code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> int: super().__init__(_a ) _A : Optional[Any] = RobertaEmbeddings(_a ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): _a = RobertaConfig _a = "roberta" def __init__( self , _a ) -> Any: super().__init__(_a ) _A : List[str] = config.num_labels _A : Optional[Any] = config.num_hidden_layers _A : List[Any] = DeeRobertaModel(_a ) _A : str = nn.Dropout(config.hidden_dropout_prob ) _A : Optional[int] = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_a ) def a__ ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=-1 , _a=False , ) -> List[str]: _A : Union[str, Any] = self.num_layers try: _A : Dict = self.roberta( _a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , ) _A : Union[str, Any] = outputs[1] _A : List[Any] = self.dropout(_a ) _A : Any = self.classifier(_a ) _A : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _A : List[Any] = e.message _A : Any = e.exit_layer _A : List[str] = outputs[0] if not self.training: _A : Optional[int] = entropy(_a ) _A : List[Any] = [] _A : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _A : Tuple = MSELoss() _A : Dict = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _A : List[str] = CrossEntropyLoss() _A : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _A : Optional[Any] = [] for highway_exit in outputs[-1]: _A : str = highway_exit[0] if not self.training: highway_logits_all.append(_a ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _A : str = MSELoss() _A : List[str] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _A : int = CrossEntropyLoss() _A : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_a ) if train_highway: _A : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _A : Optional[int] = (loss,) + outputs if not self.training: _A : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _A : List[str] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _snake_case = logging.get_logger(__name__) _snake_case = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = "first_exhausted",): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_,(Dataset, IterableDataset) ): if isinstance(snake_case_,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: _A , _A : Optional[int] = ( (Dataset, IterableDataset) if isinstance(snake_case_,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_,snake_case_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_,snake_case_,snake_case_,info=snake_case_,split=snake_case_,stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_,snake_case_,snake_case_,info=snake_case_,split=snake_case_,stopping_strategy=snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = None,snake_case_ = 0,): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_,(Dataset, IterableDataset) ): if isinstance(snake_case_,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: _A , _A : List[Any] = ( (Dataset, IterableDataset) if isinstance(snake_case_,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_,snake_case_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_,info=snake_case_,split=snake_case_,axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_,info=snake_case_,split=snake_case_,axis=snake_case_ )
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be trained."} ) _a = field( default="./",metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) _a = field( default="codeparrot/codeparrot-clean-train",metadata={"help": "Name or path of training dataset."} ) _a = field( default="codeparrot/codeparrot-clean-valid",metadata={"help": "Name or path of validation dataset."} ) _a = field(default=2,metadata={"help": "Batch size for training."} ) _a = field(default=2,metadata={"help": "Batch size for evaluation."} ) _a = field(default=0.1,metadata={"help": "Value of weight decay."} ) _a = field( default=1_0_0_0_0,metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) _a = field(default=2e-4,metadata={"help": "Learning rate fo training."} ) _a = field(default="cosine",metadata={"help": "Learning rate."} ) _a = field( default=7_5_0,metadata={"help": "Number of warmup steps in the learning rate schedule."} ) _a = field( default=1_6,metadata={"help": "Number of gradient accumulation steps."} ) _a = field( default=UpperCamelCase__,metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) _a = field(default=5_0_0_0_0,metadata={"help": "Maximum number of training steps."} ) _a = field( default=-1,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a = field(default=1_0_2_4,metadata={"help": "Sequence lengths used for training."} ) _a = field(default=1,metadata={"help": "Training seed."} ) _a = field( default=1_0_2_4,metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."},) _a = field( default=UpperCamelCase__,metadata={"help": "States path if the training should continue from a checkpoint folder."} ) _a = field(default=UpperCamelCase__,metadata={"help": "If True the data is pretokenized."