_case__ :List[str] = split(__snake_case , value - 1 ) snake_case__ :str = split(__snake_case , __snake_case ) return merge(__snake_case , __snake_case ) def lowercase_ ( __snake_case : Node | None ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def lowercase_ ( __snake_case : Node | None , __snake_case : str ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": snake_case__ :Optional[Any] = insert(__snake_case , int(arg[1:] ) ) elif arg[0] == "-": snake_case__ :List[str] = erase(__snake_case , int(arg[1:] ) ) else: print("Unknown command" ) return root def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :Optional[int] = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. " ) snake_case__ :List[Any] = input() while args != "q": snake_case__ :List[str] = interact_treap(__snake_case , __snake_case ) print(__snake_case ) snake_case__ :int = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : List[Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase : List[Any] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _snake_case ( _A ): _A = 'vivit' def __init__( self ,UpperCamelCase=224 ,UpperCamelCase=32 ,UpperCamelCase=[2, 16, 16] ,UpperCamelCase=3 ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu_fast" ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-06 ,UpperCamelCase=True ,**UpperCamelCase ,) -> Optional[int]: snake_case__ :str = hidden_size snake_case__ :Dict = num_hidden_layers snake_case__ :str = num_attention_heads snake_case__ :str = intermediate_size snake_case__ :List[str] = hidden_act snake_case__ :Dict = hidden_dropout_prob snake_case__ :Any = attention_probs_dropout_prob snake_case__ :List[Any] = initializer_range snake_case__ :Optional[Any] = layer_norm_eps snake_case__ :Optional[Any] = image_size snake_case__ :List[str] = num_frames snake_case__ :Optional[Any] = tubelet_size snake_case__ :List[str] = num_channels snake_case__ :List[str] = qkv_bias super().__init__(**UpperCamelCase )
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase_ ( *__snake_case : int ) -> Union[str, Any]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): snake_case__ :List[str] = list(__snake_case ) for i in range(len(__snake_case ) ): snake_case__ :int = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase_ ( __snake_case : Exception ) -> bool: '''simple docstring''' snake_case__ :List[str] = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__snake_case , __snake_case ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase_ ( __snake_case : callable = None , __snake_case : int = 1_28 ) -> str: '''simple docstring''' if function is None: return functools.partial(__snake_case , starting_batch_size=__snake_case ) snake_case__ :Tuple = starting_batch_size def decorator(*__snake_case : List[Any] , **__snake_case : str ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case__ :List[str] = list(inspect.signature(__snake_case ).parameters.keys() ) # Guard against user error if len(__snake_case ) < (len(__snake_case ) + 1): snake_case__ :Any = ", ".join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__snake_case , *__snake_case , **__snake_case ) except Exception as e: if should_reduce_batch_size(__snake_case ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
from __future__ import annotations __UpperCAmelCase : Any = [] def lowercase_ ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int ) -> bool: '''simple docstring''' for i in range(len(__snake_case ) ): if board[row][i] == 1: return False for i in range(len(__snake_case ) ): if board[i][column] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__snake_case , -1 , -1 ) , range(__snake_case , len(__snake_case ) ) ): if board[i][j] == 1: return False return True def lowercase_ ( __snake_case : list[list[int]] , __snake_case : int ) -> bool: '''simple docstring''' if row >= len(__snake_case ): solution.append(__snake_case ) printboard(__snake_case ) print() return True for i in range(len(__snake_case ) ): if is_safe(__snake_case , __snake_case , __snake_case ): snake_case__ :Union[str, Any] = 1 solve(__snake_case , row + 1 ) snake_case__ :int = 0 return False def lowercase_ ( __snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in range(len(__snake_case ) ): for j in range(len(__snake_case ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) __UpperCAmelCase : Tuple = 8 __UpperCAmelCase : Optional[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
import logging from transformers import PretrainedConfig __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) __UpperCAmelCase : List[str] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class _snake_case ( _A ): _A = 'bertabs' def __init__( self ,UpperCamelCase=30_522 ,UpperCamelCase=512 ,UpperCamelCase=6 ,UpperCamelCase=512 ,UpperCamelCase=8 ,UpperCamelCase=512 ,UpperCamelCase=0.2 ,UpperCamelCase=6 ,UpperCamelCase=768 ,UpperCamelCase=8 ,UpperCamelCase=2_048 ,UpperCamelCase=0.2 ,**UpperCamelCase ,) -> Optional[int]: super().__init__(**UpperCamelCase ) snake_case__ :int = vocab_size snake_case__ :Optional[Any] = max_pos snake_case__ :List[Any] = enc_layers snake_case__ :List[str] = enc_hidden_size snake_case__ :str = enc_heads snake_case__ :Optional[Any] = enc_ff_size snake_case__ :Any = enc_dropout snake_case__ :int = dec_layers snake_case__ :List[str] = dec_hidden_size snake_case__ :Dict = dec_heads snake_case__ :Any = dec_ff_size snake_case__ :str = dec_dropout
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase : Optional[int] = "src/transformers" __UpperCAmelCase : Tuple = "docs/source/en/tasks" def lowercase_ ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int ) -> str: '''simple docstring''' with open(__snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case__ :int = f.readlines() # Find the start prompt. snake_case__ :Optional[Any] = 0 while not lines[start_index].startswith(__snake_case ): start_index += 1 start_index += 1 snake_case__ :Optional[int] = start_index while not lines[end_index].startswith(__snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase : Dict = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase : List[Any] = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def lowercase_ ( __snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = TASK_GUIDE_TO_MODELS[task_guide] snake_case__ :Union[str, Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__snake_case , set() ) snake_case__ :str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowercase_ ( __snake_case : int , __snake_case : List[Any]=False ) -> Dict: '''simple docstring''' snake_case__ :Dict = _find_text_in_file( filename=os.path.join(__snake_case , __snake_case ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) snake_case__ :Union[str, Any] = get_model_list_for_task(__snake_case ) if current_list != new_list: if overwrite: with open(os.path.join(__snake_case , __snake_case ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' " to fix this." ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase : Tuple = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __UpperCAmelCase : List[str] = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self ,UpperCamelCase ,UpperCamelCase ) -> None: snake_case__ :Any | T = None snake_case__ :int = len(UpperCamelCase ) snake_case__ :list[T] = [any_type for _ in range(self.N )] + arr snake_case__ :Optional[Any] = fnc self.build() def lowerCAmelCase_ ( self ) -> None: for p in range(self.N - 1 ,0 ,-1 ): snake_case__ :Optional[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> None: p += self.N snake_case__ :Optional[Any] = v while p > 1: snake_case__ :List[str] = p // 2 snake_case__ :List[Any] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> T | None: # noqa: E741 snake_case__ :List[str] = l + self.N, r + self.N snake_case__ :T | None = None while l <= r: if l % 2 == 1: snake_case__ :List[str] = self.st[l] if res is None else self.fn(UpperCamelCase ,self.st[l] ) if r % 2 == 0: snake_case__ :Union[str, Any] = self.st[r] if res is None else self.fn(UpperCamelCase ,self.st[r] ) snake_case__ :List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __UpperCAmelCase : Optional[Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] __UpperCAmelCase : Dict = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } __UpperCAmelCase : Optional[int] = SegmentTree(test_array, min) __UpperCAmelCase : Dict = SegmentTree(test_array, max) __UpperCAmelCase : Dict = SegmentTree(test_array, lambda a, b: a + b) def lowercase_ ( ) -> None: '''simple docstring''' for i in range(len(__snake_case ) ): for j in range(__snake_case , len(__snake_case ) ): snake_case__ :Optional[Any] = reduce(__snake_case , test_array[i : j + 1] ) snake_case__ :str = reduce(__snake_case , test_array[i : j + 1] ) snake_case__ :List[str] = reduce(lambda __snake_case , __snake_case : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__snake_case , __snake_case ) assert max_range == max_segment_tree.query(__snake_case , __snake_case ) assert sum_range == sum_segment_tree.query(__snake_case , __snake_case ) test_all_segments() for index, value in test_updates.items(): __UpperCAmelCase : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,) -> List[str]: snake_case__ :Optional[Any] = size if size is not None else {"height": 18, "width": 18} snake_case__ :Dict = parent snake_case__ :str = batch_size snake_case__ :int = num_channels snake_case__ :Optional[Any] = image_size snake_case__ :str = min_resolution snake_case__ :Optional[Any] = max_resolution snake_case__ :List[str] = do_resize snake_case__ :Dict = size snake_case__ :List[str] = apply_ocr def lowerCAmelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _snake_case ( _A , unittest.TestCase ): _A = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Dict = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"apply_ocr" ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"height": 18, "width": 18} ) snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"height": 42, "width": 42} ) def lowerCAmelCase_ ( self ) -> int: pass def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) self.assertIsInstance(encoding.words ,UpperCamelCase ) self.assertIsInstance(encoding.boxes ,UpperCamelCase ) # Test batched snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Any = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :Union[str, Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :Dict = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # Initialize image_processing snake_case__ :Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) # Test batched snake_case__ :int = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # with apply_OCR = True snake_case__ :str = LayoutLMvaImageProcessor() from datasets import load_dataset snake_case__ :Tuple = load_dataset("hf-internal-testing/fixtures_docvqa" ,split="test" ) snake_case__ :str = Image.open(ds[0]["file"] ).convert("RGB" ) snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) ,len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 snake_case__ :str = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 snake_case__ :Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words ,UpperCamelCase ) self.assertListEqual(encoding.boxes ,UpperCamelCase ) # with apply_OCR = False snake_case__ :Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase ) snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape ,(1, 3, 224, 224) )
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
import numpy as np def lowercase_ ( __snake_case : np.array ) -> np.array: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
