code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) __UpperCamelCase : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case ( lowerCamelCase , lowerCamelCase=100 , lowerCamelCase=" " ): '''simple docstring''' __lowercase = text.split(lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCamelCase ) , lowerCamelCase )] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(lowerCamelCase ): titles.append(title if title is not None else """""" ) texts.append(lowerCamelCase ) return {"title": titles, "text": texts} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __lowercase = ctx_encoder(input_ids.to(device=lowerCamelCase ) , return_dict=lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowercase = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowercase = dataset.map(lowerCamelCase , batched=lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCamelCase ) __lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowercase = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __lowercase = dataset.map( partial(lowerCamelCase , ctx_encoder=lowerCamelCase , ctx_tokenizer=lowerCamelCase ) , batched=lowerCamelCase , batch_size=processing_args.batch_size , features=lowerCamelCase , ) # And finally save your dataset __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=lowerCamelCase ) # And save the index __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __UpperCamelCase : __snake_case :str = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) __snake_case :str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) __snake_case :str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) __snake_case :Optional[str] = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) __snake_case :int = field( default=1_6 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __UpperCamelCase : __snake_case :int = field( default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __UpperCamelCase : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __UpperCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __UpperCamelCase : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __UpperCamelCase : Optional[Any] = HfArgumentParser(InitializationArguments) __UpperCamelCase : str = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __UpperCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __UpperCamelCase : Optional[int] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __UpperCamelCase : Optional[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __UpperCamelCase : List[str] = (3, 9, -11, 0, 7, 5, 1, -1) __UpperCamelCase : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __UpperCamelCase : __snake_case :int __snake_case :Node | None class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : Iterable[int] ) -> None: """simple docstring""" __lowercase = None for i in sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ): __lowercase = Node(_lowerCAmelCase , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" __lowercase = self.head while node: yield node.data __lowercase = node.next_node def __len__( self : Dict ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : int ) -> str: """simple docstring""" return " -> ".join([str(_lowerCAmelCase ) for node in self] ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return SortedLinkedList(list(lowerCamelCase ) + list(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
import torch from diffusers import StableDiffusionPipeline __UpperCamelCase : Union[str, Any] = """path-to-your-trained-model""" __UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") __UpperCamelCase : List[Any] = """A photo of sks dog in a bucket""" __UpperCamelCase : str = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : List[Any] = imread(r"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : Any = cvtColor(img, COLOR_BGR2GRAY) def snake_case ( ): '''simple docstring''' __lowercase = cn.convert_to_negative(lowerCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def snake_case ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCamelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def snake_case ( ): '''simple docstring''' __lowercase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def snake_case ( ): '''simple docstring''' __lowercase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowercase = canny.canny(lowerCamelCase ) # assert canny array for at least one True assert canny_array.any() def snake_case ( ): '''simple docstring''' assert gg.gaussian_filter(lowerCamelCase , 5 , sigma=0.9 ).all() def snake_case ( ): '''simple docstring''' __lowercase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowercase = conv.img_convolve(lowerCamelCase , lowerCamelCase ).astype(lowerCamelCase ) assert res.any() def snake_case ( ): '''simple docstring''' assert med.median_filter(lowerCamelCase , 3 ).any() def snake_case ( ): '''simple docstring''' __lowercase , __lowercase = sob.sobel_filter(lowerCamelCase ) assert grad.any() and theta.any() def snake_case ( ): '''simple docstring''' __lowercase = sp.make_sepia(lowerCamelCase , 20 ) assert sepia.all() def snake_case ( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowercase = bs.Burkes(imread(lowerCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def snake_case ( lowerCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowercase = rs.NearestNeighbour(imread(lowerCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def snake_case ( ): '''simple docstring''' __lowercase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __lowercase = imread(lowerCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __lowercase = 0 __lowercase = 0 __lowercase = image[x_coordinate][y_coordinate] __lowercase = lbp.get_neighbors_pixel( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowercase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowercase = lbp.local_binary_value(lowerCamelCase , lowerCamelCase , lowerCamelCase ) assert lbp_image.any()
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
class __UpperCamelCase : def __init__( self : str , _lowerCAmelCase : int ) -> None: """simple docstring""" __lowercase = size __lowercase = [0] * size __lowercase = [0] * size @staticmethod def _a ( _lowerCAmelCase : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def _a ( _lowerCAmelCase : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> None: """simple docstring""" __lowercase = value while index < self.size: __lowercase = self.get_prev(_lowerCAmelCase ) + 1 if current_left_border == index: __lowercase = value else: __lowercase = max(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.get_next(_lowerCAmelCase ) def _a ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive __lowercase = 0 while left <= right: __lowercase = self.get_prev(_lowerCAmelCase ) if left <= current_left: __lowercase = max(_lowerCAmelCase , self.tree[right] ) __lowercase = current_left else: __lowercase = max(_lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case ( lowerCamelCase ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = np.max(_outputs , axis=-1 , keepdims=lowerCamelCase ) __lowercase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = 'sigmoid' __snake_case :List[str] = 'softmax' __snake_case :Any = 'none' @add_end_docstrings( _lowerCAmelCase , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = False __snake_case :int = ClassificationFunction.NONE def __init__( self : Optional[Any] , **_lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _a ( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]="" , **_lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = tokenizer_kwargs __lowercase = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __lowercase = self.model.config.return_all_scores if isinstance(_lowerCAmelCase , _lowerCAmelCase ) or top_k is None: __lowercase = top_k __lowercase = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , _lowerCAmelCase , ) if return_all_scores: __lowercase = None else: __lowercase = 1 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowercase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : int , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowercase = """top_k""" not in kwargs if isinstance(args[0] , _lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _a ( self : Union[str, Any] , _lowerCAmelCase : str , **_lowerCAmelCase : Tuple ) -> Dict[str, GenericTensor]: """simple docstring""" __lowercase = self.framework if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return self.tokenizer(**_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1 and isinstance(inputs[0] , _lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" return self.model(**_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=1 , _lowerCAmelCase : List[str]=True ) -> Dict: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowercase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowercase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __lowercase = self.model.config.function_to_apply else: __lowercase = ClassificationFunction.NONE __lowercase = model_outputs["""logits"""][0] __lowercase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowercase = sigmoid(_lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowercase = softmax(_lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: __lowercase = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowercase = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(_lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda _lowerCAmelCase : x["score"] , reverse=_lowerCAmelCase ) if top_k is not None: __lowercase = dict_scores[:top_k] return dict_scores
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = DiTPipeline __snake_case :Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __snake_case :Tuple = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } __snake_case :str = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __snake_case :List[Any] = False def _a ( self : str ) -> Any: """simple docstring""" torch.manual_seed(0 ) __lowercase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_lowerCAmelCase , ) __lowercase = AutoencoderKL() __lowercase = DDIMScheduler() __lowercase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def _a ( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _a ( self : str ) -> Any: """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowercase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1e-3 ) def _a ( self : List[str] ) -> str: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : int ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = torch.manual_seed(0 ) __lowercase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) __lowercase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] __lowercase = pipe.get_label_ids(_lowerCAmelCase ) __lowercase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) __lowercase = ["""vase""", """umbrella"""] __lowercase = pipe.get_label_ids(_lowerCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from __future__ import annotations import math from collections.abc import Callable def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 100 , ): '''simple docstring''' __lowercase = x_start __lowercase = fnc(lowerCamelCase ) __lowercase = 0.0 for _ in range(lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowercase = xa __lowercase = fxa return length if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __UpperCamelCase : Any = 10 while i <= 100000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): '''simple docstring''' __lowercase = cipher_alphabet or [chr(lowerCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowercase = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary __lowercase = frequencies_dict if not case_sensitive: __lowercase = ciphertext.lower() # Chi squared statistic values __lowercase = {} # cycle through all of the shifts for shift in range(len(lowerCamelCase ) ): __lowercase = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowercase = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowercase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowercase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.lower().count(lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.count(lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowercase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowercase = min( lowerCamelCase , key=lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowercase ) , ( __lowercase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if numbers[j] < numbers[i]: __lowercase , __lowercase = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : List[str] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Optional[int] = { """yjernite/retribert-base-uncased""": 512, } __UpperCamelCase : List[Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = VOCAB_FILES_NAMES __snake_case :int = PRETRAINED_VOCAB_FILES_MAP __snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :List[Any] = PRETRAINED_INIT_CONFIGURATION __snake_case :str = RetriBertTokenizer __snake_case :Dict = ['input_ids', 'attention_mask'] def __init__( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]="[UNK]" , _lowerCAmelCase : List[Any]="[SEP]" , _lowerCAmelCase : Dict="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : List[str]="[MASK]" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCAmelCase ) __lowercase = do_lower_case def _a ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ) -> Optional[int]: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """num_attention_heads""" ) ) class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : int=32 , _lowerCAmelCase : str=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=640 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : int="silu" , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=10 , _lowerCAmelCase : Optional[Any]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = MobileViTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __snake_case :List[Any] = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case :List[str] = False __snake_case :Tuple = False __snake_case :Union[str, Any] = False __snake_case :int = False def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def _a ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" pass def _a ( self : int ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : str ) -> str: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowercase = model.to(_lowerCAmelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [ [[6.9_713, 6.9_786, 7.2_422], [7.2_893, 7.2_825, 7.4_446], [7.6_580, 7.8_797, 7.9_420]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.9_868, -9.7_132], [-11.0_405, -11.0_221, -10.7_318]], [[-3.3_089, -2.8_539, -2.6_740], [-3.2_706, -2.5_621, -2.5_108], [-3.2_534, -2.6_615, -2.6_651]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowercase = model.to(_lowerCAmelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = current_set.copy() for row_index, row in enumerate(lowerCamelCase ): __lowercase = row[0] for column_index, column in enumerate(lowerCamelCase ): if magnitude == 0: __lowercase = column continue __lowercase = column / magnitude # Subtract to cancel term __lowercase = current_set[0] __lowercase = [first_row] __lowercase = current_set[1::] for row in current_set: __lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase ) continue for column_index in range(len(lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowercase = final_set[0] __lowercase = [] __lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowercase = simplify(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase ) __lowercase = resultant return final_set def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) __lowercase = len(lowerCamelCase ) + 1 if any(len(lowerCamelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCamelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] __lowercase = equations.copy() if any(0 in row for row in data_set ): __lowercase = data_set.copy() __lowercase = [] for row_index, row in enumerate(lowerCamelCase ): if 0 not in row: __lowercase = data_set.pop(lowerCamelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCamelCase ) __lowercase = data_set.copy() __lowercase = simplify(lowerCamelCase ) __lowercase = simplified[::-1] __lowercase = [] for row in simplified: __lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowercase = row.copy()[: len(lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase ) == 0: solutions.append(0 ) continue __lowercase = temp_row[1::] __lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase ) __lowercase = [] for item in solutions: final.append(float(round(lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(lowerCamelCase ): print(F'{i}\t\t{d}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for j in range(lowerCamelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [float("""inf""" )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[Any] = int(input("""Enter number of vertices: """).strip()) __UpperCamelCase : Tuple = int(input("""Enter number of edges: """).strip()) __UpperCamelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __UpperCamelCase : Any = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __UpperCamelCase : Tuple = {"""src""": src, """dst""": dest, """weight""": weight} __UpperCamelCase : Any = int(input("""\nEnter shortest path source:""").strip()) __UpperCamelCase : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = LxmertConfig.from_json_file(lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowercase = LxmertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ShapEPipeline __snake_case :Dict = ['prompt'] __snake_case :Union[str, Any] = ['prompt'] __snake_case :Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case :str = False @property def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" return 32 @property def _a ( self : Any ) -> Dict: """simple docstring""" return 32 @property def _a ( self : int ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : Optional[int] ) -> Any: """simple docstring""" return 8 @property def _a ( self : str ) -> Any: """simple docstring""" __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a ( self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCAmelCase ) @property def _a ( self : Any ) -> str: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase = PriorTransformer(**_lowerCAmelCase ) return model @property def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase = ShapERenderer(**_lowerCAmelCase ) return model def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.dummy_prior __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_renderer __lowercase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_lowerCAmelCase , clip_sample=_lowerCAmelCase , clip_sample_range=1.0 , ) __lowercase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=0 ) -> List[Any]: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) __lowercase = output.images[0] __lowercase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = torch_device == """cpu""" __lowercase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCAmelCase , relax_max_difference=_lowerCAmelCase , ) def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = 1 __lowercase = 2 __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __lowercase = batch_size * [inputs[key]] __lowercase = pipe(**_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __lowercase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __lowercase = pipe( """a shark""" , generator=_lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Any = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = ['pixel_values'] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 255 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowerCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = size if size is not None else {"""shortest_edge""": 224} __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowercase = int((256 / 224) * size["""shortest_edge"""] ) __lowercase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _lowerCAmelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : List[Any] , ) -> BatchFeature: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): __UpperCamelCase : List[Any] = True from torch.cuda.amp import autocast __UpperCamelCase : Tuple = logging.getLogger(__name__) def snake_case ( lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCamelCase ) @dataclass class __UpperCamelCase : __snake_case :str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __snake_case :Optional[bool] = field( default=_lowerCAmelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __snake_case :Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) __snake_case :Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) __snake_case :Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) __snake_case :Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) __snake_case :Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) __snake_case :Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case :Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) __snake_case :List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __UpperCamelCase : __snake_case :WavaVecaProcessor __snake_case :Union[bool, str] = True __snake_case :Optional[int] = None __snake_case :Optional[int] = None __snake_case :Optional[int] = None __snake_case :Optional[int] = None def __call__( self : Tuple , _lowerCAmelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: """simple docstring""" __lowercase = [{"""input_values""": feature["""input_values"""]} for feature in features] __lowercase = [{"""input_ids""": feature["""labels"""]} for feature in features] __lowercase = self.processor.pad( _lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __lowercase = self.processor.pad( labels=_lowerCAmelCase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly __lowercase = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __lowercase = labels return batch class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : List[Any] , _lowerCAmelCase : nn.Module , _lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: """simple docstring""" model.train() __lowercase = self._prepare_inputs(_lowerCAmelCase ) if self.use_amp: with autocast(): __lowercase = self.compute_loss(_lowerCAmelCase , _lowerCAmelCase ) else: __lowercase = self.compute_loss(_lowerCAmelCase , _lowerCAmelCase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowercase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowercase = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __lowercase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_lowerCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(_lowerCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_lowerCAmelCase ) else: loss.backward() return loss.detach() def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowercase = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) __lowercase = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer __lowercase = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(lowerCamelCase ): __lowercase = re.sub(lowerCamelCase , """""" , batch["""sentence"""] ).lower() + """ """ return batch __lowercase = train_dataset.map(lowerCamelCase , remove_columns=["""sentence"""] ) __lowercase = eval_dataset.map(lowerCamelCase , remove_columns=["""sentence"""] ) def extract_all_chars(lowerCamelCase ): __lowercase = """ """.join(batch["""text"""] ) __lowercase = list(set(lowerCamelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowercase = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , batch_size=-1 , keep_in_memory=lowerCamelCase , remove_columns=train_dataset.column_names , ) __lowercase = train_dataset.map( lowerCamelCase , batched=lowerCamelCase , batch_size=-1 , keep_in_memory=lowerCamelCase , remove_columns=eval_dataset.column_names , ) __lowercase = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) __lowercase = {v: k for k, v in enumerate(lowerCamelCase )} __lowercase = vocab_dict[""" """] del vocab_dict[" "] __lowercase = len(lowerCamelCase ) __lowercase = len(lowerCamelCase ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(lowerCamelCase , lowerCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase ) __lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) __lowercase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowercase = min(len(lowerCamelCase ) , data_args.max_train_samples ) __lowercase = train_dataset.select(range(lowerCamelCase ) ) if data_args.max_val_samples is not None: __lowercase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowercase = torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCamelCase ): __lowercase , __lowercase = torchaudio.load(batch["""path"""] ) __lowercase = resampler(lowerCamelCase ).squeeze().numpy() __lowercase = 16_000 __lowercase = batch["""text"""] return batch __lowercase = train_dataset.map( lowerCamelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowercase = eval_dataset.map( lowerCamelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCamelCase ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' __lowercase = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(lowerCamelCase ) return batch __lowercase = train_dataset.map( lowerCamelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , ) __lowercase = eval_dataset.map( lowerCamelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowercase = datasets.load_metric("""wer""" ) def compute_metrics(lowerCamelCase ): __lowercase = pred.predictions __lowercase = np.argmax(lowerCamelCase , axis=-1 ) __lowercase = processor.tokenizer.pad_token_id __lowercase = processor.batch_decode(lowerCamelCase ) # we do not want to group tokens when computing the metrics __lowercase = processor.batch_decode(pred.label_ids , group_tokens=lowerCamelCase ) __lowercase = wer_metric.compute(predictions=lowerCamelCase , references=lowerCamelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowercase = DataCollatorCTCWithPadding(processor=lowerCamelCase , padding=lowerCamelCase ) # Initialize our Trainer __lowercase = CTCTrainer( model=lowerCamelCase , data_collator=lowerCamelCase , args=lowerCamelCase , compute_metrics=lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowercase = model_args.model_name_or_path else: __lowercase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() __lowercase = train_result.metrics __lowercase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase ) ) __lowercase = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""train""" , lowerCamelCase ) trainer.save_metrics("""train""" , lowerCamelCase ) trainer.save_state() # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCamelCase ) __lowercase = min(lowerCamelCase , len(lowerCamelCase ) ) trainer.log_metrics("""eval""" , lowerCamelCase ) trainer.save_metrics("""eval""" , lowerCamelCase ) return results if __name__ == "__main__": main()
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = DanceDiffusionPipeline __snake_case :Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __snake_case :Any = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __snake_case :Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __snake_case :List[Any] = False __snake_case :Optional[Any] = False def _a ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_lowerCAmelCase , use_timestep_embedding=_lowerCAmelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) __lowercase = IPNDMScheduler() __lowercase = { """unet""": unet, """scheduler""": scheduler, } return components def _a ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=0 ) -> int: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = DanceDiffusionPipeline(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowercase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _a ( self : Any ) -> Tuple: """simple docstring""" return super().test_save_load_local() @skip_mps def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def _a ( self : Tuple ) -> Dict: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" return super().test_attention_slicing_forward_pass() def _a ( self : List[str] ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=_lowerCAmelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=_lowerCAmelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Optional[Any] = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case :Optional[Any] = False __snake_case :Dict = False def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=False ) -> List[Any]: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : int=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : str=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = embedding_size def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Dict: """simple docstring""" __lowercase = TFMobileBertModel(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = TFMobileBertForPreTraining(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def _a ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def _a ( self : str ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: __lowercase = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_lowerCAmelCase )[0] __lowercase = [1, 6, 3_0522] self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 )
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowercase = """""" else: __lowercase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True ): '''simple docstring''' __lowercase = ViTConfig() # patch_size if model_name[-1] == "8": __lowercase = 8 # set labels if required if not base_model: __lowercase = 1_000 __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowercase = 384 __lowercase = 1_536 __lowercase = 12 __lowercase = 6 # load original model from torch hub __lowercase = torch.hub.load("""facebookresearch/dino:main""" , lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowercase = original_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase ) __lowercase = create_rename_keys(lowerCamelCase , base_model=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # load HuggingFace model if base_model: __lowercase = ViTModel(lowerCamelCase , add_pooling_layer=lowerCamelCase ).eval() else: __lowercase = ViTForImageClassification(lowerCamelCase ).eval() model.load_state_dict(lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor __lowercase = ViTImageProcessor() __lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase = encoding["""pixel_values"""] __lowercase = model(lowerCamelCase ) if base_model: __lowercase = original_model(lowerCamelCase ) assert torch.allclose(lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: __lowercase = original_model(lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1e-3 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __UpperCamelCase : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCamelCase : Optional[int] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __UpperCamelCase : List[str] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __UpperCamelCase : Optional[int] = """|""".join(sys.argv[1:]) __UpperCamelCase : Union[str, Any] = re.compile(rF'''^({joined_dirs}).*?\.py$''') __UpperCamelCase : Tuple = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCamelCase : Dict = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = sum(lowerCamelCase ) __lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowercase = True for i in range(1 , s + 1 ): __lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowercase = dp[i][j - 1] if arr[i - 1] <= j: __lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowercase = s - 2 * j break return diff
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCamelCase : Optional[int] = datasets.logging.get_logger(__name__) __UpperCamelCase : int = """\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } """ __UpperCamelCase : List[str] = """\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project's README at https://github.com/google-research/bleurt#readme for more information. """ __UpperCamelCase : Optional[Any] = """ BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: 'scores': List of scores. Examples: >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> bleurt = datasets.load_metric(\"bleurt\") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results[\"scores\"]]) [1.03, 1.04] """ __UpperCamelCase : str = { """bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""", """bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""", """bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""", """bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""", """bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""", """bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""", """BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""", """BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""", """BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""", """BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : List[str] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) __lowercase = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: __lowercase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __lowercase = self.config_name.upper() else: raise KeyError( F'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer __lowercase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __lowercase = score.BleurtScorer(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.scorer.score(references=_lowerCAmelCase , candidates=_lowerCAmelCase ) return {"scores": scores}