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be evaluated."} ) _a = field( default="codeparrot/codeparrot-clean-valid",metadata={"help": "Name or path of validation dataset."} ) _a = field(default=2,metadata={"help": "Batch size used for evaluation."} ) _a = field( default=-1,metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) _a = field(default=1_0_2_4,metadata={"help": "Length of sequences to be evaluated."} ) _a = field(default=1,metadata={"help": "Random seed used for evaluation."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Model name or path of model to be evaluated."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Number of workers used for code evaluation."} ) _a = field( default=UpperCamelCase__,metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."},) _a = field( default=UpperCamelCase__,metadata={"help": "Sample from the language model's output distribution."} ) _a = field(default=0.2,metadata={"help": "Sampling temperature used for generation."} ) _a = field(default=2_5_6,metadata={"help": "Maximum number of newly generated tokens."} ) _a = field(default=0,metadata={"help": "Top-k parameter used for generation."} ) _a = field(default=0.95,metadata={"help": "Top-p parameter used for nucleus sampling."} ) _a = field(default=1_0,metadata={"help": "Number of generations to run in parallel."} ) _a = field( default=2_0_0,metadata={"help": "Number of completions to generate for each sample."} ) _a = field(default=1,metadata={"help": "Random seed used for evaluation."} ) _a = field( default="eval_results.json",metadata={"help": "Random seed used for evaluation."} ) _a = field( default="0",metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) _a = field( default=-1,metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) },) @dataclass class lowercase : _a = field( default=UpperCamelCase__,metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." },) _a = field( default="transformersbook/codeparrot",metadata={"help": "Folder or name of dataset to process."} ) _a = field( default="codeparrot-clean",metadata={"help": "Folder to save processed processed dataset."} ) _a = field( default=1_0_0_0_0_0,metadata={"help": "Number of files to save per JSON output file."} ) _a = field(default="content",metadata={"help": "Column containing text data to process."} ) _a = field( default=1_0_0_0,metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) _a = field( default=1_0_0,metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) _a = field( default=0.25,metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) _a = field( default=1.5,metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) _a = field( default=0.7,metadata={"help": "Probability for filtering config, test and uncommon files."} ) _a = field( default="codeparrot/codeparrot",metadata={"help": "Name or path to the tokenizer."},) _a = field( default=UpperCamelCase__,metadata={"help": "If True, near-duplicate samples are removed."} ) _a = field( default=0.85,metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class lowercase : _a = field( default="gpt2",metadata={"help": "Base tokenizer to build new tokenizer from."} ) _a = field( default="transformersbook/codeparrot-train",metadata={"help": "Dataset to train tokenizer on."} ) _a = field(default="content",metadata={"help": "Column containing text data to process."} ) _a = field(default=2_0_0_0_0_0,metadata={"help": "Number of examples to train tokenizer on."} ) _a = field( default=3_2_7_6_8,metadata={"help": "Number of examples to train the tokenizer on."} ) _a = field(default="codeparrot",metadata={"help": "Name of new tokenizer."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class lowercase : _a = field( default="codeparrot/codeparrot",metadata={"help": "Name or path to the tokenizer."} ) _a = field( default="codeparrot/codeparrot-clean-train",metadata={"help": "Name or path to the dataset to pretokenize."} ) _a = field( default="tokenized-codeparrot-train",metadata={"help": "Repo name of the pretokenized data."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class lowercase : _a = field( default="gpt2-large",metadata={"help": "Configuration to use for model initialization."} ) _a = field( default="codeparrot/codeparrot",metadata={"help": "Tokenizer attached to model."} ) _a = field(default="codeparrot",metadata={"help": "Name of the created model."} ) _a = field(default=UpperCamelCase__,metadata={"help": "Push saved tokenizer to the hub."} )
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "roberta" def __init__( self , _a=5_0265 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> List[str]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Dict = vocab_size _A : str = hidden_size _A : List[Any] = num_hidden_layers _A : List[Any] = num_attention_heads _A : Union[str, Any] = hidden_act _A : List[str] = intermediate_size _A : int = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Optional[Any] = initializer_range _A : int = layer_norm_eps _A : List[str] = position_embedding_type _A : List[Any] = use_cache _A : Dict = classifier_dropout class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