from datetime import datetime import requests def lowercase_ ( __snake_case : str ) -> bytes: '''simple docstring''' snake_case__ :int = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" snake_case__ :List[Any] = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(__snake_case ).content if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = input("Enter Video/IGTV url: ").strip() __UpperCAmelCase : Union[str, Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase_ ( __snake_case : int ) -> Any: '''simple docstring''' if is_torch_version("<" , "2.0.0" ) or not hasattr(__snake_case , "_dynamo" ): return False return isinstance(__snake_case , torch._dynamo.eval_frame.OptimizedModule ) def lowercase_ ( __snake_case : Optional[Any] , __snake_case : bool = True ) -> Optional[int]: '''simple docstring''' snake_case__ :List[str] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case__ :List[str] = is_compiled_module(__snake_case ) if is_compiled: snake_case__ :Tuple = model snake_case__ :Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__snake_case , __snake_case ): snake_case__ :List[str] = model.module if not keep_fpaa_wrapper: snake_case__ :Optional[Any] = getattr(__snake_case , "forward" ) snake_case__ :Tuple = model.__dict__.pop("_original_forward" , __snake_case ) if original_forward is not None: while hasattr(__snake_case , "__wrapped__" ): snake_case__ :Tuple = forward.__wrapped__ if forward == original_forward: break snake_case__ :Dict = forward if getattr(__snake_case , "_converted_to_transformer_engine" , __snake_case ): convert_model(__snake_case , to_transformer_engine=__snake_case ) if is_compiled: snake_case__ :Union[str, Any] = model snake_case__ :str = compiled_model return model def lowercase_ ( ) -> Optional[int]: '''simple docstring''' PartialState().wait_for_everyone() def lowercase_ ( __snake_case : List[str] , __snake_case : Tuple ) -> List[str]: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(__snake_case , __snake_case ) elif PartialState().local_process_index == 0: torch.save(__snake_case , __snake_case ) @contextmanager def lowercase_ ( **__snake_case : str ) -> List[Any]: '''simple docstring''' for key, value in kwargs.items(): snake_case__ :Dict = str(__snake_case ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase_ ( __snake_case : Dict ) -> List[str]: '''simple docstring''' if not hasattr(__snake_case , "__qualname__" ) and not hasattr(__snake_case , "__name__" ): snake_case__ :List[Any] = getattr(__snake_case , "__class__" , __snake_case ) if hasattr(__snake_case , "__qualname__" ): return obj.__qualname__ if hasattr(__snake_case , "__name__" ): return obj.__name__ return str(__snake_case ) def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key, value in source.items(): if isinstance(__snake_case , __snake_case ): snake_case__ :str = destination.setdefault(__snake_case , {} ) merge_dicts(__snake_case , __snake_case ) else: snake_case__ :Any = value return destination def lowercase_ ( __snake_case : int = None ) -> bool: '''simple docstring''' if port is None: snake_case__ :Dict = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case ( _A ): def __init__( self ,*UpperCamelCase ,**UpperCamelCase ) -> None: warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." ,UpperCamelCase ,) super().__init__(*UpperCamelCase ,**UpperCamelCase )
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
import unittest import numpy as np def lowercase_ ( __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray , __snake_case : np.ndarray | None = None , ) -> np.ndarray: '''simple docstring''' snake_case__ :Any = np.shape(__snake_case ) snake_case__ :Dict = np.shape(__snake_case ) snake_case__ :Tuple = np.shape(__snake_case ) if shape_a[0] != shape_b[0]: snake_case__ :int = ( "Expected the same number of rows for A and B. " F'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: snake_case__ :Dict = ( "Expected the same number of columns for B and C. " F'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(__snake_case ) snake_case__ :List[Any] = pseudo_inv if a_inv is None: try: snake_case__ :Dict = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> None: snake_case__ :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ :Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ :List[str] = np.array([[2, 1], [6, 3]] ) snake_case__ :List[str] = schur_complement(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = np.block([[a, b], [b.T, c]] ) snake_case__ :List[str] = np.linalg.det(UpperCamelCase ) snake_case__ :Dict = np.linalg.det(UpperCamelCase ) snake_case__ :Any = np.linalg.det(UpperCamelCase ) self.assertAlmostEqual(UpperCamelCase ,det_a * det_s ) def lowerCAmelCase_ ( self ) -> None: snake_case__ :Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ :List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ :Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> None: snake_case__ :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) snake_case__ :str = np.array([[0, 3], [3, 0], [2, 3]] ) snake_case__ :Dict = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Any = inspect.getfile(accelerate.test_utils ) snake_case__ :List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 snake_case__ :List[Any] = test_metrics @require_cpu def lowerCAmelCase_ ( self ) -> int: debug_launcher(self.test_metrics.main ,num_processes=1 ) @require_cpu def lowerCAmelCase_ ( self ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowerCAmelCase_ ( self ) -> Tuple: self.test_metrics.main() @require_multi_gpu def lowerCAmelCase_ ( self ) -> Tuple: print(f'Found {torch.cuda.device_count()} devices.' ) snake_case__ :Optional[int] = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase ,env=os.environ.copy() )
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
def lowercase_ ( __snake_case : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) snake_case__ :int = [True] * (num + 1) snake_case__ :Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __snake_case ): snake_case__ :Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Optional[int] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def lowercase_ ( __snake_case : SplitDict ) -> int: '''simple docstring''' snake_case__ :Any = split_dict._to_yaml_list() assert len(__snake_case ) == len(__snake_case ) snake_case__ :int = SplitDict._from_yaml_list(__snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump snake_case__ :List[Any] = None # the split name of split_dict takes over the name of the split info object snake_case__ :List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=__snake_case ), SplitInfo(dataset_name="my_dataset" )] ) def lowercase_ ( __snake_case : Dict ) -> Any: '''simple docstring''' snake_case__ :Any = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
703
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : Dict = True except ImportError: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( __snake_case : Namespace ) -> Dict: '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _snake_case ( _A ): @staticmethod def lowerCAmelCase_ ( UpperCamelCase ) -> Any: snake_case__ :Dict = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" ,action="store_true" ,help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" ,type=UpperCamelCase ,help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" ,type=UpperCamelCase ,help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=UpperCamelCase ) def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,*UpperCamelCase ) -> Any: snake_case__ :Union[str, Any] = testing snake_case__ :Union[str, Any] = testing_file snake_case__ :List[str] = path def lowerCAmelCase_ ( self ) -> List[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory snake_case__ :Tuple = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(UpperCamelCase ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) snake_case__ :str = ( Path(UpperCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) snake_case__ :Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCamelCase ) ) else: with open(self._testing_file ,"r" ) as configuration_file: snake_case__ :str = json.load(UpperCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=UpperCamelCase ,extra_context=UpperCamelCase ,) snake_case__ :List[Any] = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" ,"r" ) as configuration_file: snake_case__ :Dict = json.load(UpperCamelCase ) snake_case__ :Optional[Any] = configuration["lowercase_modelname"] snake_case__ :List[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) snake_case__ :Any = "PyTorch" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "TensorFlow" in generate_tensorflow_pytorch_and_flax snake_case__ :Any = "Flax" in generate_tensorflow_pytorch_and_flax snake_case__ :Dict = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(UpperCamelCase ,exist_ok=UpperCamelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=UpperCamelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,"w" ): pass shutil.move( f'{directory}/__init__.py' ,f'{model_dir}/__init__.py' ,) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' ,f'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(UpperCamelCase ): with open(UpperCamelCase ,"r" ) as f: snake_case__ :List[str] = f.readlines() with open(UpperCamelCase ,"w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' ,f'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' ,f'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' ,f'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' ,f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' ,f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): # Create temp file snake_case__ , snake_case__ :Optional[Any] = mkstemp() snake_case__ :Optional[Any] = False with fdopen(UpperCamelCase ,"w" ) as new_file: with open(UpperCamelCase ) as old_file: for line in old_file: new_file.write(UpperCamelCase ) if line_to_copy_below in line: snake_case__ :Optional[Any] = True for line_to_copy in lines_to_copy: new_file.write(UpperCamelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(UpperCamelCase ,UpperCamelCase ) # Remove original file remove(UpperCamelCase ) # Move new file move(UpperCamelCase ,UpperCamelCase ) def skip_units(UpperCamelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCamelCase ): with open(UpperCamelCase ) as datafile: snake_case__ :int = [] snake_case__ :Optional[int] = False snake_case__ :List[str] = False for line in datafile: if "# To replace in: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :Tuple = skip_units(UpperCamelCase ) elif "# Below: " in line and "##" not in line: snake_case__ :Optional[Any] = line.split("\"" )[1] snake_case__ :List[str] = skip_units(UpperCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = [] elif "# Replace with" in line and "##" not in line: snake_case__ :Optional[Any] = [] elif "##" not in line: lines_to_copy.append(UpperCamelCase ) remove(UpperCamelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(UpperCamelCase )
57
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Tuple = logging.get_logger(__name__) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BICUBIC ,UpperCamelCase = True ,UpperCamelCase = 1 / 255 ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :Optional[Any] = size if size is not None else {"height": 384, "width": 384} snake_case__ :Tuple = get_size_dict(UpperCamelCase ,default_to_square=UpperCamelCase ) snake_case__ :int = do_resize snake_case__ :Optional[int] = size snake_case__ :Optional[int] = resample snake_case__ :List[str] = do_rescale snake_case__ :Tuple = rescale_factor snake_case__ :Optional[Any] = do_normalize snake_case__ :Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case__ :List[str] = image_std if image_std is not None else OPENAI_CLIP_STD snake_case__ :Tuple = do_convert_rgb def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BICUBIC ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :Optional[Any] = get_size_dict(UpperCamelCase ,default_to_square=UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) snake_case__ :str = (size["height"], size["width"]) return resize(UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> str: return rescale(UpperCamelCase ,scale=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: return normalize(UpperCamelCase ,mean=UpperCamelCase ,std=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :str = do_resize if do_resize is not None else self.do_resize snake_case__ :List[Any] = resample if resample is not None else self.resample snake_case__ :List[Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ :Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ :Any = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :int = image_mean if image_mean is not None else self.image_mean snake_case__ :Tuple = image_std if image_std is not None else self.image_std snake_case__ :str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case__ :Optional[Any] = size if size is not None else self.size snake_case__ :Union[str, Any] = get_size_dict(UpperCamelCase ,default_to_square=UpperCamelCase ) snake_case__ :Optional[Any] = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case__ :List[Any] = [convert_to_rgb(UpperCamelCase ) for image in images] # All transformations expect numpy arrays. snake_case__ :str = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :List[Any] = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_rescale: snake_case__ :int = [self.rescale(image=UpperCamelCase ,scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Optional[int] = [self.normalize(image=UpperCamelCase ,mean=UpperCamelCase ,std=UpperCamelCase ) for image in images] snake_case__ :str = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[Any] = BatchFeature(data={"pixel_values": images} ,tensor_type=UpperCamelCase ) return encoded_outputs