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = emb.weight.data return lin_layer def snake_case ( lowerCamelCase , lowerCamelCase="facebook/mbart-large-en-ro" , lowerCamelCase=False , lowerCamelCase=False ): '''simple docstring''' __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] remove_ignore_keys_(lowerCamelCase ) __lowercase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowercase = MBartConfig.from_pretrained(lowerCamelCase , vocab_size=lowerCamelCase ) if mbart_aa and finetuned: __lowercase = """relu""" __lowercase = state_dict["""decoder.embed_tokens.weight"""] __lowercase = MBartForConditionalGeneration(lowerCamelCase ) model.model.load_state_dict(lowerCamelCase ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __snake_case :str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) __snake_case :ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) __snake_case :ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) __snake_case :str = "question" __snake_case :str = "context" __snake_case :str = "answers" @property def _a ( self : Optional[int] ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[str] = ['image_processor', 'tokenizer'] __snake_case :List[Any] = 'BlipImageProcessor' __snake_case :Tuple = 'AutoTokenizer' def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[str]: """simple docstring""" __lowercase = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.image_processor def __call__( self : List[str] , _lowerCAmelCase : ImageInput = None , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __lowercase = self.tokenizer __lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values __lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: __lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: __lowercase = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def _a ( self : Optional[int] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
def snake_case ( lowerCamelCase = 10 ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ) or n < 0: raise ValueError("""Invalid input""" ) __lowercase = 10**n __lowercase = 28_433 * (pow(2 , 7_830_457 , lowerCamelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Dict = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : int = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __UpperCamelCase : Optional[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __UpperCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __UpperCamelCase : Tuple = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[Any] = VOCAB_FILES_NAMES __snake_case :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Optional[int] = DPRContextEncoderTokenizer class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = VOCAB_FILES_NAMES __snake_case :Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Tuple = DPRQuestionEncoderTokenizer __UpperCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCamelCase : str = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_lowerCAmelCase ) class __UpperCamelCase : def __call__( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : Optional[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( _lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = titles if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [titles] __lowercase = texts if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [texts] __lowercase = len(_lowerCAmelCase ) __lowercase = questions if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [questions] * n_passages assert len(_lowerCAmelCase ) == len( _lowerCAmelCase ), F'There should be as many titles than texts but got {len(_lowerCAmelCase )} titles and {len(_lowerCAmelCase )} texts.' __lowercase = super().__call__(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] __lowercase = super().__call__(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] __lowercase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCAmelCase , _lowerCAmelCase ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : BatchEncoding , _lowerCAmelCase : DPRReaderOutput , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = reader_input["""input_ids"""] __lowercase , __lowercase , __lowercase = reader_output[:3] __lowercase = len(_lowerCAmelCase ) __lowercase = sorted(range(_lowerCAmelCase ) , reverse=_lowerCAmelCase , key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(_lowerCAmelCase ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCAmelCase , top_spans=_lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCAmelCase , start_index=_lowerCAmelCase , end_index=_lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = [] for start_index, start_score in enumerate(_lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] , reverse=_lowerCAmelCase ) __lowercase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __lowercase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :int = VOCAB_FILES_NAMES __snake_case :Dict = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Tuple = READER_PRETRAINED_INIT_CONFIGURATION __snake_case :List[Any] = ['input_ids', 'attention_mask'] __snake_case :Any = DPRReaderTokenizer
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = BioGptTokenizer __snake_case :List[Any] = False def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __lowercase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def _a ( self : List[str] , _lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = """lower newer""" __lowercase = """lower newer""" return input_text, output_text def _a ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowercase = """lower""" __lowercase = ["""low""", """er</w>"""] __lowercase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokens + ["""<unk>"""] __lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : List[Any]=17 , _lowerCAmelCase : Optional[Any]=23 , _lowerCAmelCase : Optional[int]=11 , _lowerCAmelCase : List[str]=True , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _a ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowercase = DecisionTransformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __snake_case :Optional[int] = () __snake_case :Optional[Any] = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case :Union[str, Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case :str = False __snake_case :int = False __snake_case :List[Any] = False __snake_case :Any = False __snake_case :List[Any] = False __snake_case :Any = False __snake_case :Any = False __snake_case :List[Any] = False __snake_case :Optional[int] = False def _a ( self : str ) -> Any: """simple docstring""" __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 10 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __lowercase = model.to(_lowerCAmelCase ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_lowerCAmelCase ) __lowercase = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase = state __lowercase = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa ) __lowercase = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa ) __lowercase = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCAmelCase ): __lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase )] , dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase )] , dim=1 ) __lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase , __lowercase , __lowercase = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowercase , __lowercase , __lowercase , __lowercase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state] , dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowercase = """fp16""" self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins __UpperCamelCase : Optional[int] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def snake_case ( lowerCamelCase ): '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.getbasetemp() / """cache""" __lowercase = test_hf_cache_home / """datasets""" __lowercase = test_hf_cache_home / """metrics""" __lowercase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowerCamelCase ) ) __lowercase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowerCamelCase ) ) __lowercase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCamelCase ) ) @pytest.fixture(autouse=lowerCamelCase , scope="""session""" ) def snake_case ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowerCamelCase )
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :torch.FloatTensor class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : str , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 88 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 1 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : str = "geglu" , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = num_attention_heads * attention_head_dim __lowercase = in_channels __lowercase = torch.nn.GroupNorm(num_groups=_lowerCAmelCase , num_channels=_lowerCAmelCase , eps=1e-6 , affine=_lowerCAmelCase ) __lowercase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) # 3. Define transformers blocks __lowercase = nn.ModuleList( [ BasicTransformerBlock( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dropout=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , activation_fn=_lowerCAmelCase , attention_bias=_lowerCAmelCase , double_self_attention=_lowerCAmelCase , norm_elementwise_affine=_lowerCAmelCase , ) for d in range(_lowerCAmelCase ) ] ) __lowercase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Any=None , _lowerCAmelCase : bool = True , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = hidden_states.shape __lowercase = batch_frames // num_frames __lowercase = hidden_states __lowercase = hidden_states[None, :].reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowercase = self.norm(_lowerCAmelCase ) __lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.proj_in(_lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: __lowercase = block( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , class_labels=_lowerCAmelCase , ) # 3. Output __lowercase = self.proj_out(_lowerCAmelCase ) __lowercase = ( hidden_states[None, None, :] .reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowercase = hidden_states.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCAmelCase )
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Dict = 'resnet' __snake_case :Optional[int] = ['basic', 'bottleneck'] def __init__( self : List[Any] , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : str=[256, 512, 1024, 2048] , _lowerCAmelCase : Union[str, Any]=[3, 4, 6, 3] , _lowerCAmelCase : Union[str, Any]="bottleneck" , _lowerCAmelCase : List[Any]="relu" , _lowerCAmelCase : int=False , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) __lowercase = num_channels __lowercase = embedding_size __lowercase = hidden_sizes __lowercase = depths __lowercase = layer_type __lowercase = hidden_act __lowercase = downsample_in_first_stage __lowercase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = version.parse('1.11' ) @property def _a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a ( self : Any ) -> float: """simple docstring""" return 1e-3
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : str=3 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : str=224 , _lowerCAmelCase : Tuple=1000 , _lowerCAmelCase : str=[3, 3, 6, 4] , _lowerCAmelCase : str=[48, 56, 112, 220] , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = num_labels __lowercase = image_size __lowercase = layer_depths __lowercase = embed_dims def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> List[Any]: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1e-5 , ) def _a ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int ) -> Any: """simple docstring""" ((__lowercase) , (__lowercase) , (__lowercase)) = self.prepare_config_and_inputs() __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __snake_case :List[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __snake_case :Tuple = False __snake_case :List[Any] = False __snake_case :List[str] = False __snake_case :Tuple = False __snake_case :int = False def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = SwiftFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self : Tuple ) -> str: """simple docstring""" pass def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" def _config_zero_init(_lowerCAmelCase : Union[str, Any] ): __lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1e-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): __lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : int ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCamelCase : List[str] = get_logger(__name__) class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : Optional[str] = None ) -> Tuple: """simple docstring""" __lowercase = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowercase = Extractor def _a ( self : str , _lowerCAmelCase : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowercase = os.path.abspath(_lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase ) ) def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(_lowerCAmelCase ) and not (os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase )) ) def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" __lowercase = self.extractor.infer_extractor_format(_lowerCAmelCase ) if not extractor_format: return input_path __lowercase = self._get_output_path(_lowerCAmelCase ) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase ): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return output_path class __UpperCamelCase ( _lowerCAmelCase ): @classmethod @abstractmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" ... class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[bytes] = [] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" with open(_lowerCAmelCase , """rb""" ) as f: return f.read(_lowerCAmelCase ) @classmethod def _a ( cls : Any , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __lowercase = max(len(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: __lowercase = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __UpperCamelCase ( _lowerCAmelCase ): @classmethod def _a ( cls : Dict , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" return tarfile.is_tarfile(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" def resolved(_lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase ) ) def badpath(_lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ).startswith(_lowerCAmelCase ) def badlink(_lowerCAmelCase : Any , _lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowercase = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowerCAmelCase ) __lowercase = resolved(_lowerCAmelCase ) for finfo in members: if badpath(finfo.name , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase ) ) tar_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x1F\x8B'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(_lowerCAmelCase , """rb""" ) as gzip_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _a ( cls : Optional[Any] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""" ) as fp: __lowercase = _EndRecData(_lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowercase = fp.read(_lowerCAmelCase ) # CD is where we expect it to be if len(_lowerCAmelCase ) == sizeCentralDir: __lowercase = struct.unpack(_lowerCAmelCase , _lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with zipfile.ZipFile(_lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(_lowerCAmelCase ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = rarfile.RarFile(_lowerCAmelCase ) rf.extractall(_lowerCAmelCase ) rf.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [B'\x28\xb5\x2F\xFD'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowercase = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""" ) as ifh, open(_lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x42\x5A\x68'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with bza.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with pyazr.SevenZipFile(_lowerCAmelCase , """r""" ) as archive: archive.extractall(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\x04\x22\x4D\x18'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __snake_case :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return max( len(_lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> Dict: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase ) except OSError: return b"" @classmethod def _a ( cls : str , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = cls.infer_extractor_format(_lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls : Optional[int] , _lowerCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __lowercase = cls._get_magic_number_max_length() __lowercase = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return extractor_format @classmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(_lowerCAmelCase ) , exist_ok=_lowerCAmelCase ) # Prevent parallel extractions __lowercase = str(Path(_lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = extractor if extractor != """deprecated""" else extractor_format else: __lowercase = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase ): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase )
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Dict=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : Tuple=400 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=None , ) -> str: """simple docstring""" __lowercase = size if size is not None else {"""shortest_edge""": 20} __lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size def _a ( self : Dict ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = MobileNetVaImageProcessingTester(self ) @property def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""dset_infos_dir""" ) if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""" ) if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""" ) as f: f.write("""""" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f: f.write("""{\"default\": {\"dataset_size\": 42}}""" ) __lowercase = DatasetInfosDict.from_directory(lowerCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = str(lowerCamelCase ) dataset_info.write_to_directory(lowerCamelCase ) __lowercase = DatasetInfo.from_directory(lowerCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase , """dataset_info.json""" ) ) def snake_case ( ): '''simple docstring''' __lowercase = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) __lowercase = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) __lowercase = yaml.safe_dump(lowerCamelCase ) __lowercase = yaml.safe_load(lowerCamelCase ) assert dataset_info_yaml_dict == reloaded def snake_case ( ): '''simple docstring''' __lowercase = DatasetInfo() __lowercase = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()} ), DatasetInfosDict({"""my_config_name""": DatasetInfo()} ), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) } ), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42 ), """v2""": DatasetInfo(dataset_size=1_337 ), } ), ] , ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = str(lowerCamelCase ) dataset_infos_dict.write_to_directory(lowerCamelCase ) __lowercase = DatasetInfosDict.from_directory(lowerCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): __lowercase = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml __lowercase = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase , """README.md""" ) )
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __UpperCamelCase : Optional[int] = logging.getLogger(__name__) __UpperCamelCase : Optional[int] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __snake_case :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _a ( self : List[str] ) -> Any: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case :Optional[str] = field(default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __snake_case :Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def _a ( self : str ) -> int: """simple docstring""" if self.train_file is not None: __lowercase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowercase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __lowercase = [json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())] assert len(lowerCamelCase ) == len(lowerCamelCase ) __lowercase = {c: dataset[c] for c in dataset.column_names} __lowercase = refs return Dataset.from_dict(lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: __lowercase = {} if data_args.train_file is not None: __lowercase = data_args.train_file if data_args.validation_file is not None: __lowercase = data_args.validation_file __lowercase = data_args.train_file.split(""".""" )[-1] if extension == "txt": __lowercase = """text""" __lowercase = load_dataset(lowerCamelCase , data_files=lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) __lowercase = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __lowercase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelForMaskedLM.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowercase = datasets["""train"""].column_names else: __lowercase = datasets["""validation"""].column_names __lowercase = """text""" if """text""" in column_names else column_names[0] __lowercase = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase ): # Remove empty lines __lowercase = [line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=data_args.max_seq_length ) __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowercase = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowercase = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowercase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowercase = False # Data collator # This one will take care of randomly masking the tokens. __lowercase = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowercase = model_args.model_name_or_path else: __lowercase = None __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __lowercase = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = perplexity __lowercase = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) def snake_case ( lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase = 10 , lowerCamelCase = 2 ): '''simple docstring''' def get_dataset(lowerCamelCase ): __lowercase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowercase = get_dataset(lowerCamelCase ) __lowercase = get_dataset(lowerCamelCase ) __lowercase = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4 ) __lowercase = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' __lowercase = [] for epoch in range(lowerCamelCase ): # Train quickly model.train() for batch in dataloader: __lowercase , __lowercase = batch __lowercase = model(lowerCamelCase ) __lowercase = torch.nn.functional.mse_loss(lowerCamelCase , lowerCamelCase ) accelerator.backward(lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __UpperCamelCase ( nn.Module ): def __init__( self : int ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase = nn.Parameter(torch.randn(1 ) ) __lowercase = nn.Parameter(torch.randn(1 ) ) def _a ( self : Tuple , _lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return x * self.a + self.b class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(total_limit=1 , project_dir=_lowerCAmelCase , automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() # Train baseline __lowercase = Accelerator() __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial __lowercase = os.path.join(_lowerCAmelCase , """initial""" ) accelerator.save_state(_lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() __lowercase = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = Accelerator() __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(_lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything __lowercase = os.path.join(_lowerCAmelCase , """checkpoint""" ) accelerator.save_state(_lowerCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(_lowerCAmelCase ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() __lowercase = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowerCAmelCase ) __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = torch.tensor([1, 2, 3] ) __lowercase = torch.tensor([2, 3, 4] ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(net.parameters() ) __lowercase = Accelerator() with self.assertRaises(_lowerCAmelCase ) as ve: accelerator.register_for_checkpointing(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase = torch.optim.lr_scheduler.StepLR(_lowerCAmelCase , step_size=1 , gamma=0.99 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() __lowercase = scheduler.state_dict() train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_lowerCAmelCase , scheduler.state_dict() ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase , total_limit=2 ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase = accelerator.prepare(_lowerCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase : Dict = """/tmp/accelerate/state_checkpointing""" __UpperCamelCase : str = DummyModel() __UpperCamelCase : int = torch.optim.Adam(params=model.parameters(), lr=1e-3) __UpperCamelCase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCamelCase : Optional[int] = dummy_dataloaders() __UpperCamelCase : str = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCamelCase : List[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCamelCase : str = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCamelCase : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCamelCase : Optional[int] = group["""params"""][0].device break assert param_device.type == accelerator.device.type __UpperCamelCase : int = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __UpperCamelCase : Optional[Any] = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __UpperCamelCase : str = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Optional[int] = 'convnextv2' def __init__( self : Dict , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ) -> Any: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = num_channels __lowercase = patch_size __lowercase = num_stages __lowercase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __lowercase = [3, 3, 9, 3] if depths is None else depths __lowercase = hidden_act __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = drop_path_rate __lowercase = image_size __lowercase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : Optional[Any] = 16 __UpperCamelCase : int = 32 def snake_case ( lowerCamelCase , lowerCamelCase = 16 ): '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 16 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : List[str] = mocked_dataloaders # noqa: F811 def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase ) == "1": __lowercase = 2 # Initialize accelerator __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["""lr"""] __lowercase = int(config["""num_epochs"""] ) __lowercase = int(config["""seed"""] ) __lowercase = int(config["""batch_size"""] ) __lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**lowerCamelCase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowercase = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase = parser.parse_args() __lowercase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[int] = None __snake_case :Union[str, Any] = BloomTokenizerFast __snake_case :List[Any] = BloomTokenizerFast __snake_case :Union[str, Any] = True __snake_case :List[Any] = False __snake_case :Dict = 'tokenizer_file' __snake_case :int = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().setUp() __lowercase = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Dict , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __lowercase = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] __lowercase = tokenizer.batch_encode_plus(_lowerCAmelCase )["""input_ids"""] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict=6 ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowercase = """This is a simple input""" __lowercase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase = ("""This is a simple input""", """This is a pair""") __lowercase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __lowercase = None # Hotfixing padding = None self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_lowerCAmelCase ) __lowercase = next(iter(_lowerCAmelCase ) )["""premise"""] # pick up one data __lowercase = list(sample_data.values() ) __lowercase = list(map(tokenizer.encode , _lowerCAmelCase ) ) __lowercase = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for x in output_tokens] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = StableUnCLIPImgaImgPipeline __snake_case :List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __snake_case :Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __snake_case :List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case :Dict = frozenset([] ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCAmelCase , projection_dim=_lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=_lowerCAmelCase ) __lowercase = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCAmelCase , layers_per_block=1 , upcast_attention=_lowerCAmelCase , use_linear_projection=_lowerCAmelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00_085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _a ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Optional[int]=True ) -> Tuple: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(_lowerCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _a ( self : str ) -> Any: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**_lowerCAmelCase ) __lowercase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) inputs.update({"""image_embeds""": None} ) __lowercase = sd_pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCAmelCase ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=_lowerCAmelCase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : int ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCAmelCase ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe(_lowerCAmelCase , """anime turle""" , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : str ) -> Tuple: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe(_lowerCAmelCase , """anime turle""" , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( _lowerCAmelCase , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RemBertConfig.from_json_file(lowerCamelCase ) print("""Building PyTorch model from configuration: {}""".format(str(lowerCamelCase ) ) ) __lowercase = RemBertModel(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print("""Save PyTorch model to {}""".format(lowerCamelCase ) ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--rembert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained RemBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : int = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = """hf-internal-testing/tiny-random-t5""" __lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) __lowercase = tokenizer("""This is me""" , return_tensors="""pt""" ) __lowercase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowercase = model.generate(**_lowerCAmelCase ) __lowercase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowercase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = """hf-internal-testing/tiny-random-t5""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) __lowercase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) __lowercase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