class lowercase : def __init__( self , _a , _a , _a ) -> Optional[int]: _A : Optional[int] = None _A : Any = None _A : List[str] = graph self._normalize_graph(_a , _a ) _A : Tuple = len(_a ) _A : Dict = None def a__ ( self , _a , _a ) -> int: if sources is int: _A : Optional[Any] = [sources] if sinks is int: _A : str = [sinks] if len(_a ) == 0 or len(_a ) == 0: return _A : Any = sources[0] _A : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(_a ) > 1 or len(_a ) > 1: _A : int = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A : int = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A : List[str] = max_input_flow _A : Any = 0 _A : Dict = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A : List[Any] = max_input_flow _A : Tuple = size - 1 def a__ ( self ) -> int: if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def a__ ( self , _a ) -> Optional[Any]: _A : Union[str, Any] = algorithm(self ) class lowercase : def __init__( self , _a ) -> List[str]: _A : str = flow_network _A : int = flow_network.verticesCount _A : Optional[Any] = flow_network.sourceIndex _A : List[str] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A : List[str] = flow_network.graph _A : Tuple = False def a__ ( self ) -> Union[str, Any]: if not self.executed: self._algorithm() _A : List[Any] = True def a__ ( self ) -> Dict: pass class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> Dict: super().__init__(_a ) # use this to save your result _A : str = -1 def a__ ( self ) -> Tuple: if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> List[Any]: super().__init__(_a ) _A : int = [[0] * self.verticies_count for i in range(self.verticies_count )] _A : str = [0] * self.verticies_count _A : Any = [0] * self.verticies_count def a__ ( self ) -> Any: _A : str = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A : Tuple = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A : List[Any] = 0 while i < len(_a ): _A : List[str] = vertices_list[i] _A : str = self.heights[vertex_index] self.process_vertex(_a ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_a ) ) _A : int = 0 else: i += 1 _A : List[str] = sum(self.preflow[self.source_index] ) def a__ ( self , _a ) -> Tuple: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_a , _a ) self.relabel(_a ) def a__ ( self , _a , _a ) -> Tuple: _A : str = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def a__ ( self , _a ) -> Dict: _A : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A : Optional[int] = self.heights[to_index] if min_height is not None: _A : str = min_height + 1 if __name__ == "__main__": _snake_case = [0] _snake_case = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _snake_case = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _snake_case = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _snake_case = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ) -> None: super().__init__(**_a ) _A : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} _A : Optional[Any] = get_size_dict(_a , default_to_square=_a ) _A : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _A : List[str] = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" ) _A : List[str] = do_resize _A : Optional[Any] = size _A : List[Any] = resample _A : str = do_center_crop _A : int = crop_size _A : Optional[Any] = do_rescale _A : List[Any] = rescale_factor _A : Optional[Any] = do_normalize _A : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A : Dict = image_std if image_std is not None else OPENAI_CLIP_STD _A : Union[str, Any] = do_convert_rgb def a__ ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _A : Tuple = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _A : Optional[int] = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _A : Tuple = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> Optional[int]: return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _A : Optional[int] = do_resize if do_resize is not None else self.do_resize _A : Dict = size if size is not None else self.size _A : List[str] = get_size_dict(_a , param_name="""size""" , default_to_square=_a ) _A : List[str] = resample if resample is not None else self.resample _A : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : int = crop_size if crop_size is not None else self.crop_size _A : List[Any] = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a ) _A : Tuple = do_rescale if do_rescale is not None else self.do_rescale _A : str = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Tuple = do_normalize if do_normalize is not None else self.do_normalize _A : Any = image_mean if image_mean is not None else self.image_mean _A : List[str] = image_std if image_std is not None else