704
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } __UpperCAmelCase : str = {"allegro/herbert-base-cased": 5_1_4} __UpperCAmelCase : List[str] = {} class _snake_case ( _A ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = HerbertTokenizer def __init__( self ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase=None ,UpperCamelCase="<s>" ,UpperCamelCase="<unk>" ,UpperCamelCase="<pad>" ,UpperCamelCase="<mask>" ,UpperCamelCase="</s>" ,**UpperCamelCase ,) -> Dict: super().__init__( UpperCamelCase ,UpperCamelCase ,tokenizer_file=UpperCamelCase ,cls_token=UpperCamelCase ,unk_token=UpperCamelCase ,pad_token=UpperCamelCase ,mask_token=UpperCamelCase ,sep_token=UpperCamelCase ,**UpperCamelCase ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Optional[int] = [self.cls_token_id] snake_case__ :Any = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase ,token_ids_a=UpperCamelCase ,already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> List[int]: snake_case__ :Any = [self.sep_token_id] snake_case__ :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ) -> Tuple[str]: snake_case__ :List[str] = self._tokenizer.model.save(UpperCamelCase ,name=UpperCamelCase ) return tuple(UpperCamelCase )
57
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _A , unittest.TestCase ): _A = ConsistencyModelPipeline _A = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _A = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _A = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Tuple = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" ,subfolder="test_unet" ,) return unet @property def lowerCAmelCase_ ( self ) -> str: snake_case__ :Tuple = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" ,subfolder="test_unet_class_cond" ,) return unet def lowerCAmelCase_ ( self ,UpperCamelCase=False ) -> Tuple: if class_cond: snake_case__ :Tuple = self.dummy_cond_unet else: snake_case__ :Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler snake_case__ :List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Tuple = { "unet": unet, "scheduler": scheduler, } return components def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=0 ) -> str: if str(UpperCamelCase ).startswith("mps" ): snake_case__ :List[str] = torch.manual_seed(UpperCamelCase ) else: snake_case__ :Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :Any = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Optional[Any] = self.get_dummy_components() snake_case__ :List[Any] = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Dict = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Optional[int] = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Tuple = self.get_dummy_components(class_cond=UpperCamelCase ) snake_case__ :Tuple = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Dict = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[Any] = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 0 snake_case__ :int = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :int = image[0, -3:, -3:, -1] snake_case__ :str = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :List[str] = self.get_dummy_components() snake_case__ :Any = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Tuple = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :int = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 1 snake_case__ :str = None snake_case__ :Dict = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Dict = image[0, -3:, -3:, -1] snake_case__ :List[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ :Union[str, Any] = self.get_dummy_components(class_cond=UpperCamelCase ) snake_case__ :Dict = ConsistencyModelPipeline(**UpperCamelCase ) snake_case__ :Any = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Tuple = self.get_dummy_inputs(UpperCamelCase ) snake_case__ :Optional[Any] = 1 snake_case__ :List[Any] = None snake_case__ :Dict = 0 snake_case__ :Dict = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) snake_case__ :Any = image[0, -3:, -3:, -1] snake_case__ :Optional[int] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase=False ,UpperCamelCase="cpu" ,UpperCamelCase=torch.floataa ,UpperCamelCase=(1, 3, 64, 64) ) -> List[Any]: snake_case__ :str = torch.manual_seed(UpperCamelCase ) snake_case__ :str = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: snake_case__ :Any = self.get_fixed_latents(seed=UpperCamelCase ,device=UpperCamelCase ,dtype=UpperCamelCase ,shape=UpperCamelCase ) snake_case__ :Union[str, Any] = latents return inputs def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase="cpu" ,UpperCamelCase=torch.floataa ,UpperCamelCase=(1, 3, 64, 64) ) -> Any: if type(UpperCamelCase ) == str: snake_case__ :int = torch.device(UpperCamelCase ) snake_case__ :List[Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) snake_case__ :Tuple = randn_tensor(UpperCamelCase ,generator=UpperCamelCase ,device=UpperCamelCase ,dtype=UpperCamelCase ) return latents def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :int = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[str] = self.get_inputs() snake_case__ :List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Tuple = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Union[str, Any] = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Union[str, Any] = self.get_inputs() snake_case__ :str = 1 snake_case__ :Tuple = None snake_case__ :str = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :List[str] = image[0, -3:, -3:, -1] snake_case__ :Union[str, Any] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Union[str, Any] = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :Any = self.get_inputs(get_fixed_latents=UpperCamelCase ,device=UpperCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase ,enable_math=UpperCamelCase ,enable_mem_efficient=UpperCamelCase ): snake_case__ :Any = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Tuple = image[0, -3:, -3:, -1] snake_case__ :List[str] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" ,subfolder="diffusers_cd_imagenet64_l2" ) snake_case__ :int = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) snake_case__ :Dict = ConsistencyModelPipeline(unet=UpperCamelCase ,scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) snake_case__ :List[Any] = self.get_inputs(get_fixed_latents=UpperCamelCase ,device=UpperCamelCase ) snake_case__ :Tuple = 1 snake_case__ :int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase ,enable_math=UpperCamelCase ,enable_mem_efficient=UpperCamelCase ): snake_case__ :Any = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) snake_case__ :Dict = image[0, -3:, -3:, -1] snake_case__ :Tuple = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
705
def lowercase_ ( __snake_case : int ) -> bool: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True snake_case__ :List[str] = 4 snake_case__ :Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): snake_case__ :List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
57
0
'''simple docstring''' from __future__ import annotations __UpperCAmelCase : str = "Muhammad Umer Farooq" __UpperCAmelCase : Tuple = "MIT" __UpperCAmelCase : Union[str, Any] = "1.0.0" __UpperCAmelCase : Dict = "Muhammad Umer Farooq" __UpperCAmelCase : List[str] = "contact@muhammadumerfarooq.me" __UpperCAmelCase : Tuple = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class _snake_case ( _A ): def __init__( self ,UpperCamelCase ) -> None: super().__init__() snake_case__ :list[str] = [] snake_case__ :List[Any] = domain def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ :List[str] = parse.urljoin(self.domain ,UpperCamelCase ) self.urls.append(UpperCamelCase ) def lowercase_ ( __snake_case : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__snake_case ).split("." )[-2:] ) def lowercase_ ( __snake_case : str ) -> str: '''simple docstring''' return parse.urlparse(__snake_case ).netloc def lowercase_ ( __snake_case : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ :str = get_domain_name(__snake_case ) # Initialize the parser snake_case__ :str = Parser(__snake_case ) try: # Open URL snake_case__ :Union[str, Any] = requests.get(__snake_case ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ :Optional[Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ :str = requests.get(__snake_case ) # Get the valid email. snake_case__ :List[Any] = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__snake_case ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = emails_from_url("https://github.com") print(F'''{len(emails)} emails found:''') print("\n".join(sorted(emails)))
706
from typing import Any def lowercase_ ( __snake_case : list , __snake_case : list , __snake_case : dict , __snake_case : dict , __snake_case : dict , ) -> list: '''simple docstring''' _validation( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # Creates data structures and fill initial step snake_case__ :dict = {} snake_case__ :dict = {} for state in states_space: snake_case__ :List[Any] = observations_space[0] snake_case__ :str = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case__ :str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__snake_case ) ): snake_case__ :Any = observations_space[o] snake_case__ :Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case__ :Tuple = "" snake_case__ :Union[str, Any] = -1 for k_state in states_space: snake_case__ :int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case__ :str = probability snake_case__ :Tuple = k_state # Update probabilities and pointers dicts snake_case__ :List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case__ :List[str] = arg_max # The final observation snake_case__ :str = observations_space[len(__snake_case ) - 1] # argmax for given final observation snake_case__ :Optional[int] = "" snake_case__ :List[str] = -1 for k_state in states_space: snake_case__ :List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case__ :List[str] = probability snake_case__ :int = k_state snake_case__ :Any = arg_max # Process pointers backwards snake_case__ :int = last_state snake_case__ :List[str] = [] for o in range(len(__snake_case ) - 1 , -1 , -1 ): result.append(__snake_case ) snake_case__ :List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_not_empty( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) _validate_lists(__snake_case , __snake_case ) _validate_dicts( __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> None: '''simple docstring''' _validate_list(__snake_case , "observations_space" ) _validate_list(__snake_case , "states_space" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :Optional[int] = F'{var_name} must be a list' raise ValueError(__snake_case ) else: for x in _object: if not isinstance(__snake_case , __snake_case ): snake_case__ :Any = F'{var_name} must be a list of strings' raise ValueError(__snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : Any , __snake_case : Any , ) -> None: '''simple docstring''' _validate_dict(__snake_case , "initial_probabilities" , __snake_case ) _validate_nested_dict(__snake_case , "transition_probabilities" ) _validate_nested_dict(__snake_case , "emission_probabilities" ) def lowercase_ ( __snake_case : Any , __snake_case : str ) -> None: '''simple docstring''' _validate_dict(_object , __snake_case , __snake_case ) for x in _object.values(): _validate_dict(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase_ ( __snake_case : Any , __snake_case : str , __snake_case : type , __snake_case : bool = False ) -> None: '''simple docstring''' if not isinstance(_object , __snake_case ): snake_case__ :str = F'{var_name} must be a dict' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object ): snake_case__ :List[Any] = F'{var_name} all keys must be strings' raise ValueError(__snake_case ) if not all(isinstance(__snake_case , __snake_case ) for x in _object.values() ): snake_case__ :Optional[int] = "nested dictionary " if nested else "" snake_case__ :int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