from sklearn.metrics import recall_score import datasets __UpperCamelCase : Optional[Any] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ __UpperCamelCase : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ __UpperCamelCase : Any = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : Dict ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def _a ( self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=1 , _lowerCAmelCase : Optional[int]="binary" , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Union[str, Any]="warn" , ) -> Optional[Any]: """simple docstring""" __lowercase = recall_score( _lowerCAmelCase , _lowerCAmelCase , labels=_lowerCAmelCase , pos_label=_lowerCAmelCase , average=_lowerCAmelCase , sample_weight=_lowerCAmelCase , zero_division=_lowerCAmelCase , ) return {"recall": float(_lowerCAmelCase ) if score.size == 1 else score}
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # General docstring __UpperCamelCase : List[Any] = """RegNetConfig""" # Base docstring __UpperCamelCase : Dict = """facebook/regnet-y-040""" __UpperCamelCase : Tuple = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : Union[str, Any] = """facebook/regnet-y-040""" __UpperCamelCase : Tuple = """tabby, tabby cat""" __UpperCamelCase : Optional[int] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : Tuple , ) -> str: """simple docstring""" super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowercase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowercase = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , ) __lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) __lowercase = ACTaFN[activation] if activation is not None else tf.identity def _a ( self : int , _lowerCAmelCase : Any ) -> str: """simple docstring""" __lowercase = self.convolution(self.padding(_lowerCAmelCase ) ) __lowercase = self.normalization(_lowerCAmelCase ) __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : int , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = config.num_channels __lowercase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def _a ( self : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) __lowercase = self.embedder(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" ) __lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) __lowercase = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def _a ( self : int , _lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = hidden_state * pooled return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowercase = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ), ] __lowercase = ACTaFN[config.hidden_act] def _a ( self : int , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = hidden_state for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = self.shortcut(_lowerCAmelCase ) hidden_state += residual __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __lowercase = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ), ] __lowercase = ACTaFN[config.hidden_act] def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowercase = hidden_state for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = self.shortcut(_lowerCAmelCase ) hidden_state += residual __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __lowercase = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def _a ( self : Optional[Any] , _lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=F'stages.{i+1}' ) ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_lowerCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class __UpperCamelCase ( tf.keras.layers.Layer ): __snake_case :Dict = RegNetConfig def __init__( self : List[str] , _lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = config __lowercase = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" ) __lowercase = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" ) __lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) @unpack_inputs def _a ( self : List[str] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowercase = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = RegNetConfig __snake_case :Optional[Any] = 'regnet' __snake_case :Dict = 'pixel_values' @property def _a ( self : List[str] ) -> Any: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCamelCase : Tuple = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ __UpperCamelCase : Union[str, Any] = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , _lowerCAmelCase , ) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Optional[Any] , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self : Tuple , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : int=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _lowerCAmelCase , ) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = config.num_labels __lowercase = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) # classification head __lowercase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Union[str, Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier[0](_lowerCAmelCase ) __lowercase = self.classifier[1](_lowerCAmelCase ) __lowercase = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[int] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[str] = 'camembert' def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_0522 , _lowerCAmelCase : str=768 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : List[Any]=12 , _lowerCAmelCase : int=3072 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : int=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Dict=1e-12 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Any="absolute" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __UpperCamelCase ( _lowerCAmelCase ): @property def _a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
def lowerCAmelCase_ ( snake_case_ ): _A : str = set() # edges = list of graph's edges _A : Optional[Any] = get_edges(snake_case_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _A , _A : Optional[int] = edges.pop() chosen_vertices.add(snake_case_ ) chosen_vertices.add(snake_case_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(snake_case_ ) return chosen_vertices def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 6_5536 , _a = None , _a = 2 , _a = 2 , _a = 0 , _a = "fourier" , _a = True , _a = False , _a = 0.0 , _a = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _a = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _a = "UNetMidBlock1D" , _a = None , _a = (32, 32, 64) , _a = None , _a = 8 , _a = 1 , _a = False , ) -> Optional[Any]: super().__init__() _A : Optional[int] = sample_size # time if time_embedding_type == "fourier": _A : Union[str, Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_a , log=_a , flip_sin_to_cos=_a ) _A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": _A : str = Timesteps( block_out_channels[0] , flip_sin_to_cos=_a , downscale_freq_shift=_a ) _A : int = block_out_channels[0] if use_timestep_embedding: _A : List[str] = block_out_channels[0] * 4 _A : str = TimestepEmbedding( in_channels=_a , time_embed_dim=_a , act_fn=_a , out_dim=block_out_channels[0] , ) _A : Dict = nn.ModuleList([] ) _A : Optional[int] = None _A : List[Any] = nn.ModuleList([] ) _A : Optional[int] = None # down _A : Union[str, Any] = in_channels for i, down_block_type in enumerate(_a ): _A : List[str] = output_channel _A : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels _A : Any = i == len(_a ) - 1 _A : List[str] = get_down_block( _a , num_layers=_a , in_channels=_a , out_channels=_a , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_a ) # mid _A : Union[str, Any] = get_mid_block( _a , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_a , add_downsample=_a , ) # up _A : List[Any] = list(reversed(_a ) ) _A : str = reversed_block_out_channels[0] if out_block_type is None: _A : List[str] = out_channels else: _A : Tuple = block_out_channels[0] for i, up_block_type in enumerate(_a ): _A : str = output_channel _A : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(_a ) - 1 else final_upsample_channels ) _A : Any = i == len(_a ) - 1 _A : Any = get_up_block( _a , num_layers=_a , in_channels=_a , out_channels=_a , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_a ) _A : Tuple = output_channel # out _A : Optional[int] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _A : Optional[Any] = get_out_block( out_block_type=_a , num_groups_out=_a , embed_dim=block_out_channels[0] , out_channels=_a , act_fn=_a , fc_dim=block_out_channels[-1] // 4 , ) def a__ ( self , _a , _a , _a = True , ) -> Union[UNetaDOutput, Tuple]: _A : str = timestep if not torch.is_tensor(_a ): _A : str = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : int = timesteps[None].to(sample.device ) _A : Union[str, Any] = self.time_proj(_a ) if self.config.use_timestep_embedding: _A : List[str] = self.time_mlp(_a ) else: _A : Optional[Any] = timestep_embed[..., None] _A : Any = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _A : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _A : int = () for downsample_block in self.down_blocks: _A , _A : Optional[Any] = downsample_block(hidden_states=_a , temb=_a ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _A : Dict = self.mid_block(_a , _a ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _A : str = down_block_res_samples[-1:] _A : Union[str, Any] = down_block_res_samples[:-1] _A : Optional[Any] = upsample_block(_a , res_hidden_states_tuple=_a , temb=_a ) # 5. post-process if self.out_block: _A : Any = self.out_block(_a , _a ) if not return_dict: return (sample,) return UNetaDOutput(sample=_a )
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "sentencepiece.bpe.model"} _snake_case = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _snake_case = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _snake_case = "▁" class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _A : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _A : int = vocab_file _A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _A : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} _A : Any = len(self.sp_model ) - 1 _A : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a__ ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] _A : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def a__ ( self , _a , _a = None ) -> List[int]: _A : int = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> Tuple: return len(self.sp_model ) def a__ ( self ) -> Any: _A : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def a__ ( self , _a ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : Optional[int] = self.sp_model.PieceToId(_a ) return spm_id if spm_id else self.unk_token_id def a__ ( self , _a ) -> Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_a ) def a__ ( self , _a ) -> Optional[int]: _A : Union[str, Any] = [] _A : str = """""" _A : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token _A : Tuple = True _A : Dict = [] else: current_sub_tokens.append(_a ) _A : Optional[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ) -> Dict: _A : List[Any] = self.__dict__.copy() _A : Union[str, Any] = None return state def __setstate__( self , _a ) -> int: _A : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : Tuple = {} _A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : Optional[Any] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: _A : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from math import pi, sqrt, tan def lowerCAmelCase_ ( snake_case_ ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowerCAmelCase_ ( snake_case_ ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def lowerCAmelCase_ ( snake_case_ ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def lowerCAmelCase_ ( snake_case_,snake_case_ ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) _A : Any = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(snake_case_,2 ) * torus_radius * tube_radius def lowerCAmelCase_ ( snake_case_,snake_case_ ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def lowerCAmelCase_ ( snake_case_ ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def lowerCAmelCase_ ( snake_case_,snake_case_ ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) _A : List[str] = (sidea + sidea + sidea) / 2 _A : Union[str, Any] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowerCAmelCase_ ( snake_case_,snake_case_ ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def lowerCAmelCase_ ( snake_case_ ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def lowerCAmelCase_ ( snake_case_,snake_case_ ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def lowerCAmelCase_ ( snake_case_,snake_case_ ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def lowerCAmelCase_ ( snake_case_,snake_case_ ): if not isinstance(snake_case_,snake_case_ ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print("\nSurface Areas of various geometric shapes: \n") print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def a__ ( *_a , **_a ) -> Optional[Any]: pass def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = np.array(snake_case_ ) _A : int = npimg.shape return {"hash": hashimage(snake_case_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): _a = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _a = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def a__ ( self , _a , _a , _a ) -> int: _A : Union[str, Any] = MaskGenerationPipeline(model=_a , image_processor=_a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ ( self , _a , _a ) -> Dict: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def a__ ( self ) -> Optional[int]: pass @slow @require_torch def a__ ( self ) -> Union[str, Any]: _A : List[Any] = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) _A : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing _A : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def a__ ( self ) -> Optional[Any]: _A : Dict = """facebook/sam-vit-huge""" _A : List[Any] = pipeline("""mask-generation""" , model=_a ) _A : Dict = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _A : Optional[int] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_a , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCAmelCase_ ( snake_case_ ): if not isinstance(snake_case_,snake_case_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _A : List[str] = precision _A : List[Any] = ceil(precision / 14 ) _A : Optional[Any] = 426880 * Decimal(10005 ).sqrt() _A : List[Any] = 1 _A : Optional[Any] = 13591409 _A : str = Decimal(snake_case_ ) for k in range(1,snake_case_ ): _A : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _snake_case = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = int(snake_case_ ) if n_element < 1: _A : Any = ValueError("""a should be a positive number""" ) raise my_error _A : int = [1] _A , _A , _A : Optional[Any] = (0, 0, 0) _A : Optional[Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2,hamming_list[j] * 3,hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _snake_case = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _snake_case = hamming(int(n)) print("-----------------------------------------------------") print(f"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