self.image_std _A : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A : str = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A : Dict = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. _A : int = [to_numpy_array(_a ) for image in images] if do_resize: _A : int = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _A : Optional[Any] = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _A : Union[str, Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A : int = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A : int = [to_channel_dimension_format(_a , _a ) for image in images] _A : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _snake_case = numpy.array([0, 0]) _snake_case = numpy.array([0.5, 0.8_6_6_0_2_5_4]) _snake_case = numpy.array([1, 0]) _snake_case = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Tuple = initial_vectors for _ in range(snake_case_ ): _A : List[Any] = iteration_step(snake_case_ ) return vectors def lowerCAmelCase_ ( snake_case_ ): _A : Dict = [] for i, start_vector in enumerate(vectors[:-1] ): _A : List[str] = vectors[i + 1] new_vectors.append(snake_case_ ) _A : List[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3,60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = numpy.radians(snake_case_ ) _A , _A : Optional[Any] = numpy.cos(snake_case_ ), numpy.sin(snake_case_ ) _A : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : int = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _A , _A : int = zip(*snake_case_ ) plt.plot(snake_case_,snake_case_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _snake_case = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = 384 _A : List[Any] = 7 if "tiny" in model_name: _A : str = 96 _A : List[Any] = (2, 2, 6, 2) _A : Dict = (3, 6, 12, 24) elif "small" in model_name: _A : Tuple = 96 _A : str = (2, 2, 18, 2) _A : Any = (3, 6, 12, 24) elif "base" in model_name: _A : Optional[int] = 128 _A : Optional[Any] = (2, 2, 18, 2) _A : int = (4, 8, 16, 32) _A : List[Any] = 12 _A : int = 512 elif "large" in model_name: _A : Any = 192 _A : Any = (2, 2, 18, 2) _A : Optional[Any] = (6, 12, 24, 48) _A : Any = 12 _A : Tuple = 768 # set label information _A : Any = 150 _A : Optional[int] = """huggingface/label-files""" _A : Optional[Any] = """ade20k-id2label.json""" _A : Dict = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Tuple = {v: k for k, v in idalabel.items()} _A : Any = SwinConfig( embed_dim=snake_case_,depths=snake_case_,num_heads=snake_case_,window_size=snake_case_,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""],) _A : Any = UperNetConfig( backbone_config=snake_case_,auxiliary_in_channels=snake_case_,num_labels=snake_case_,idalabel=snake_case_,labelaid=snake_case_,) return config def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _A : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _A : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) _A : Optional[Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Optional[int] = in_proj_weight[:dim, :] _A : Tuple = in_proj_bias[: dim] _A : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] _A : Tuple = in_proj_bias[ dim : dim * 2 ] _A : int = in_proj_weight[ -dim :, : ] _A : Union[str, Any] = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( snake_case_ ): _A , _A : Optional[int] = x.shape _A : Optional[Any] = x.reshape(snake_case_,4,in_channel // 4 ) _A : Tuple = x[:, [0, 2, 1, 3], :].transpose(1,2 ).reshape(snake_case_,snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ ): _A , _A : Optional[Any] = x.shape _A : str = x.reshape(snake_case_,in_channel // 4,4 ) _A : Any = x[:, :, [0, 2, 1, 3]].transpose(1,2 ).reshape(snake_case_,snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ ): _A : Any = x.shape[0] _A : List[Any] = x.reshape(4,in_channel // 4 ) _A : Dict = x[[0, 2, 1, 3], :].transpose(0,1 ).reshape(snake_case_ ) return x def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = x.shape[0] _A : Union[str, Any] = x.reshape(in_channel // 4,4 ) _A : str = x[:, [0, 2, 1, 3]].transpose(0,1 ).reshape(snake_case_ ) return x def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } _A : Optional[int] = model_name_to_url[model_name] _A : int = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""",file_name=snake_case_ )[ """state_dict""" ] for name, param in state_dict.items(): print(snake_case_,param.shape ) _A : Tuple = get_upernet_config(snake_case_ ) _A : Optional[Any] = UperNetForSemanticSegmentation(snake_case_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A : Any = state_dict.pop(snake_case_ ) if "bn" in key: _A : List[Any] = key.replace("""bn""","""batch_norm""" ) _A : List[Any] = val # rename keys _A : Tuple = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) read_in_q_k_v(snake_case_,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _A : Union[str, Any] = reverse_correct_unfold_reduction_order(snake_case_ ) if "norm" in key: _A : str = reverse_correct_unfold_norm_order(snake_case_ ) model.load_state_dict(snake_case_ ) # verify on image _A : Union[str, Any] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" _A : int = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ).convert("""RGB""" ) _A : int = SegformerImageProcessor() _A : List[Any] = processor(snake_case_,return_tensors="""pt""" ).pixel_values with torch.no_grad(): _A : Any = model(snake_case_ ) _A : str = outputs.logits print(logits.shape ) print("""First values of logits:""",logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _A : List[Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": _A : Optional[Any] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": _A : Union[str, Any] = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": _A : List[Any] = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print("""Logits:""",outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3],snake_case_,atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[f"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( UpperCamelCase__ ): _a = 42 _a = 42 def __init__( self , _a , _a ) -> Any: super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = 1 , _a = 2000 , _a = None , _a = "pil" , _a = True , **_a , ) -> Union[ImagePipelineOutput, Tuple]: _A : List[Any] = self.unet.config.sample_size _A : Any = (batch_size, 3, img_size, img_size) _A : Dict = self.unet _A : Any = randn_tensor(_a , generator=_a ) * self.scheduler.init_noise_sigma _A : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(_a ) self.scheduler.set_sigmas(_a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _A : int = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _A : Tuple = self.unet(_a , _a ).sample _A : int = self.scheduler.step_correct(_a , _a , generator=_a ).prev_sample # prediction step _A : Optional[int] = model(_a , _a ).sample _A : Optional[Any] = self.scheduler.step_pred(_a , _a , _a , generator=_a ) _A , _A : Tuple = output.prev_sample, output.prev_sample_mean _A : Tuple = sample_mean.clamp(0 , 1 ) _A : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A : Any = self.numpy_to_pil(_a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_a )
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _snake_case = "src/diffusers" # Matches is_xxx_available() _snake_case = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla _snake_case = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") _snake_case = "\n{0} = None\n" _snake_case = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" _snake_case = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = _re_backend.findall(snake_case_ ) if len(snake_case_ ) == 0: return None return "_and_".join(snake_case_ ) def lowerCAmelCase_ ( ): with open(os.path.join(snake_case_,"""__init__.py""" ),"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _A : Any = 0 _A : Optional[int] = {} # Go through the end of the file while line_index < len(snake_case_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _A : str = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("""else:""" ): line_index += 1 line_index += 1 _A : Any = [] # Until we unindent, add backend objects to the list while line_index < len(snake_case_ ) and len(lines[line_index] ) > 1: _A : Optional[Any] = lines[line_index] _A : Tuple = _re_single_line_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(snake_case_ ) > 0: _A : Any = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_ ( snake_case_,snake_case_ ): if name.isupper(): return DUMMY_CONSTANT.format(snake_case_ ) elif name.islower(): return DUMMY_FUNCTION.format(snake_case_,snake_case_ ) else: return DUMMY_CLASS.format(snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_=None ): if backend_specific_objects is None: _A : Dict = read_init() # For special correspondence backend to module name as used in the function requires_modulename _A : List[Any] = {} for backend, objects in backend_specific_objects.items(): _A : int = """[""" + """, """.join(f'''"{b}"''' for b in backend.split("""_and_""" ) ) + """]""" _A : str = """# This file is autogenerated by the command `make fix-copies`, do not edit.\n""" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(snake_case_,snake_case_ ) for o in objects] ) _A : List[Any] = dummy_file return dummy_files def lowerCAmelCase_ ( snake_case_=False ): _A : Dict = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _A : Optional[int] = {"""torch""": """pt"""} # Locate actual dummy modules and read their content. _A : Optional[int] = os.path.join(snake_case_,"""utils""" ) _A : str = { backend: os.path.join(snake_case_,f'''dummy_{short_names.get(snake_case_,snake_case_ )}_objects.py''' ) for backend in dummy_files.keys() } _A : List[str] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(snake_case_ ): with open(snake_case_,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Optional[Any] = f.read() else: _A : int = """""" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(snake_case_,snake_case_ )}_objects.py as the main ''' """__init__ has new objects.""" ) with open(dummy_file_paths[backend],"""w""",encoding="""utf-8""",newline="""\n""" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( """The main __init__ has objects that are not present in """ f'''diffusers.utils.dummy_{short_names.get(snake_case_,snake_case_ )}_objects.py. Run `make fix-copies` ''' """to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