57
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = "ylacombe/bark-small" snake_case__ :Dict = tempfile.mkdtemp() snake_case__ :Tuple = "en_speaker_1" snake_case__ :List[Any] = "This is a test string" snake_case__ :List[Any] = "speaker_embeddings_path.json" snake_case__ :Optional[Any] = "speaker_embeddings" def lowerCAmelCase_ ( self ,**UpperCamelCase ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[str] = self.get_tokenizer() snake_case__ :Tuple = BarkProcessor(tokenizer=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ :Tuple = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) snake_case__ :Tuple = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) snake_case__ :int = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="(BOS)" ,eos_token="(EOS)" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) snake_case__ :Optional[Any] = 35 snake_case__ :Optional[int] = 2 snake_case__ :str = 8 snake_case__ :Any = { "semantic_prompt": np.ones(UpperCamelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset snake_case__ :Any = processor(text=self.input_string ,voice_preset=UpperCamelCase ) snake_case__ :List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(UpperCamelCase ,np.array([] ) ).tolist() ) # test loading voice preset from npz file snake_case__ :List[str] = os.path.join(self.tmpdirname ,"file.npz" ) np.savez(UpperCamelCase ,**UpperCamelCase ) snake_case__ :Union[str, Any] = processor(text=self.input_string ,voice_preset=UpperCamelCase ) snake_case__ :int = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(UpperCamelCase ,np.array([] ) ).tolist() ) # test loading voice preset from the hub snake_case__ :Dict = processor(text=self.input_string ,voice_preset=self.voice_preset ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = self.get_tokenizer() snake_case__ :str = BarkProcessor(tokenizer=UpperCamelCase ) snake_case__ :List[Any] = processor(text=self.input_string ) snake_case__ :Optional[int] = tokenizer( self.input_string ,padding="max_length" ,max_length=256 ,add_special_tokens=UpperCamelCase ,return_attention_mask=UpperCamelCase ,return_token_type_ids=UpperCamelCase ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
708
def lowercase_ ( __snake_case : int = 10_00 ) -> int: '''simple docstring''' snake_case__ :int = 3 snake_case__ :int = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
57
0
from __future__ import annotations def lowercase_ ( __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ) -> int: # noqa: E741 '''simple docstring''' while r - l > 1: snake_case__ :Optional[Any] = (l + r) // 2 if v[m] >= key: snake_case__ :Optional[Any] = m else: snake_case__ :str = m # noqa: E741 return r def lowercase_ ( __snake_case : list[int] ) -> int: '''simple docstring''' if len(__snake_case ) == 0: return 0 snake_case__ :List[str] = [0] * len(__snake_case ) snake_case__ :Optional[int] = 1 snake_case__ :Union[str, Any] = v[0] for i in range(1 , len(__snake_case ) ): if v[i] < tail[0]: snake_case__ :Any = v[i] elif v[i] > tail[length - 1]: snake_case__ :Optional[Any] = v[i] length += 1 else: snake_case__ :Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
709
import os import sys import unittest __UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Tuple = find_backend(" if not is_torch_available():" ) self.assertEqual(UpperCamelCase ,"torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case__ :Tuple = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case__ :str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(UpperCamelCase ,"torch_and_transformers_and_onnx" ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" ,UpperCamelCase ) self.assertIn("torch_and_transformers" ,UpperCamelCase ) self.assertIn("flax_and_transformers" ,UpperCamelCase ) self.assertIn("torch_and_transformers_and_onnx" ,UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" ,objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" ,objects["flax"] ) self.assertIn("StableDiffusionPipeline" ,objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" ,objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" ,objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" ,objects["torch_and_transformers_and_onnx"] ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :Union[str, Any] = create_dummy_object("CONSTANT" ,"'torch'" ) self.assertEqual(UpperCamelCase ,"\nCONSTANT = None\n" ) snake_case__ :Optional[Any] = create_dummy_object("function" ,"'torch'" ) self.assertEqual( UpperCamelCase ,"\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) snake_case__ :str = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" snake_case__ :List[str] = create_dummy_object("FakeClass" ,"'torch'" ) self.assertEqual(UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" snake_case__ :int = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] ,UpperCamelCase )
57
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase_ ( __snake_case : Optional[Any]=None ) -> str: '''simple docstring''' if subparsers is not None: snake_case__ :Optional[Any] = subparsers.add_parser("env" ) else: snake_case__ :List[str] = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=__snake_case , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' snake_case__ :Dict = torch.__version__ snake_case__ :int = torch.cuda.is_available() snake_case__ :str = is_xpu_available() snake_case__ :List[str] = is_npu_available() snake_case__ :List[str] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__snake_case ): snake_case__ :List[Any] = load_config_from_file(args.config_file ).to_dict() snake_case__ :Union[str, Any] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F'{pt_version} ({pt_cuda_available})', "PyTorch XPU available": str(__snake_case ), "PyTorch NPU available": str(__snake_case ), "System RAM": F'{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB', } if pt_cuda_available: snake_case__ :Dict = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) snake_case__ :List[str] = ( "\n".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(__snake_case , __snake_case ) else F'\t{accelerate_config}' ) print(__snake_case ) snake_case__ :str = accelerate_config return info def lowercase_ ( ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = env_command_parser() snake_case__ :Union[str, Any] = parser.parse_args() env_command(__snake_case ) return 0 if __name__ == "__main__": raise SystemExit(main())
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
from __future__ import annotations def lowercase_ ( __snake_case : int = 4 ) -> list[list[int]]: '''simple docstring''' snake_case__ :Union[str, Any] = abs(__snake_case ) or 4 return [[1 + x + y * row_size for x in range(__snake_case )] for y in range(__snake_case )] def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :int = [list(__snake_case ) for x in zip(*__snake_case )] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :Optional[int] = matrix[::-1] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> list[list[int]]: '''simple docstring''' snake_case__ :Dict = [x[::-1] for x in matrix] return matrix def lowercase_ ( __snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in matrix: print(*__snake_case ) if __name__ == "__main__": __UpperCAmelCase : int = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) __UpperCAmelCase : Optional[int] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) __UpperCAmelCase : List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
711
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down snake_case__ :Tuple = mock.Mock() snake_case__ :List[str] = 500 snake_case__ :Any = {} snake_case__ :Union[str, Any] = HTTPError snake_case__ :Tuple = {} # Download this model to make sure it's in the cache. snake_case__ :Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Dict = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCAmelCase_ ( self ) -> Dict: # A mock response for an HTTP head request to emulate server down snake_case__ :Union[str, Any] = mock.Mock() snake_case__ :int = 500 snake_case__ :Any = {} snake_case__ :Dict = HTTPError snake_case__ :List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ :Optional[int] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" ,return_value=UpperCamelCase ) as mock_head: snake_case__ :Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase_ ( self ) -> int: # This test is for deprecated behavior and can be removed in v5 try: snake_case__ :Union[str, Any] = tempfile.mktemp() with open(UpperCamelCase ,"wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ,UpperCamelCase ) snake_case__ :Tuple = AlbertTokenizer.from_pretrained(UpperCamelCase ) finally: os.remove(UpperCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" ,"wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" ,UpperCamelCase ) snake_case__ :Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 snake_case__ :Union[str, Any] = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _snake_case ( unittest.TestCase ): _A = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCAmelCase_ ( cls ) -> Optional[int]: snake_case__ :List[str] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token ,repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCAmelCase_ ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[str] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :str = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("test-tokenizer" ,use_auth_token=self._token ) snake_case__ :Dict = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase ,repo_id="test-tokenizer" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :List[str] = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def lowerCAmelCase_ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :List[Any] = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Any = BertTokenizer(UpperCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" ,use_auth_token=self._token ) snake_case__ :Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCamelCase ,repo_id="valid_org/test-tokenizer-org" ,push_to_hub=UpperCamelCase ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def lowerCAmelCase_ ( self ) -> Any: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :str = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Optional[int] = CustomTokenizer(UpperCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :Union[str, Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ :int = os.path.join(UpperCamelCase ,"vocab.txt" ) with open(UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ :Tuple = BertTokenizerFast.from_pretrained(UpperCamelCase ) bert_tokenizer.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = CustomTokenizerFast.from_pretrained(UpperCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" ,use_auth_token=self._token ) snake_case__ :List[Any] = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizerFast" ) snake_case__ :List[str] = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' ,use_fast=UpperCamelCase ,trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"CustomTokenizer" ) class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :int = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data ,{"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[str] = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) ,["[CLS]", " This is a ", "extra_id_100"] ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) ,["A", "BC"] ) self.assertEqual(trie.split("BCA" ) ,["BC", "A"] ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :List[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) ,["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :str = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) ,["AB", "C"] ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Dict = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) ,["ABC", "D"] ) def lowerCAmelCase_ ( self ) -> int: # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ :Optional[int] = Trie() snake_case__ :Union[str, Any] = trie.cut_text("ABC" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCamelCase ,["AB", "C"] )
57