_snake_case = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): # Return True if there is node that has not iterated. _A : str = [False] * len(snake_case_ ) _A : Optional[int] = [s] _A : str = True while queue: _A : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case_ ) _A : Tuple = True _A : Tuple = u return visited[t] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[str] = [-1] * (len(snake_case_ )) _A : List[Any] = 0 _A : Dict = [] _A : Any = [i[:] for i in graph] # Record original cut, copy. while bfs(snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = float("""Inf""" ) _A : Dict = sink while s != source: # Find the minimum value in select path _A : Any = min(snake_case_,graph[parent[s]][s] ) _A : Tuple = parent[s] max_flow += path_flow _A : Tuple = sink while v != source: _A : Optional[int] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _A : Union[str, Any] = parent[v] for i in range(len(snake_case_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp _snake_case = 5 _snake_case = 10 @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = SpeechaTextTokenizer _a = False _a = True def a__ ( self ) -> Tuple: super().setUp() _A : List[str] = sp.SentencePieceProcessor() spm_model.Load(_a ) _A : Optional[int] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_a ) )] _A : Dict = dict(zip(_a , range(len(_a ) ) ) ) _A : Any = Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) _A : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = """<pad>""" _A : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> List[Any]: _A : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_a ) , 1001 ) def a__ ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def a__ ( self ) -> str: _A : Tuple = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _A : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [289, 50, 14, 174, 386] , ) _A : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) _A : List[str] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual(_a , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) _A : Any = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def a__ ( self ) -> List[Any]: # fmt: off _A : Union[str, Any] = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class lowercase ( unittest.TestCase ): _a = "valhalla/s2t_mustc_multilinguial_medium" _a = "C'est trop cool" _a = "Esto es genial" @classmethod def a__ ( cls ) -> int: _A : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self ) -> Dict: self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def a__ ( self ) -> Any: self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def a__ ( self ) -> List[Any]: self.assertIn(_a , self.tokenizer.all_special_ids ) _A : Optional[int] = [ES_CODE, 4, 1601, 47, 7647, 2] _A : str = self.tokenizer.decode(_a , skip_special_tokens=_a ) _A : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def a__ ( self ) -> int: _A : Any = """fr""" _A : Optional[int] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self ) -> List[str]: _A : List[str] = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) _A : Optional[int] = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _snake_case = False class lowercase ( unittest.TestCase ): pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> str: _A : List[str] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _A : str = torch.manual_seed(0 ) _A : Optional[Any] = pipe( image=_a , generator=_a , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images _A : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _A : List[Any] = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = True @register_to_config def __init__( self , _a = 3 , _a = 3 , _a = ("DownEncoderBlock2D",) , _a = ("UpDecoderBlock2D",) , _a = (64,) , _a = 1 , _a = "silu" , _a = 4 , _a = 32 , _a = 32 , _a = 0.18215 , ) -> Any: super().__init__() # pass init params to Encoder _A : Dict = Encoder( in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , ) # pass init params to Decoder _A : Dict = Decoder( in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , norm_num_groups=_a , act_fn=_a , ) _A : Union[str, Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A : Tuple = nn.Convad(_a , _a , 1 ) _A : int = False _A : Union[str, Any] = False # only relevant if vae tiling is enabled _A : str = self.config.sample_size _A : str = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A : int = 0.25 def a__ ( self , _a , _a=False ) -> List[str]: if isinstance(_a , (Encoder, Decoder) ): _A : Dict = value def a__ ( self , _a = True ) -> Any: _A : Tuple = use_tiling def a__ ( self ) -> List[Any]: self.enable_tiling(_a ) def a__ ( self ) -> Dict: _A : Dict = True def a__ ( self ) -> List[str]: _A : int = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : Dict = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : List[str] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> Union[str, Any]: _A : List[Any] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_a , return_dict=_a ) if self.use_slicing and x.shape[0] > 1: _A : List[Any] = [self.encoder(_a ) for x_slice in x.split(1 )] _A : List[str] = torch.cat(_a ) else: _A : Union[str, Any] = self.encoder(_a ) _A : List[Any] = self.quant_conv(_a ) _A : str = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_a , return_dict=_a ) _A : Optional[Any] = self.post_quant_conv(_a ) _A : Tuple = self.decoder(_a ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) @apply_forward_hook def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _A : Optional[int] = [self._decode(_a ).sample for z_slice in z.split(1 )] _A : List[str] = torch.cat(_a ) else: _A : Tuple = self._decode(_a ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_a ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : str = min(a.shape[2] , b.shape[2] , _a ) for y in range(_a ): _A : Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def a__ ( self , _a , _a , _a ) -> Tuple: _A : Optional[int] = min(a.shape[3] , b.shape[3] , _a ) for x in range(_a ): _A : List[str] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput: _A : str = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A : List[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A : Optional[Any] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A : Optional[Any] = [] for i in range(0 , x.shape[2] , _a ): _A : str = [] for j in range(0 , x.shape[3] , _a ): _A : List[str] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A : List[Any] = self.encoder(_a ) _A : List[str] = self.quant_conv(_a ) row.append(_a ) rows.append(_a ) _A : Dict = [] for i, row in enumerate(_a ): _A : int = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : Optional[int] = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _A : Union[str, Any] = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _A : int = torch.cat(_a , dim=2 ) _A : Optional[int] = DiagonalGaussianDistribution(_a ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_a ) def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]: _A : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A : Optional[int] = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A : Optional[int] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A : Optional[Any] = [] for i in range(0 , z.shape[2] , _a ): _A : Any = [] for j in range(0 , z.shape[3] , _a ): _A : int = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A : Optional[int] = self.post_quant_conv(_a ) _A : int = self.decoder(_a ) row.append(_a ) rows.append(_a ) _A : int = [] for i, row in enumerate(_a ): _A : List[Any] = [] for j, tile in enumerate(_a ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : str = self.blend_v(rows[i - 1][j] , _a , _a ) if j > 0: _A : str = self.blend_h(row[j - 1] , _a , _a ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_a , dim=3 ) ) _A : Optional[Any] = torch.cat(_a , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_a ) def a__ ( self , _a , _a = False , _a = True , _a = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _A : str = sample _A : str = self.encode(_a ).latent_dist if sample_posterior: _A : Dict = posterior.sample(generator=_a ) else: _A : int = posterior.mode() _A : Optional[Any] = self.decode(_a ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_a )
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> None: warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "dinat" _a = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _a=4 , _a=3 , _a=64 , _a=[3, 4, 6, 5] , _a=[2, 4, 8, 16] , _a=7 , _a=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _a=3.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=0.02 , _a=1e-5 , _a=0.0 , _a=None , _a=None , **_a , ) -> Optional[Any]: super().__init__(**_a ) _A : Union[str, Any] = patch_size _A : Tuple = num_channels _A : List[str] = embed_dim _A : Dict = depths _A : str = len(_a ) _A : int = num_heads _A : Any = kernel_size _A : Tuple = dilations _A : int = mlp_ratio _A : str = qkv_bias _A : Any = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : Union[str, Any] = drop_path_rate _A : Dict = hidden_act _A : str = layer_norm_eps _A : Any = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A : Any = int(embed_dim * 2 ** (len(_a ) - 1) ) _A : List[Any] = layer_scale_init_value _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : Dict = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,): _A : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _A : str = 1 - (matter_density + radiation_density + dark_energy) _A : Tuple = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _A : int = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _snake_case = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = None _a = "utf-8" _a = None _a = None _a = True # deprecated _a = None # deprecated _a = 1_0 << 2_0 # 10MB _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = JsonConfig def a__ ( self ) -> Any: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _A : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> List[str]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : Union[str, Any] = data_files if isinstance(_a , _a ): _A : Optional[Any] = [files] _A : Dict = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : Dict = [files] _A : int = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A : Optional[Any] = self.config.features.arrow_schema.field(_a ).type _A : str = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A : Dict = table_cast(_a , self.config.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Dict: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : List[str] = json.load(_a ) # We keep only the field we are interested in _A : Optional[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): _A : Optional[int] = set().union(*[row.keys() for row in dataset] ) _A : Tuple = {col: [row.get(_a ) for row in dataset] for col in keys} else: _A : Dict = dataset _A : Optional[Any] = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: _A : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A : Dict = max(self.config.chunksize // 32 , 16 << 10 ) _A : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _A : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A : List[Any] = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: _A : int = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : Union[str, Any] = json.load(_a ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: _A : int = set().union(*[row.keys() for row in dataset] ) _A : Dict = {col: [row.get(_a ) for row in dataset] for col in keys} _A : Union[str, Any] = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> Dict: _A : Any = parent _A : Any = batch_size _A : List[str] = seq_length _A : List[Any] = is_training _A : List[str] = use_attention_mask _A : Dict = use_token_type_ids _A : str = use_labels _A : Optional[int] = vocab_size _A : Union[str, Any] = hidden_size _A : List[str] = num_hidden_layers _A : int = num_attention_heads _A : List[Any] = intermediate_size _A : Optional[Any] = hidden_act _A : List[str] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : Tuple = type_vocab_size _A : str = type_sequence_label_size _A : Optional[int] = initializer_range _A : Optional[int] = num_choices def a__ ( self ) -> Dict: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : str = None if self.use_attention_mask: _A : int = random_attention_mask([self.batch_size, self.seq_length] ) _A : Optional[int] = None if self.use_token_type_ids: _A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> Union[str, Any]: _A : List[str] = self.prepare_config_and_inputs() _A , _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def a__ ( self ) -> str: _A : Optional[Any] = self.prepare_config_and_inputs() _A , _A , _A , _A : Dict = config_and_inputs _A : int = True _A : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = True _a = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Optional[int]: _A : int = FlaxRobertaModelTester(self ) @slow def a__ ( self ) -> Dict: for model_class_name in self.all_model_classes: _A : Union[str, Any] = model_class_name.from_pretrained("""roberta-base""" , from_pt=_a ) _A : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
from collections import defaultdict def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = 1 _A : Optional[int] = True for v in tree[start]: if v not in visited: ret += dfs(snake_case_ ) if ret % 2 == 0: cuts.append(snake_case_ ) return ret def lowerCAmelCase_ ( ): dfs(1 ) if __name__ == "__main__": _snake_case , _snake_case = 10, 9 _snake_case = defaultdict(list) _snake_case = {} _snake_case = [] _snake_case = 0 _snake_case = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = StableDiffusionInstructPixaPixPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} _a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS _a = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self ) -> List[Any]: torch.manual_seed(0 ) _A : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _A : Union[str, Any] = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) _A : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : Union[str, Any] = CLIPTextModel(_a ) _A : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self , _a , _a=0 ) -> List[str]: _A : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) _A : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Tuple = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ) if str(_a ).startswith("""mps""" ): _A : str = torch.manual_seed(_a ) else: _A : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def a__ ( self ) -> int: _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Tuple = self.get_dummy_components() _A : Dict = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Optional[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Tuple = self.get_dummy_inputs(_a ) _A : Tuple = sd_pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : List[str] = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> List[str]: _A : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : List[str] = self.get_dummy_inputs(_a ) _A : Optional[int] = """french fries""" _A : Optional[int] = sd_pipe(**_a , negative_prompt=_a ) _A : Optional[Any] = output.images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : str = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Dict: _A : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : int = self.get_dummy_components() _A : Any = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Optional[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs(_a ) _A : Dict = [inputs["""prompt"""]] * 2 _A : Optional[int] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 _A : Any = torch.from_numpy(_a ).unsqueeze(0 ).to(_a ) _A : Tuple = image / 2 + 0.5 _A : int = image.permute(0 , 3 , 1 , 2 ) _A : Optional[Any] = image.repeat(2 , 1 , 1 , 1 ) _A : Optional[Any] = sd_pipe(**_a ).images _A : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _A : Optional[int] = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) _A : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Tuple = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Tuple = self.get_dummy_inputs(_a ) _A : List[str] = sd_pipe(**_a ).images _A : Dict = image[0, -3:, -3:, -1] _A : Any = [round(_a , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_a ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _A : Dict = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def a__ ( self ) -> int: _A : int = self.get_dummy_components() _A : List[str] = StableDiffusionInstructPixaPixPipeline(**_a ) _A : Optional[int] = VaeImageProcessor(do_resize=_a , do_normalize=_a ) _A : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : str = pipe(**self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) )[0] _A : Any = components["""vae"""] _A : Any = self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _A : List[str] = vae.encode(inputs[image_param] ).latent_dist.mode() _A : Dict = pipe(**_a )[0] _A : Any = np.abs(out - out_latents_inputs ).max() self.assertLess(_a , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a=0 ) -> List[str]: _A : Optional[int] = torch.manual_seed(_a ) _A : Dict = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) _A : int = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Tuple: _A : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : int = self.get_inputs() _A : Any = pipe(**_a ).images _A : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : str = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> List[Any]: _A : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) _A : List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Union[str, Any] = self.get_inputs() _A : int = pipe(**_a ).images _A : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : int = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> Dict: _A : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) _A : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Optional[Any] = self.get_inputs() _A : Tuple = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _A : Any = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self ) -> str: _A : str = 0 def callback_fn(_a , _a , _a ) -> None: _A : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _A : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A : Dict = latents[0, -3:, -3:, -1] _A : Union[str, Any] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _A : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _A : Any = latents[0, -3:, -3:, -1] _A : Optional[int] = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _A : int = False _A : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) _A : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : List[str] = self.get_inputs() pipe(**_a , callback=_a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def a__ ( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) _A : str = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A : Any = self.get_inputs() _A : Tuple = pipe(**_a ) _A : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def a__ ( self ) -> Optional[Any]: _A : Tuple = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _A : str = inputs["""image"""].resize((504, 504) ) _A : List[Any] = """timbrooks/instruct-pix2pix""" _A : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : str = pipe(**_a ) _A : str = output.images[0] _A : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _A : List[str] = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["OwlViTFeatureExtractor"] _snake_case = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase ( unittest.TestCase ): _a = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def a__ ( self , _a , _a , _a ) -> Optional[Any]: _A : Union[str, Any] = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _A : int = VideoClassificationPipeline(model=_a , image_processor=_a , top_k=2 ) _A : Dict = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def a__ ( self , _a , _a ) -> str: for example in examples: _A : Dict = video_classifier(_a ) self.assertEqual( _a , [ {"""score""": ANY(_a ), """label""": ANY(_a )}, {"""score""": ANY(_a ), """label""": ANY(_a )}, ] , ) @require_torch def a__ ( self ) -> Dict: _A : Optional[int] = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _A : Union[str, Any] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _A : Dict = pipeline( """video-classification""" , model=_a , feature_extractor=_a , frame_sampling_rate=4 ) _A : List[Any] = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _A : Dict = video_classifier(_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) _A : Optional[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def a__ ( self ) -> Dict: pass
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowercase : def __init__( self , _a , _a=100 , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=4 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=None , _a=[0, 1, 2, 3] , ) -> Any: _A : Optional[int] = parent _A : List[Any] = 100 _A : Tuple = batch_size _A : Optional[int] = image_size _A : Optional[Any] = patch_size _A : int = num_channels _A : Optional[Any] = is_training _A : List[Any] = use_labels _A : Optional[int] = hidden_size _A : Optional[int] = num_hidden_layers _A : int = num_attention_heads _A : List[Any] = intermediate_size _A : Dict = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : Union[str, Any] = initializer_range _A : List[Any] = scope _A : Optional[Any] = out_indices _A : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : int = (image_size // patch_size) ** 2 _A : int = num_patches + 1 def a__ ( self ) -> str: _A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[Any] = None _A : List[str] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _A : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def a__ ( self ) -> int: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def a__ ( self , _a , _a , _a , _a ) -> str: _A : List[str] = BeitModel(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a ) -> List[Any]: _A : int = BeitForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _A : Any = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a ) -> str: _A : Optional[int] = self.type_sequence_label_size _A : Dict = BeitForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Union[str, Any] = 1 _A : Tuple = BeitForImageClassification(_a ) model.to(_a ) model.eval() _A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : Any = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self , _a , _a , _a , _a ) -> Tuple: _A : Union[str, Any] = self.num_labels _A : List[Any] = BeitForSemanticSegmentation(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _A : List[str] = model(_a , labels=_a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.prepare_config_and_inputs() _A , _A , _A , _A : Tuple = config_and_inputs _A : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _a = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : str = BeitModelTester(self ) _A : int = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def a__ ( self ) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> Dict: _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Dict = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> Any: _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Dict = model_class(_a ) _A : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[Any] = [*signature.parameters.keys()] _A : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Optional[int]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def a__ ( self ) -> List[Any]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def a__ ( self ) -> Dict: _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) def a__ ( self ) -> Tuple: if not self.model_tester.is_training: return _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_a ), BeitForMaskedImageModeling]: continue _A : Optional[Any] = model_class(_a ) model.to(_a ) model.train() _A : str = self._prepare_for_class(_a , _a , return_labels=_a ) _A : Tuple = model(**_a ).loss loss.backward() def a__ ( self ) -> Dict: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A : int = False _A : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_a ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _A : List[str] = model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() _A : Union[str, Any] = self._prepare_for_class(_a , _a , return_labels=_a ) _A : Union[str, Any] = model(**_a ).loss loss.backward() def a__ ( self ) -> List[str]: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = _config_zero_init(_a ) for model_class in self.all_model_classes: _A : Tuple = model_class(config=_a ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def a__ ( self ) -> Union[str, Any]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = BeitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Any: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> str: _A : int = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_a ) _A : Union[str, Any] = self.default_image_processor _A : str = prepare_img() _A : List[Any] = image_processor(images=_a , return_tensors="""pt""" ).pixel_values.to(_a ) # prepare bool_masked_pos _A : str = torch.ones((1, 196) , dtype=torch.bool ).to(_a ) # forward pass with torch.no_grad(): _A : List[str] = model(pixel_values=_a , bool_masked_pos=_a ) _A : List[Any] = outputs.logits # verify the logits _A : Optional[int] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , _a ) _A : List[str] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_a ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _a , atol=1e-2 ) ) @slow def a__ ( self ) -> List[str]: _A : Any = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_a ) _A : Any = self.default_image_processor _A : Union[str, Any] = prepare_img() _A : Optional[int] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Optional[int] = model(**_a ) _A : List[Any] = outputs.logits # verify the logits _A : int = torch.Size((1, 1000) ) self.assertEqual(logits.shape , _a ) _A : List[str] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) _A : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def a__ ( self ) -> Dict: _A : Optional[int] = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _a ) _A : Optional[Any] = self.default_image_processor _A : List[Any] = prepare_img() _A : Optional[int] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : List[Any] = model(**_a ) _A : Optional[int] = outputs.logits # verify the logits _A : int = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , _a ) _A : List[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_a ) self.assertTrue(torch.allclose(logits[0, :3] , _a , atol=1e-4 ) ) _A : Optional[Any] = 2396 self.assertEqual(logits.argmax(-1 ).item() , _a ) @slow def a__ ( self ) -> str: _A : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _A : int = model.to(_a ) _A : Any = BeitImageProcessor(do_resize=_a , size=640 , do_center_crop=_a ) _A : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _A : Tuple = Image.open(ds[0]["""file"""] ) _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : List[str] = model(**_a ) _A : Union[str, Any] = outputs.logits # verify the logits _A : List[Any] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , _a ) _A : Dict = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: _A : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_a , ) else: _A : Optional[int] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _a , atol=1e-4 ) ) @slow def a__ ( self ) -> int: _A : Union[str, Any] = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) _A : Union[str, Any] = model.to(_a ) _A : Dict = BeitImageProcessor(do_resize=_a , size=640 , do_center_crop=_a ) _A : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) _A : List[Any] = Image.open(ds[0]["""file"""] ) _A : List[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Any = model(**_a ) _A : int = outputs.logits.detach().cpu() _A : Dict = image_processor.post_process_semantic_segmentation(outputs=_a , target_sizes=[(500, 300)] ) _A : List[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , _a ) _A : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_a ) _A : List[Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , _a )
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
import mpmath # for roots of unity import numpy as np class lowercase : def __init__( self , _a=None , _a=None ) -> Union[str, Any]: # Input as list _A : Optional[int] = list(poly_a or [0] )[:] _A : List[str] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _A : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _A : Optional[int] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _A : Union[str, Any] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _A : Tuple = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _A : Dict = self.__multiply() def a__ ( self , _a ) -> Union[str, Any]: _A : List[Any] = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(_a ) <= 1: return dft[0] # _A : Any = self.c_max_length // 2 while next_ncol > 0: _A : int = [[] for i in range(_a )] _A : Any = self.root**next_ncol # First half of next step _A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _A : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_a ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _A : str = new_dft _A : Optional[int] = next_ncol // 2 return dft[0] def a__ ( self ) -> str: _A : List[str] = self.__dft("""A""" ) _A : Optional[int] = self.__dft("""B""" ) _A : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _A : Optional[int] = 2 while next_ncol <= self.c_max_length: _A : str = [[] for i in range(_a )] _A : Optional[Any] = self.root ** (next_ncol // 2) _A : Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _A : Any = new_inverse_c next_ncol *= 2 # Unpack _A : List[Any] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> int: _A : Optional[Any] = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _A : Tuple = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _A : Any = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
def lowerCAmelCase_ ( snake_case_ = 50 ): _A : str = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2,5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DDIMPipeline _a = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _a = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } _a = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _a = False def a__ ( self ) -> Any: torch.manual_seed(0 ) _A : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) _A : List[Any] = DDIMScheduler() _A : int = {"""unet""": unet, """scheduler""": scheduler} return components def a__ ( self , _a , _a=0 ) -> List[str]: if str(_a ).startswith("""mps""" ): _A : int = torch.manual_seed(_a ) else: _A : int = torch.Generator(device=_a ).manual_seed(_a ) _A : List[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def a__ ( self ) -> int: _A : Optional[Any] = """cpu""" _A : Any = self.get_dummy_components() _A : int = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs(_a ) _A : List[str] = pipe(**_a ).images _A : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _A : Union[str, Any] = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) _A : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def a__ ( self ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def a__ ( self ) -> str: super().test_save_load_local(expected_max_difference=3e-3 ) def a__ ( self ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def a__ ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: _A : str = """google/ddpm-cifar10-32""" _A : Optional[int] = UNetaDModel.from_pretrained(_a ) _A : Tuple = DDIMScheduler() _A : str = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) _A : int = torch.manual_seed(0 ) _A : Tuple = ddim(generator=_a , eta=0.0 , output_type="""numpy""" ).images _A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : Tuple = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[Any]: _A : int = """google/ddpm-ema-bedroom-256""" _A : Any = UNetaDModel.from_pretrained(_a ) _A : str = DDIMScheduler.from_pretrained(_a ) _A : Optional[Any] = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) _A : Dict = torch.manual_seed(0 ) _A : Optional[Any] = ddpm(generator=_a , output_type="""numpy""" ).images _A : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A : Tuple = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _snake_case = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _snake_case = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def lowerCAmelCase_ ( snake_case_ ): _A : int = {} state_dict.pop("""pixel_mean""",snake_case_ ) state_dict.pop("""pixel_std""",snake_case_ ) _A : Tuple = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _A : int = key.replace(snake_case_,snake_case_ ) if re.match(snake_case_,snake_case_ ): _A : Optional[int] = int(re.match(snake_case_,snake_case_ ).group(2 ) ) if layer_nb == 0: _A : Tuple = key.replace("""layers.0""","""proj_in""" ) elif layer_nb == 1: _A : int = key.replace("""layers.1""","""layers.0""" ) elif layer_nb == 2: _A : Union[str, Any] = key.replace("""layers.2""","""proj_out""" ) _A : Union[str, Any] = value _A : Tuple = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_="ybelkada/segment-anything" ): _A : Union[str, Any] = hf_hub_download(snake_case_,f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: _A : Dict = SamConfig() elif "sam_vit_l" in model_name: _A : Optional[Any] = SamVisionConfig( hidden_size=1024,num_hidden_layers=24,num_attention_heads=16,global_attn_indexes=[5, 11, 17, 23],) _A : str = SamConfig( vision_config=snake_case_,) elif "sam_vit_h" in model_name: _A : int = SamVisionConfig( hidden_size=1280,num_hidden_layers=32,num_attention_heads=16,global_attn_indexes=[7, 15, 23, 31],) _A : Optional[int] = SamConfig( vision_config=snake_case_,) _A : Union[str, Any] = torch.load(snake_case_,map_location="""cpu""" ) _A : Optional[Any] = replace_keys(snake_case_ ) _A : Union[str, Any] = SamImageProcessor() _A : Any = SamProcessor(image_processor=snake_case_ ) _A : Optional[Any] = SamModel(snake_case_ ) hf_model.load_state_dict(snake_case_ ) _A : List[Any] = hf_model.to("""cuda""" ) _A : int = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" _A : int = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ).convert("""RGB""" ) _A : Dict = [[[400, 650]]] _A : List[str] = [[1]] _A : Dict = processor(images=np.array(snake_case_ ),return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): _A : Optional[int] = hf_model(**snake_case_ ) _A : int = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 _A : int = processor( images=np.array(snake_case_ ),input_points=snake_case_,input_labels=snake_case_,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): _A : Optional[Any] = hf_model(**snake_case_ ) _A : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 _A : Optional[int] = ((75, 275, 1725, 850),) _A : int = processor(images=np.array(snake_case_ ),input_boxes=snake_case_,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): _A : List[str] = hf_model(**snake_case_ ) _A : Any = output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. _A : Dict = [[[400, 650], [800, 650]]] _A : Union[str, Any] = [[1, 1]] _A : List[str] = processor( images=np.array(snake_case_ ),input_points=snake_case_,input_labels=snake_case_,return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): _A : Dict = hf_model(**snake_case_ ) _A : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": _snake_case = argparse.ArgumentParser() _snake_case = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _snake_case = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class lowercase : def __init__( self , _a = None , _a = [] ) -> str: _A : List[str] = 0 _A : Tuple = choices _A : Optional[int] = prompt if sys.platform == "win32": _A : List[Any] = """*""" else: _A : Dict = """➔ """ def a__ ( self , _a , _a = "" ) -> List[str]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , _a ) else: forceWrite(self.choices[index] , _a ) def a__ ( self , _a ) -> Tuple: if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(_a ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def a__ ( self , _a , _a = 1 ) -> str: _A : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_a ) move_cursor(_a , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def a__ ( self ) -> List[Any]: self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def a__ ( self ) -> Optional[int]: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def a__ ( self ) -> Optional[int]: move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def a__ ( self ) -> List[Any]: move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_a )] for number in range(10 )] ) def a__ ( self ) -> List[Any]: _A : Dict = int(chr(self.current_selection ) ) _A : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _a ) else: return else: return def a__ ( self , _a = 0 ) -> Optional[Any]: if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _A : int = default_choice for i in range(len(self.choices ) ): self.print_choice(_a ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _A : Dict = int(builtins.input() ) except ValueError: _A : List[Any] = default_choice else: _A : Union[str, Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_a , """\n""" ) return choice
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
from ... import PretrainedConfig _snake_case = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP _a = "nezha" def __init__( self , _a=2_1128 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=64 , _a=2 , _a=0.02 , _a=1e-12 , _a=0.1 , _a=0 , _a=2 , _a=3 , _a=True , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : str = vocab_size _A : Optional[int] = hidden_size _A : str = num_hidden_layers _A : List[Any] = num_attention_heads _A : Any = hidden_act _A : Tuple = intermediate_size _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : int = max_position_embeddings _A : List[str] = max_relative_position _A : str = type_vocab_size _A : Any = initializer_range _A : Union[str, Any] = layer_norm_eps _A : Optional[int] = classifier_dropout _A : Any = use_cache
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
import sys def lowerCAmelCase_ ( snake_case_ ): _A : Dict = len(snake_case_ ) _A : int = [[0 for x in range(snake_case_ )] for x in range(snake_case_ )] _A : Union[str, Any] = [[0 for x in range(snake_case_ )] for x in range(snake_case_ )] for chain_length in range(2,snake_case_ ): for a in range(1,n - chain_length + 1 ): _A : str = a + chain_length - 1 _A : Optional[int] = sys.maxsize for c in range(snake_case_,snake_case_ ): _A : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _A : List[Any] = cost _A : int = c return matrix, sol def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if i == j: print("""A""" + str(snake_case_ ),end=""" """ ) else: print("""(""",end=""" """ ) print_optiomal_solution(snake_case_,snake_case_,optimal_solution[i][j] ) print_optiomal_solution(snake_case_,optimal_solution[i][j] + 1,snake_case_ ) print(""")""",end=""" """ ) def lowerCAmelCase_ ( ): _A : List[Any] = [30, 35, 15, 5, 10, 20, 25] _A : List[str] = len(snake_case_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _A , _A : Union[str, Any] = matrix_chain_order(snake_case_ ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(snake_case_,1,n - 1 ) if __name__ == "__main__": main()
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt"} _snake_case = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } _snake_case = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } _snake_case = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ConvBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> Any: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) _A : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _a ) != do_lower_case or normalizer_state.get("""strip_accents""" , _a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars ): _A : str = getattr(_a , normalizer_state.pop("""type""" ) ) _A : Optional[Any] = do_lower_case _A : List[str] = strip_accents _A : Any = tokenize_chinese_chars _A : Any = normalizer_class(**_a ) _A : Union[str, Any] = do_lower_case def a__ ( self , _a , _a=None ) -> Dict: _A : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self , _a , _a = None ) -> List[int]: _A : Optional[int] = [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : Any = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = "▁" _snake_case = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = BertGenerationTokenizer _a = False _a = True def a__ ( self ) -> Optional[Any]: super().setUp() _A : int = BertGenerationTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self ) -> List[Any]: _A : Dict = """<s>""" _A : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_a ) , 1002 ) def a__ ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def a__ ( self ) -> Any: _A : Dict = BertGenerationTokenizer(_a , keep_accents=_a ) _A : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) _A : Tuple = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _A : str = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _A : Dict = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def a__ ( self ) -> List[Any]: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def a__ ( self ) -> List[str]: _A : str = """Hello World!""" _A : Optional[Any] = [1_8536, 2260, 101] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def a__ ( self ) -> Tuple: _A : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) _A : int = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def a__ ( self ) -> Optional[int]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence _A : str = list(self.big_tokenizer.get_vocab().keys() )[:10] _A : Tuple = """ """.join(_a ) _A : Optional[int] = self.big_tokenizer.encode_plus(_a , return_tensors="""pt""" , return_token_type_ids=_a ) _A : Dict = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_a ) _A : List[str] = BertGenerationConfig() _A : Optional[int] = BertGenerationEncoder(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[str] = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a__ ( self , _a=0 ) -> str: _A : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(_a ) ) _A : Any = np.random.RandomState(_a ) _A : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Optional[Any]: _A : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : Union[str, Any] = pipe(**_a ).images _A : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _A : int = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def a__ ( self ) -> List[str]: _A : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) _A : Dict = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : List[str] = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> Any: _A : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations _A : Union[str, Any] = pipe(**self.get_dummy_inputs() ) _A : int = self.get_dummy_inputs() _A : List[str] = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : List[str] = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> Optional[Any]: _A : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Dict = self.get_dummy_inputs() _A : str = pipe(**_a ).images _A : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Dict = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs() _A : str = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Union[str, Any] = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def a__ ( self ) -> List[Any]: _A : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Any = self.get_dummy_inputs() _A : Any = pipe(**_a ).images _A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : int = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[str]: _A : str = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> List[str]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _A : Optional[int] = init_image.resize((768, 512) ) # using the PNDM scheduler by default _A : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = """A fantasy landscape, trending on artstation""" _A : List[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" , ) _A : str = output.images _A : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A : Optional[Any] = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def a__ ( self ) -> Dict: _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _A : List[str] = init_image.resize((768, 512) ) _A : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Any = """A fantasy landscape, trending on artstation""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Union[str, Any] = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type="""np""" , ) _A : Optional[Any] = output.images _A : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A : Tuple = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import logging import os import threading import time try: import warnings except ImportError: _snake_case = None try: import msvcrt except ImportError: _snake_case = None try: import fcntl except ImportError: _snake_case = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _snake_case = OSError # Data # ------------------------------------------------ _snake_case = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _snake_case = "3.0.12" _snake_case = None def lowerCAmelCase_ ( ): global _logger _A : str = _logger or logging.getLogger(__name__ ) return _logger class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> List[str]: _A : int = lock_file return None def __str__( self ) -> str: _A : List[Any] = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowercase : def __init__( self , _a ) -> Tuple: _A : Optional[int] = lock return None def __enter__( self ) -> List[Any]: return self.lock def __exit__( self , _a , _a , _a ) -> List[Any]: self.lock.release() return None class lowercase : def __init__( self , _a , _a=-1 , _a=None ) -> List[Any]: _A : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long _A : int = self.hash_filename_if_too_long(_a , _a ) # The path to the lock file. _A : Optional[int] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. _A : Optional[int] = None # The default timeout value. _A : Union[str, Any] = timeout # We use this lock primarily for the lock counter. _A : str = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. _A : str = 0 return None @property def a__ ( self ) -> Dict: return self._lock_file @property def a__ ( self ) -> Optional[Any]: return self._timeout @timeout.setter def a__ ( self , _a ) -> Optional[int]: _A : Dict = float(_a ) return None def a__ ( self ) -> Optional[Any]: raise NotImplementedError() def a__ ( self ) -> int: raise NotImplementedError() @property def a__ ( self ) -> Optional[Any]: return self._lock_file_fd is not None def a__ ( self , _a=None , _a=0.05 ) -> Dict: # Use the default timeout, if no timeout is provided. if timeout is None: _A : Tuple = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 _A : Optional[int] = id(self ) _A : str = self._lock_file _A : Tuple = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(_a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: _A : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a__ ( self , _a=False ) -> Optional[int]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: _A : Optional[Any] = id(self ) _A : str = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() _A : Tuple = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> Any: self.acquire() return self def __exit__( self , _a , _a , _a ) -> int: self.release() return None def __del__( self ) -> List[Any]: self.release(force=_a ) return None def a__ ( self , _a , _a ) -> str: _A : Optional[Any] = os.path.basename(_a ) if len(_a ) > max_length and max_length > 0: _A : Dict = os.path.dirname(_a ) _A : Any = str(hash(_a ) ) _A : Tuple = filename[: max_length - len(_a ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(_a , _a ) else: return path class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=-1 , _a=None ) -> Union[str, Any]: from .file_utils import relative_to_absolute_path super().__init__(_a , timeout=_a , max_filename_length=_a ) _A : Optional[Any] = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def a__ ( self ) -> Union[str, Any]: _A : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: _A : Optional[Any] = os.open(self._lock_file , _a ) except OSError: pass else: try: msvcrt.locking(_a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_a ) else: _A : str = fd return None def a__ ( self ) -> int: _A : str = self._lock_file_fd _A : Any = None msvcrt.locking(_a , msvcrt.LK_UNLCK , 1 ) os.close(_a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=-1 , _a=None ) -> Optional[int]: _A : List[Any] = os.statvfs(os.path.dirname(_a ) ).f_namemax super().__init__(_a , timeout=_a , max_filename_length=_a ) def a__ ( self ) -> Any: _A : Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC _A : Any = os.open(self._lock_file , _a ) try: fcntl.flock(_a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_a ) else: _A : Dict = fd return None def a__ ( self ) -> Dict: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition _A : Any = self._lock_file_fd _A : Dict = None fcntl.flock(_a , fcntl.LOCK_UN ) os.close(_a ) return None class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Tuple: _A : Dict = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: _A : Optional[Any] = os.open(self._lock_file , _a ) except OSError: pass else: _A : str = fd return None def a__ ( self ) -> List[Any]: os.close(self._lock_file_fd ) _A : Dict = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _snake_case = None if msvcrt: _snake_case = WindowsFileLock elif fcntl: _snake_case = UnixFileLock else: _snake_case = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase_ ( ): _A : Optional[Any] = HfArgumentParser(snake_case_ ) _A : Optional[int] = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = TensorFlowBenchmark(args=snake_case_ ) try: _A : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: _A : Optional[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" _A : List[Any] = """ """.join(str(snake_case_ ).split(""" """ )[:-1] ) _A : Union[str, Any] = """""" _A : Tuple = eval(str(snake_case_ ).split(""" """ )[-1] ) _A : Any = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(snake_case_ ) if len(snake_case_ ) > 0: _A : List[str] = full_error_msg + begin_error_msg + str(snake_case_ ) raise ValueError(snake_case_ ) benchmark.run() if __name__ == "__main__": main()
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1