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __UpperCAmelCase : Dict = logging.getLogger(__name__) class _snake_case : def __init__( self ) -> Optional[int]: snake_case__ :List[Any] = False def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: if not self.initialized: snake_case__ :Dict = RagRetriever( UpperCamelCase ,question_encoder_tokenizer=UpperCamelCase ,generator_tokenizer=UpperCamelCase ,index=UpperCamelCase ,init_retrieval=UpperCamelCase ,) snake_case__ :List[Any] = True def lowerCAmelCase_ ( self ) -> int: self.retriever.index.init_index() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :List[Any] = self.retriever._main_retrieve(UpperCamelCase ,UpperCamelCase ) return doc_ids, retrieved_doc_embeds class _snake_case ( _A ): def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ) -> Dict: if index is not None and index.is_initialized() and len(UpperCamelCase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( UpperCamelCase ,question_encoder_tokenizer=UpperCamelCase ,generator_tokenizer=UpperCamelCase ,index=UpperCamelCase ,init_retrieval=UpperCamelCase ,) snake_case__ :Union[str, Any] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) for worker in self.retrieval_workers ] ) def lowerCAmelCase_ ( self ) -> List[Any]: logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. snake_case__ :Optional[int] = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] snake_case__ :str = ray.get(random_worker.retrieve.remote(UpperCamelCase ,UpperCamelCase ) ) else: snake_case__ :List[Any] = self._main_retrieve(UpperCamelCase ,UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> str: return super(UpperCamelCase ,cls ).get_tokenizers(UpperCamelCase ,UpperCamelCase ,**UpperCamelCase ) @classmethod def lowerCAmelCase_ ( cls ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> int: snake_case__ :str = kwargs.pop("config" ,UpperCamelCase ) or RagConfig.from_pretrained(UpperCamelCase ,**UpperCamelCase ) snake_case__ :List[str] = RagTokenizer.from_pretrained(UpperCamelCase ,config=UpperCamelCase ) snake_case__ :Any = rag_tokenizer.question_encoder snake_case__ :Any = rag_tokenizer.generator if indexed_dataset is not None: snake_case__ :List[str] = "custom" snake_case__ :Tuple = CustomHFIndex(config.retrieval_vector_size ,UpperCamelCase ) else: snake_case__ :Union[str, Any] = cls._build_index(UpperCamelCase ) return cls( UpperCamelCase ,question_encoder_tokenizer=UpperCamelCase ,generator_tokenizer=UpperCamelCase ,retrieval_workers=UpperCamelCase ,index=UpperCamelCase ,)
712
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase : Optional[Any] = 1_6 __UpperCAmelCase : Optional[int] = 3_2 def lowercase_ ( __snake_case : Accelerator , __snake_case : int = 16 , __snake_case : str = "bert-base-cased" ) -> Optional[Any]: '''simple docstring''' snake_case__ :int = AutoTokenizer.from_pretrained(__snake_case ) snake_case__ :Optional[int] = load_dataset("glue" , "mrpc" ) def tokenize_function(__snake_case : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ :List[Any] = datasets.map( __snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ :Any = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(__snake_case , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. snake_case__ :Any = DataLoader( tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) snake_case__ :Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowercase_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' model.eval() snake_case__ :Union[str, Any] = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ :List[Any] = model(**__snake_case ) snake_case__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case__ , snake_case__ :Tuple = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: snake_case__ :List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ :Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) snake_case__ :int = metric.compute() return eval_metric["accuracy"] def lowercase_ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ) -> Any: '''simple docstring''' snake_case__ :Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ :Union[str, Any] = config["lr"] snake_case__ :List[str] = int(config["num_epochs"] ) snake_case__ :Optional[Any] = int(config["seed"] ) snake_case__ :List[Any] = int(config["batch_size"] ) snake_case__ :List[Any] = args.model_name_or_path set_seed(__snake_case ) snake_case__ , snake_case__ :List[Any] = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ :List[Any] = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer snake_case__ :int = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case__ :Tuple = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: snake_case__ :List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: snake_case__ :Any = 1 snake_case__ :List[Any] = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case__ :Optional[Any] = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: snake_case__ :Any = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ :int = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over snake_case__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly snake_case__ :Union[str, Any] = 0 snake_case__ :List[str] = evaluate.load("glue" , "mrpc" ) snake_case__ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: snake_case__ :List[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case__ :Union[str, Any] = args.resume_from_checkpoint.split("epoch_" )[1] snake_case__ :Dict = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case__ :str = int(__snake_case ) + 1 snake_case__ :List[Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) accelerator.print("resumed checkpoint performance:" , __snake_case ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , "r" ) as f: snake_case__ :Tuple = json.load(__snake_case ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case__ :Optional[int] = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): snake_case__ :str = model(**__snake_case ) snake_case__ :List[str] = outputs.loss snake_case__ :List[Any] = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case__ :int = F'epoch_{epoch}' snake_case__ :str = os.path.join(args.output_dir , __snake_case ) accelerator.save_state(__snake_case ) snake_case__ :Union[str, Any] = evaluation_loop(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case__ :List[str] = accuracy snake_case__ :List[str] = lr_scheduler.get_lr()[0] snake_case__ :List[Any] = optimizer.param_groups[0]["lr"] snake_case__ :Dict = epoch snake_case__ :List[Any] = overall_step accelerator.print(F'epoch {epoch}:' , __snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , "w" ) as f: json.dump(__snake_case , __snake_case ) def lowercase_ ( ) -> Any: '''simple docstring''' snake_case__ :List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__snake_case , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__snake_case , ) parser.add_argument( "--output_dir" , type=__snake_case , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=__snake_case , default=__snake_case , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=__snake_case , default=__snake_case , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=__snake_case , default=2 , help="Number of train epochs." , ) snake_case__ :Any = parser.parse_args() snake_case__ :int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
57
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase : Any = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __UpperCAmelCase : Dict = spec.loader.load_module() __UpperCAmelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCAmelCase : int = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __UpperCAmelCase : Optional[int] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): snake_case__ :Any = False # source code of `config_class` snake_case__ :List[str] = inspect.getsource(__snake_case ) snake_case__ :Any = _re_checkpoint.findall(__snake_case ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` snake_case__ :Optional[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link snake_case__ :Dict = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case__ :Dict = True break snake_case__ :Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__snake_case ) if len(__snake_case ) > 0: snake_case__ :int = "\n".join(sorted(__snake_case ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
713
from __future__ import annotations class _snake_case : def __init__( self ,UpperCamelCase ) -> None: snake_case__ :Union[str, Any] = data snake_case__ :Node | None = None snake_case__ :Node | None = None def lowercase_ ( __snake_case : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase_ ( __snake_case : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Dict = Node(1 ) snake_case__ :int = Node(2 ) snake_case__ :Optional[Any] = Node(3 ) snake_case__ :Tuple = Node(4 ) snake_case__ :str = Node(5 ) snake_case__ :Optional[Any] = Node(6 ) snake_case__ :List[Any] = Node(7 ) snake_case__ :List[str] = Node(8 ) snake_case__ :Tuple = Node(9 ) print(is_full_binary_tree(__snake_case ) ) print(depth_of_tree(__snake_case ) ) print("Tree is: " ) display(__snake_case ) if __name__ == "__main__": main()
57
0
'''simple docstring''' from itertools import permutations def lowercase_ ( __snake_case : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case__ :int = [7, 11, 13, 17] for i, test in enumerate(__snake_case ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowercase_ ( __snake_case : int = 10 ) -> int: '''simple docstring''' return sum( int("".join(map(__snake_case , __snake_case ) ) ) for num in permutations(range(__snake_case ) ) if is_substring_divisible(__snake_case ) ) if __name__ == "__main__": print(F'''{solution() = }''')
714
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCAmelCase : List[Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCAmelCase : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("\n".join(upper_files) + "\n") __UpperCAmelCase : Any = [file for file in filepaths if " " in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("\n".join(space_files) + "\n") __UpperCAmelCase : str = [file for file in filepaths if "-" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("\n".join(hyphen_files) + "\n") __UpperCAmelCase : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("\n".join(nodir_files) + "\n") __UpperCAmelCase : int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
57
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( _A , _A , unittest.TestCase ): _A = AutoencoderKL _A = 'sample' _A = 1e-2 @property def lowerCAmelCase_ ( self ) -> int: snake_case__ :Tuple = 4 snake_case__ :str = 3 snake_case__ :Optional[int] = (32, 32) snake_case__ :str = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) return {"sample": image} @property def lowerCAmelCase_ ( self ) -> str: return (3, 32, 32) @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: return (3, 32, 32) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } snake_case__ :List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self ) -> Union[str, Any]: pass def lowerCAmelCase_ ( self ) -> List[str]: pass @unittest.skipIf(torch_device == "mps" ,"Gradient checkpointing skipped on MPS" ) def lowerCAmelCase_ ( self ) -> List[str]: # enable deterministic behavior for gradient checkpointing snake_case__ :Any = self.prepare_init_args_and_inputs_for_common() snake_case__ :Optional[int] = self.model_class(**UpperCamelCase ) model.to(UpperCamelCase ) assert not model.is_gradient_checkpointing and model.training snake_case__ :Union[str, Any] = model(**UpperCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case__ :Optional[int] = torch.randn_like(UpperCamelCase ) snake_case__ :List[str] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case__ :Any = self.model_class(**UpperCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(UpperCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case__ :str = model_a(**UpperCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case__ :List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) snake_case__ :Optional[int] = dict(model.named_parameters() ) snake_case__ :List[str] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5E-5 ) ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Optional[int] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ,output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) ,0 ) model.to(UpperCamelCase ) snake_case__ :str = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Optional[Any] = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy" ) snake_case__ :str = model.to(UpperCamelCase ) model.eval() if torch_device == "mps": snake_case__ :int = torch.manual_seed(0 ) else: snake_case__ :Tuple = torch.Generator(device=UpperCamelCase ).manual_seed(0 ) snake_case__ :Optional[int] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) snake_case__ :Optional[Any] = image.to(UpperCamelCase ) with torch.no_grad(): snake_case__ :Dict = model(UpperCamelCase ,sample_posterior=UpperCamelCase ,generator=UpperCamelCase ).sample snake_case__ :Tuple = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case__ :Union[str, Any] = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": snake_case__ :str = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case__ :List[str] = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(UpperCamelCase ,UpperCamelCase ,rtol=1E-2 ) ) @slow class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: return f'gaussian_noise_s={seed}_shape={"_".join([str(UpperCamelCase ) for s in shape] )}.npy' def lowerCAmelCase_ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ,UpperCamelCase=0 ,UpperCamelCase=(4, 3, 512, 512) ,UpperCamelCase=False ) -> Optional[int]: snake_case__ :str = torch.floataa if fpaa else torch.floataa snake_case__ :Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(UpperCamelCase ,UpperCamelCase ) ) ).to(UpperCamelCase ).to(UpperCamelCase ) return image def lowerCAmelCase_ ( self ,UpperCamelCase="CompVis/stable-diffusion-v1-4" ,UpperCamelCase=False ) -> Dict: snake_case__ :List[Any] = "fp16" if fpaa else None snake_case__ :Dict = torch.floataa if fpaa else torch.floataa snake_case__ :List[str] = AutoencoderKL.from_pretrained( UpperCamelCase ,subfolder="vae" ,torch_dtype=UpperCamelCase ,revision=UpperCamelCase ,) model.to(UpperCamelCase ).eval() return model def lowerCAmelCase_ ( self ,UpperCamelCase=0 ) -> List[Any]: if torch_device == "mps": return torch.manual_seed(UpperCamelCase ) return torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :List[Any] = self.get_sd_vae_model() snake_case__ :Tuple = self.get_sd_image(UpperCamelCase ) snake_case__ :Any = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :Tuple = model(UpperCamelCase ,generator=UpperCamelCase ,sample_posterior=UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :str = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :str = self.get_sd_image(UpperCamelCase ,fpaa=UpperCamelCase ) snake_case__ :List[Any] = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model(UpperCamelCase ,generator=UpperCamelCase ,sample_posterior=UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Optional[Any] = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :Dict = self.get_sd_vae_model() snake_case__ :List[str] = self.get_sd_image(UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model(UpperCamelCase ).sample assert sample.shape == image.shape snake_case__ :Union[str, Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case__ :List[Any] = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: snake_case__ :Optional[Any] = self.get_sd_vae_model() snake_case__ :Union[str, Any] = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :Optional[int] = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :str = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]: snake_case__ :str = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :Union[str, Any] = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ,fpaa=UpperCamelCase ) with torch.no_grad(): snake_case__ :Dict = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case__ :List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case__ :Union[str, Any] = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :Union[str, Any] = self.get_sd_vae_model(fpaa=UpperCamelCase ) snake_case__ :Any = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ,fpaa=UpperCamelCase ) with torch.no_grad(): snake_case__ :str = model.decode(UpperCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :List[Any] = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="xformers is not required when using PyTorch 2.0." ) def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :Any = self.get_sd_vae_model() snake_case__ :int = self.get_sd_image(UpperCamelCase ,shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case__ :Tuple = model.decode(UpperCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case__ :str = model.decode(UpperCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Tuple = self.get_sd_vae_model() snake_case__ :Any = self.get_sd_image(UpperCamelCase ) snake_case__ :Optional[int] = self.get_generator(UpperCamelCase ) with torch.no_grad(): snake_case__ :int = model.encode(UpperCamelCase ).latent_dist snake_case__ :Union[str, Any] = dist.sample(generator=UpperCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case__ :List[str] = sample[0, -1, -3:, -3:].flatten().cpu() snake_case__ :Optional[int] = torch.tensor(UpperCamelCase ) snake_case__ :str = 3E-3 if torch_device != "mps" else 1E-2 assert torch_all_close(UpperCamelCase ,UpperCamelCase ,atol=UpperCamelCase )
715
def lowercase_ ( __snake_case : Tuple , __snake_case : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case__ :Dict = "" for i in table: res += inp[i - 1] return res def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' return data[1:] + data[0] def lowercase_ ( __snake_case : int , __snake_case : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ :Union[str, Any] = "" for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowercase_ ( __snake_case : Optional[int] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case__ :int = int("0b" + data[0] + data[-1] , 2 ) snake_case__ :Union[str, Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowercase_ ( __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ) -> List[str]: '''simple docstring''' snake_case__ :Tuple = message[:4] snake_case__ :int = message[4:] snake_case__ :int = apply_table(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = xor(__snake_case , __snake_case ) snake_case__ :Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741 snake_case__ :List[str] = apply_sbox(__snake_case , temp[4:] ) snake_case__ :int = "0" * (2 - len(__snake_case )) + l # noqa: E741 snake_case__ :int = "0" * (2 - len(__snake_case )) + r snake_case__ :Optional[Any] = apply_table(l + r , __snake_case ) snake_case__ :Tuple = xor(__snake_case , __snake_case ) return temp + right if __name__ == "__main__": __UpperCAmelCase : Dict = input("Enter 10 bit key: ") __UpperCAmelCase : Tuple = input("Enter 8 bit message: ") __UpperCAmelCase : Any = [6, 3, 7, 4, 8, 5, 1_0, 9] __UpperCAmelCase : List[str] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __UpperCAmelCase : Tuple = [2, 4, 3, 1] __UpperCAmelCase : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] __UpperCAmelCase : Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6] __UpperCAmelCase : Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1] __UpperCAmelCase : List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __UpperCAmelCase : Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __UpperCAmelCase : int = apply_table(key, paa_table) __UpperCAmelCase : Dict = temp[:5] __UpperCAmelCase : Optional[int] = temp[5:] __UpperCAmelCase : Optional[int] = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : int = apply_table(left + right, pa_table) __UpperCAmelCase : Tuple = left_shift(left) __UpperCAmelCase : Union[str, Any] = left_shift(right) __UpperCAmelCase : Dict = left_shift(left) __UpperCAmelCase : Optional[Any] = left_shift(right) __UpperCAmelCase : Optional[int] = apply_table(left + right, pa_table) # encryption __UpperCAmelCase : Tuple = apply_table(message, IP) __UpperCAmelCase : Tuple = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : List[Any] = temp[4:] + temp[:4] __UpperCAmelCase : int = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption __UpperCAmelCase : List[Any] = apply_table(CT, IP) __UpperCAmelCase : List[Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : int = temp[4:] + temp[:4] __UpperCAmelCase : Union[str, Any] = function(expansion, sa, sa, keya, temp) __UpperCAmelCase : Union[str, Any] = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
57
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self ,UpperCamelCase ,UpperCamelCase=7 ,UpperCamelCase=3 ,UpperCamelCase=18 ,UpperCamelCase=30 ,UpperCamelCase=400 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=None ,) -> Optional[Any]: snake_case__ :Optional[Any] = size if size is not None else {"shortest_edge": 20} snake_case__ :List[str] = crop_size if crop_size is not None else {"height": 18, "width": 18} snake_case__ :Union[str, Any] = parent snake_case__ :Union[str, Any] = batch_size snake_case__ :Optional[Any] = num_channels snake_case__ :List[str] = image_size snake_case__ :List[str] = min_resolution snake_case__ :Tuple = max_resolution snake_case__ :Optional[Any] = do_resize snake_case__ :Any = size snake_case__ :Dict = do_center_crop snake_case__ :int = crop_size def lowerCAmelCase_ ( self ) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( _A , unittest.TestCase ): _A = MobileNetVaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :List[Any] = MobileNetVaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase ,"do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase ,"size" ) ) self.assertTrue(hasattr(UpperCamelCase ,"do_center_crop" ) ) self.assertTrue(hasattr(UpperCamelCase ,"crop_size" ) ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size ,{"height": 18, "width": 18} ) snake_case__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def lowerCAmelCase_ ( self ) -> Optional[int]: pass def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ :int = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,Image.Image ) # Test not batched input snake_case__ :Optional[Any] = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :Union[str, Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> List[str]: # Initialize image_processing snake_case__ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,np.ndarray ) # Test not batched input snake_case__ :Dict = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def lowerCAmelCase_ ( self ) -> Tuple: # Initialize image_processing snake_case__ :Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ :Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=UpperCamelCase ,torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase ,torch.Tensor ) # Test not batched input snake_case__ :Any = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched snake_case__ :List[Any] = image_processing(UpperCamelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
716
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( _A , _A , _A ): @register_to_config def __init__( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,) -> int: super().__init__() snake_case__ :Union[str, Any] = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :int = nn.Embedding(UpperCamelCase ,UpperCamelCase ) snake_case__ :Any = False snake_case__ :List[Any] = nn.Dropout(p=UpperCamelCase ) snake_case__ :Tuple = TaConfig( vocab_size=UpperCamelCase ,d_model=UpperCamelCase ,num_heads=UpperCamelCase ,d_kv=UpperCamelCase ,d_ff=UpperCamelCase ,dropout_rate=UpperCamelCase ,feed_forward_proj=UpperCamelCase ,is_decoder=UpperCamelCase ,is_encoder_decoder=UpperCamelCase ,) snake_case__ :List[str] = nn.ModuleList() for lyr_num in range(UpperCamelCase ): snake_case__ :List[Any] = TaBlock(UpperCamelCase ) self.encoders.append(UpperCamelCase ) snake_case__ :Optional[Any] = TaLayerNorm(UpperCamelCase ) snake_case__ :Any = nn.Dropout(p=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :str = self.token_embedder(UpperCamelCase ) snake_case__ :int = encoder_input_tokens.shape[1] snake_case__ :List[Any] = torch.arange(UpperCamelCase ,device=encoder_input_tokens.device ) x += self.position_encoding(UpperCamelCase ) snake_case__ :Optional[int] = self.dropout_pre(UpperCamelCase ) # inverted the attention mask snake_case__ :Optional[Any] = encoder_input_tokens.size() snake_case__ :Dict = self.get_extended_attention_mask(UpperCamelCase ,UpperCamelCase ) for lyr in self.encoders: snake_case__ :str = lyr(UpperCamelCase ,UpperCamelCase )[0] snake_case__ :List[Any] = self.layer_norm(UpperCamelCase ) return self.dropout_post(UpperCamelCase ), encoder_inputs_mask
57
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowercase_ ( __snake_case : Any ) -> Any: '''simple docstring''' if isinstance(__snake_case , collections.abc.Iterable ): return x return (x, x) @require_flax class _snake_case : def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> str: pass def lowerCAmelCase_ ( self ) -> str: pass def lowerCAmelCase_ ( self ) -> List[str]: pass def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple: snake_case__ :Optional[int] = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase ,UpperCamelCase ,f'Difference between torch and flax is {diff} (>= {tol}).' ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> Dict: snake_case__ :Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :List[str] = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Dict = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> List[Any]: snake_case__ :Any = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[int] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :str = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) self.assertEqual(output["text_embeds"].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[Any] = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Optional[int] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :Any = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) snake_case__ :Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) snake_case__ :Any = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) snake_case__ :Any = model(input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ) snake_case__ :List[str] = after_output[0] snake_case__ :Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase ,1E-3 ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=None ,**UpperCamelCase ) -> int: snake_case__ :List[Any] = self.get_vision_text_model(UpperCamelCase ,UpperCamelCase ) snake_case__ :Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} snake_case__ :Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase ) snake_case__ :int = model( input_ids=UpperCamelCase ,pixel_values=UpperCamelCase ,attention_mask=UpperCamelCase ,output_attentions=UpperCamelCase ) snake_case__ :Tuple = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) snake_case__ :Optional[Any] = to_atuple(vision_model.config.image_size ) snake_case__ :int = to_atuple(vision_model.config.patch_size ) snake_case__ :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) snake_case__ :List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) snake_case__ :Optional[Any] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: pt_model.to(UpperCamelCase ) pt_model.eval() # prepare inputs snake_case__ :Optional[int] = inputs_dict snake_case__ :List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): snake_case__ :str = pt_model(**UpperCamelCase ).to_tuple() snake_case__ :Optional[Any] = fx_model(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output.numpy() ,4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase ) snake_case__ :Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ,from_pt=UpperCamelCase ) snake_case__ :str = fx_model_loaded(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output.numpy() ,4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase ) snake_case__ :List[Any] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase ,from_flax=UpperCamelCase ) pt_model_loaded.to(UpperCamelCase ) pt_model_loaded.eval() with torch.no_grad(): snake_case__ :Tuple = pt_model_loaded(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) ,len(UpperCamelCase ) ,"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCamelCase ,pt_output_loaded.numpy() ,4E-2 ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :str = VisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :int = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,UpperCamelCase ) snake_case__ :int = fx_state self.check_pt_flax_equivalence(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase ,UpperCamelCase ) snake_case__ :Tuple = VisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase ) snake_case__ :List[Any] = load_flax_weights_in_pytorch_model(UpperCamelCase ,fx_model.params ) self.check_pt_flax_equivalence(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase ) @is_pt_flax_cross_test def lowerCAmelCase_ ( self ) -> int: snake_case__ :List[Any] = self.prepare_config_and_inputs() snake_case__ :Optional[int] = config_inputs_dict.pop("vision_config" ) snake_case__ :Dict = config_inputs_dict.pop("text_config" ) snake_case__ :Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) self.check_equivalence_flax_to_pt(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Dict = self.get_pretrained_model_and_inputs() snake_case__ :List[Any] = model_a(**UpperCamelCase ) snake_case__ :Optional[int] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase ) snake_case__ :Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase ) snake_case__ :List[str] = model_a(**UpperCamelCase ) snake_case__ :Tuple = after_outputs[0] snake_case__ :Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase ,1E-5 ) @require_flax class _snake_case ( _A , unittest.TestCase ): def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=UpperCamelCase ,text_from_pt=UpperCamelCase ,) snake_case__ :Union[str, Any] = 13 snake_case__ :List[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ :Union[str, Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ :Optional[int] = random_attention_mask([batch_size, 4] ) snake_case__ :Optional[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :Dict = FlaxViTModel(UpperCamelCase ) snake_case__ :Tuple = FlaxBertModel(UpperCamelCase ) return vision_model, text_model def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[int] = FlaxViTModelTester(self ) snake_case__ :Optional[Any] = FlaxBertModelTester(self ) snake_case__ :Dict = vit_model_tester.prepare_config_and_inputs() snake_case__ :int = bert_model_tester.prepare_config_and_inputs() snake_case__ :int = vision_config_and_inputs snake_case__ :int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _snake_case ( _A , unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Any: snake_case__ :int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" ,"hf-internal-testing/tiny-bert" ,vision_from_pt=UpperCamelCase ,text_from_pt=UpperCamelCase ,) snake_case__ :List[Any] = 13 snake_case__ :Dict = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) snake_case__ :Union[str, Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) snake_case__ :Optional[Any] = random_attention_mask([batch_size, 4] ) snake_case__ :Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = FlaxCLIPVisionModel(UpperCamelCase ) snake_case__ :Union[str, Any] = FlaxBertModel(UpperCamelCase ) return vision_model, text_model def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :Optional[Any] = FlaxCLIPVisionModelTester(self ) snake_case__ :Optional[int] = FlaxBertModelTester(self ) snake_case__ :Tuple = clip_model_tester.prepare_config_and_inputs() snake_case__ :int = bert_model_tester.prepare_config_and_inputs() snake_case__ :Optional[int] = vision_config_and_inputs snake_case__ :Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _snake_case ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" ,logit_scale_init_value=1.0 ) snake_case__ :Any = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) snake_case__ :Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case__ :Tuple = processor( text=["una foto di un gatto", "una foto di un cane"] ,images=UpperCamelCase ,padding=UpperCamelCase ,return_tensors="np" ) snake_case__ :List[Any] = model(**UpperCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) snake_case__ :Dict = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,UpperCamelCase ,atol=1E-3 ) )
717
__UpperCAmelCase : int = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __UpperCAmelCase : List[str] = ["a", "b", "c", "d", "e"] def lowercase_ ( __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple ) -> Optional[int]: '''simple docstring''' snake_case__ :List[Any] = start # add current to visited visited.append(__snake_case ) snake_case__ :List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # if all neighbors visited add current to sort sort.append(__snake_case ) # if all vertices haven't been visited select a new one to visit if len(__snake_case ) != len(__snake_case ): for vertice in vertices: if vertice not in visited: snake_case__ :Any = topological_sort(__snake_case , __snake_case , __snake_case ) # return sort return sort if __name__ == "__main__": __UpperCAmelCase : Tuple = topological_sort("a", [], []) print(sort)
57
0
from random import randint, random def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : int , __snake_case : bool = False , __snake_case : bool = False , __snake_case : int = 5 , ) -> list: '''simple docstring''' snake_case__ :int = [[-1] * number_of_cells] # Create a highway without any car snake_case__ :List[str] = 0 snake_case__ :Any = max(__snake_case , 0 ) while i < number_of_cells: snake_case__ :Optional[int] = ( randint(0 , __snake_case ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowercase_ ( __snake_case : list , __snake_case : int ) -> int: '''simple docstring''' snake_case__ :Optional[Any] = 0 snake_case__ :Union[str, Any] = highway_now[car_index + 1 :] for cell in range(len(__snake_case ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__snake_case , -1 ) def lowercase_ ( __snake_case : list , __snake_case : float , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :List[str] = len(__snake_case ) # Beforce calculations, the highway is empty snake_case__ :List[Any] = [-1] * number_of_cells for car_index in range(__snake_case ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed snake_case__ :Union[str, Any] = min(highway_now[car_index] + 1 , __snake_case ) # Number of empty cell before the next car snake_case__ :Any = get_distance(__snake_case , __snake_case ) - 1 # We can't have the car causing an accident snake_case__ :Tuple = min(next_highway[car_index] , __snake_case ) if random() < probability: # Randomly, a driver will slow down snake_case__ :Any = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowercase_ ( __snake_case : list , __snake_case : int , __snake_case : float , __snake_case : int ) -> list: '''simple docstring''' snake_case__ :Optional[int] = len(highway[0] ) for i in range(__snake_case ): snake_case__ :List[str] = update(highway[i] , __snake_case , __snake_case ) snake_case__ :int = [-1] * number_of_cells for car_index in range(__snake_case ): snake_case__ :List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) snake_case__ :Dict = (car_index + speed) % number_of_cells # Commit the change of position snake_case__ :int = speed highway.append(__snake_case ) return highway if __name__ == "__main__": import doctest doctest.testmod()
718
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :Tuple = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Any = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :List[str] = controlnet_params snake_case__ :Union[str, Any] = "bird" snake_case__ :Optional[int] = jax.device_count() snake_case__ :Tuple = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) snake_case__ :str = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :str = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :int = replicate(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :Any = shard(UpperCamelCase ) snake_case__ :str = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :Any = images[0, 253:256, 253:256, -1] snake_case__ :Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[Any] = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ , snake_case__ :List[str] = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ , snake_case__ :Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ,controlnet=UpperCamelCase ,from_pt=UpperCamelCase ,dtype=jnp.bfloataa ) snake_case__ :str = controlnet_params snake_case__ :int = "Chef in the kitchen" snake_case__ :List[Any] = jax.device_count() snake_case__ :Dict = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ :Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) snake_case__ :Optional[int] = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ :List[str] = jax.random.PRNGKey(0 ) snake_case__ :Any = jax.random.split(UpperCamelCase ,jax.device_count() ) snake_case__ :Dict = replicate(UpperCamelCase ) snake_case__ :Tuple = shard(UpperCamelCase ) snake_case__ :Optional[int] = shard(UpperCamelCase ) snake_case__ :Optional[Any] = pipe( prompt_ids=UpperCamelCase ,image=UpperCamelCase ,params=UpperCamelCase ,prng_seed=UpperCamelCase ,num_inference_steps=50 ,jit=UpperCamelCase ,).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ :int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ :List[str] = images[0, 253:256, 253:256, -1] snake_case__ :Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ :List[str] = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
57
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase_ ( __snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : str ) -> Union[str, Any]: '''simple docstring''' for char in word: snake_case__ :Optional[Any] = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowercase_ ( __snake_case : List[str] ) -> Any: '''simple docstring''' snake_case__ :List[Any] = set() for token in tokens: snake_case__ :Optional[Any] = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) snake_case__ :List[str] = list(__snake_case ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : set() ) -> Dict: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :Dict = max([len(__snake_case ) for w in chinese_word_set] ) snake_case__ :int = bert_tokens snake_case__ :Optional[Any] = 0, len(__snake_case ) while start < end: snake_case__ :int = True if is_chinese(bert_word[start] ): snake_case__ :Any = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): snake_case__ :List[Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :int = "##" + bert_word[j] snake_case__ :Optional[int] = start + i snake_case__ :Tuple = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> Optional[Any]: '''simple docstring''' snake_case__ :List[str] = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :Dict = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] snake_case__ :Dict = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :List[Any] = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :List[str] = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :Optional[Any] = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): snake_case__ :str = [] for id in input_ids: snake_case__ :List[Any] = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) snake_case__ :Union[str, Any] = add_sub_symbol(__snake_case , __snake_case ) snake_case__ :Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": snake_case__ :Dict = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowercase_ ( __snake_case : List[Any] ) -> List[str]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :Dict = f.readlines() snake_case__ :Dict = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :str = LTP(args.ltp ) # faster in GPU device snake_case__ :List[str] = BertTokenizer.from_pretrained(args.bert ) snake_case__ :List[Any] = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :int = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") __UpperCAmelCase : List[Any] = parser.parse_args() main(args)
719
def lowercase_ ( __snake_case : list ) -> list: '''simple docstring''' if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__snake_case ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
57
0
__UpperCAmelCase : Any = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
720
from __future__ import annotations def lowercase_ ( __snake_case : list ) -> float: '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(__snake_case ) / len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
57
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _snake_case : _A = 42 _A = None _A = None def lowercase_ ( ) -> Node | None: '''simple docstring''' snake_case__ :str = Node(1 ) snake_case__ :Any = Node(2 ) snake_case__ :Any = Node(3 ) snake_case__ :Optional[int] = Node(4 ) snake_case__ :Optional[Any] = Node(5 ) return tree def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( __snake_case : Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( __snake_case : Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] if root is None: return output snake_case__ :Tuple = deque([root] ) while process_queue: snake_case__ :int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None , __snake_case : int ) -> Sequence[Node | None]: '''simple docstring''' snake_case__ :list[Any] = [] def populate_output(__snake_case : Node | None , __snake_case : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def lowercase_ ( __snake_case : Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] snake_case__ :list[Sequence[Node | None]] = [] snake_case__ :List[str] = 0 snake_case__ :List[Any] = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) snake_case__ :str = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) snake_case__ :Union[str, Any] = 0 return output def lowercase_ ( ) -> None: # Main function for testing. '''simple docstring''' snake_case__ :Optional[Any] = make_tree() print(F'In-order Traversal: {inorder(__snake_case )}' ) print(F'Pre-order Traversal: {preorder(__snake_case )}' ) print(F'Post-order Traversal: {postorder(__snake_case )}' , "\n" ) print(F'Height of Tree: {height(__snake_case )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__snake_case ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
from __future__ import annotations import math def lowercase_ ( __snake_case : int , __snake_case : int , __snake_case : bool , __snake_case : list[int] , __snake_case : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__snake_case ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) return min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) def lowercase_ ( ) -> None: '''simple docstring''' snake_case__ :List[Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] snake_case__ :int = math.log(len(__snake_case ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __snake_case , __snake_case , __snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
57
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
700
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
import pytest __UpperCAmelCase : int = "__dummy_dataset1__" __UpperCAmelCase : int = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase_ ( ) -> Optional[Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase_ ( ) -> Optional[int]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase_ ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ) -> Dict: '''simple docstring''' snake_case__ :Optional[Any] = dataset_loading_script_name snake_case__ :Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=__snake_case ) snake_case__ :List[Any] = script_dir / F'{script_name}.py' with open(__snake_case , "w" ) as f: f.write(__snake_case ) return str(__snake_case )
57
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=16 ,UpperCamelCase=[32, 64, 128] ,UpperCamelCase=[1, 2, 1] ,UpperCamelCase=[2, 2, 4] ,UpperCamelCase=2 ,UpperCamelCase=2.0 ,UpperCamelCase=True ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.1 ,UpperCamelCase="gelu" ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=0.02 ,UpperCamelCase=1E-5 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=10 ,UpperCamelCase=8 ,UpperCamelCase=["stage1", "stage2"] ,UpperCamelCase=[1, 2] ,) -> Optional[Any]: snake_case__ :int = parent snake_case__ :Tuple = batch_size snake_case__ :int = image_size snake_case__ :Any = patch_size snake_case__ :Any = num_channels snake_case__ :Union[str, Any] = embed_dim snake_case__ :Any = hidden_sizes snake_case__ :Dict = depths snake_case__ :int = num_heads snake_case__ :int = window_size snake_case__ :Optional[int] = mlp_ratio snake_case__ :List[str] = qkv_bias snake_case__ :Optional[Any] = hidden_dropout_prob snake_case__ :Optional[int] = attention_probs_dropout_prob snake_case__ :Optional[Any] = drop_path_rate snake_case__ :Optional[int] = hidden_act snake_case__ :str = use_absolute_embeddings snake_case__ :Any = patch_norm snake_case__ :int = layer_norm_eps snake_case__ :str = initializer_range snake_case__ :Tuple = is_training snake_case__ :Any = scope snake_case__ :Any = use_labels snake_case__ :List[Any] = type_sequence_label_size snake_case__ :List[str] = encoder_stride snake_case__ :str = out_features snake_case__ :List[str] = out_indices def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :Dict = None if self.use_labels: snake_case__ :Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Any = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> Union[str, Any]: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :List[Any] = FocalNetModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Any = model(UpperCamelCase ) snake_case__ :Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ :Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :List[Any] = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[str] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None snake_case__ :Optional[int] = None snake_case__ :Union[str, Any] = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Tuple = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = FocalNetForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ :Union[str, Any] = 1 snake_case__ :str = FocalNetForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[Any] = self.type_sequence_label_size snake_case__ :int = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ :List[str] = 1 snake_case__ :Union[str, Any] = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = self.prepare_config_and_inputs() snake_case__ :str = config_and_inputs snake_case__ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _A , _A , unittest.TestCase ): _A = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _A = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Any = FocalNetModelTester(self ) snake_case__ :Any = ConfigTester(self ,config_class=UpperCamelCase ,embed_dim=37 ,has_text_modality=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> str: return def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ :List[Any] = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case__ :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase ,nn.Linear ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ :Union[str, Any] = model_class(UpperCamelCase ) snake_case__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Tuple = [*signature.parameters.keys()] snake_case__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ :Any = model(**self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) ) snake_case__ :Optional[int] = outputs.hidden_states snake_case__ :Union[str, Any] = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase ) ,UpperCamelCase ) # FocalNet has a different seq_length snake_case__ :List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) snake_case__ :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase ) ,UpperCamelCase ) snake_case__ :Dict = reshaped_hidden_states[0].shape snake_case__ :Any = ( reshaped_hidden_states[0].view(UpperCamelCase ,UpperCamelCase ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: snake_case__ :List[Any] = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :Any = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :List[Any] = 3 snake_case__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ :Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ :Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: snake_case__ :Tuple = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :int = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,(padded_height, padded_width) ) @slow def lowerCAmelCase_ ( self ) -> str: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :Tuple = FocalNetModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :int = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: snake_case__ :Dict = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Union[str, Any]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :str = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCamelCase ) snake_case__ :Optional[int] = self.default_image_processor snake_case__ :Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case__ :int = image_processor(images=UpperCamelCase ,return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ :Union[str, Any] = model(**UpperCamelCase ) # verify the logits snake_case__ :Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase ) snake_case__ :Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase ,atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( _A , unittest.TestCase ): _A = (FocalNetBackbone,) if is_torch_available() else () _A = FocalNetConfig _A = False def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Any = FocalNetModelTester(self )
702
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
0