from __future__ import annotations class lowercase : def __init__( self , _a ) -> None: _A : Any = order # a_{0} ... a_{k} _A : Any = [1.0] + [0.0] * order # b_{0} ... b_{k} _A : Optional[Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _A : int = [0.0] * self.order # y[n-1] ... y[n-k] _A : Union[str, Any] = [0.0] * self.order def a__ ( self , _a , _a ) -> None: if len(_a ) < self.order: _A : Optional[Any] = [1.0, *a_coeffs] if len(_a ) != self.order + 1: _A : Dict = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_a )}''' ) raise ValueError(_a ) if len(_a ) != self.order + 1: _A : List[str] = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(_a )}''' ) raise ValueError(_a ) _A : Union[str, Any] = a_coeffs _A : Tuple = b_coeffs def a__ ( self , _a ) -> float: _A : Union[str, Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _A : Any = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _A : Union[str, Any] = self.input_history[:-1] _A : Optional[Any] = self.output_history[:-1] _A : int = sample _A : str = result return result
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = FileLock(str(tmpdir / """foo.lock""" ) ) _A : Tuple = FileLock(str(tmpdir / """foo.lock""" ) ) _A : Optional[int] = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): _A : List[Any] = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = """a""" * 1000 + """.lock""" _A : Tuple = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 _A : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowercase ( unittest.TestCase ): def a__ ( self , _a , _a ) -> str: _A : List[str] = jnp.ones((batch_size, length) ) / length return scores def a__ ( self ) -> Optional[int]: _A : List[Any] = None _A : Union[str, Any] = 20 _A : List[str] = self._get_uniform_logits(batch_size=2 , length=_a ) # tweak scores to not be uniform anymore _A : str = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _A : str = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _A : str = jax.nn.softmax(_a , axis=-1 ) _A : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) _A : Tuple = FlaxTemperatureLogitsWarper(temperature=1.3 ) _A : Union[str, Any] = jax.nn.softmax(temp_dist_warper_sharper(_a , scores.copy() , cur_len=_a ) , axis=-1 ) _A : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(_a , scores.copy() , cur_len=_a ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a__ ( self ) -> Tuple: _A : int = None _A : List[Any] = 10 _A : int = 2 # create ramp distribution _A : Optional[int] = np.broadcast_to(np.arange(_a )[None, :] , (batch_size, vocab_size) ).copy() _A : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size _A : int = FlaxTopKLogitsWarper(3 ) _A : Optional[int] = top_k_warp(_a , _a , cur_len=_a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _A : Optional[Any] = 5 _A : Any = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _A : Any = np.broadcast_to(np.arange(_a )[None, :] , (batch_size, length) ).copy() _A : Dict = top_k_warp_safety_check(_a , _a , cur_len=_a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = None _A : Optional[int] = 10 _A : Optional[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _A : Union[str, Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _A : Any = FlaxTopPLogitsWarper(0.8 ) _A : Union[str, Any] = np.exp(top_p_warp(_a , _a , cur_len=_a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _A : List[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # check edge cases with negative and extreme logits _A : List[str] = np.broadcast_to(np.arange(_a )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _A : List[Any] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _A : Tuple = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _A : int = top_p_warp(_a , _a , cur_len=_a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a__ ( self ) -> int: _A : Tuple = 20 _A : str = 4 _A : Optional[Any] = 0 _A : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_a ) # check that min length is applied at length 5 _A : Dict = ids_tensor((batch_size, 20) , vocab_size=20 ) _A : Optional[Any] = 5 _A : Tuple = self._get_uniform_logits(_a , _a ) _A : List[str] = min_dist_processor(_a , _a , cur_len=_a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 _A : Optional[Any] = self._get_uniform_logits(_a , _a ) _A : Tuple = 15 _A : Optional[int] = min_dist_processor(_a , _a , cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = 20 _A : Any = 4 _A : str = 0 _A : Any = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) # check that all scores are -inf except the bos_token_id score _A : Dict = ids_tensor((batch_size, 1) , vocab_size=20 ) _A : Tuple = 1 _A : List[Any] = self._get_uniform_logits(_a , _a ) _A : int = logits_processor(_a , _a , cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _A : Any = 3 _A : Dict = self._get_uniform_logits(_a , _a ) _A : List[str] = logits_processor(_a , _a , cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = 20 _A : Optional[int] = 4 _A : Any = 0 _A : Dict = 5 _A : List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_a , eos_token_id=_a ) # check that all scores are -inf except the eos_token_id when max_length is reached _A : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) _A : Optional[Any] = 4 _A : str = self._get_uniform_logits(_a , _a ) _A : Any = logits_processor(_a , _a , cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _A : Any = 3 _A : int = self._get_uniform_logits(_a , _a ) _A : List[str] = logits_processor(_a , _a , cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def a__ ( self ) -> List[Any]: _A : Dict = 4 _A : Tuple = 10 _A : int = 15 _A : int = 2 _A : Any = 1 _A : Tuple = 15 # dummy input_ids and scores _A : List[Any] = ids_tensor((batch_size, sequence_length) , _a ) _A : Optional[int] = input_ids.copy() _A : Union[str, Any] = self._get_uniform_logits(_a , _a ) _A : Optional[int] = scores.copy() # instantiate all dist processors _A : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) _A : List[str] = FlaxTopKLogitsWarper(3 ) _A : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _A : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_a ) _A : List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) _A : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=_a , eos_token_id=_a ) _A : Union[str, Any] = 10 # no processor list _A : Optional[int] = temp_dist_warp(_a , _a , cur_len=_a ) _A : Tuple = top_k_warp(_a , _a , cur_len=_a ) _A : List[str] = top_p_warp(_a , _a , cur_len=_a ) _A : str = min_dist_proc(_a , _a , cur_len=_a ) _A : Union[str, Any] = bos_dist_proc(_a , _a , cur_len=_a ) _A : Optional[int] = eos_dist_proc(_a , _a , cur_len=_a ) # with processor list _A : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _A : str = processor(_a , _a , cur_len=_a ) # scores should be equal self.assertTrue(jnp.allclose(_a , _a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a__ ( self ) -> str: _A : int = 4 _A : Tuple = 10 _A : Optional[Any] = 15 _A : str = 2 _A : str = 1 _A : Dict = 15 # dummy input_ids and scores _A : int = ids_tensor((batch_size, sequence_length) , _a ) _A : List[Any] = input_ids.copy() _A : int = self._get_uniform_logits(_a , _a ) _A : Optional[int] = scores.copy() # instantiate all dist processors _A : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) _A : Any = FlaxTopKLogitsWarper(3 ) _A : Any = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _A : int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_a ) _A : Union[str, Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) _A : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_a , eos_token_id=_a ) _A : List[str] = 10 # no processor list def run_no_processor_list(_a , _a , _a ): _A : List[str] = temp_dist_warp(_a , _a , cur_len=_a ) _A : Any = top_k_warp(_a , _a , cur_len=_a ) _A : str = top_p_warp(_a , _a , cur_len=_a ) _A : Optional[Any] = min_dist_proc(_a , _a , cur_len=_a ) _A : Optional[int] = bos_dist_proc(_a , _a , cur_len=_a ) _A : List[str] = eos_dist_proc(_a , _a , cur_len=_a ) return scores # with processor list def run_processor_list(_a , _a , _a ): _A : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _A : Optional[Any] = processor(_a , _a , cur_len=_a ) return scores _A : int = jax.jit(_a ) _A : str = jax.jit(_a ) _A : Tuple = jitted_run_no_processor_list(_a , _a , _a ) _A : str = jitted_run_processor_list(_a , _a , _a ) # scores should be equal self.assertTrue(jnp.allclose(_a , _a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "align_text_model" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=0 , _a="absolute" , _a=True , **_a , ) -> Dict: super().__init__(**_a ) _A : Any = vocab_size _A : Optional[Any] = hidden_size _A : List[Any] = num_hidden_layers _A : Union[str, Any] = num_attention_heads _A : List[str] = hidden_act _A : Union[str, Any] = intermediate_size _A : Dict = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Optional[int] = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = position_embedding_type _A : Any = use_cache _A : int = pad_token_id @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : Union[str, Any] = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": _A : List[Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "align_vision_model" def __init__( self , _a = 3 , _a = 600 , _a = 2.0 , _a = 3.1 , _a = 8 , _a = [3, 3, 5, 3, 5, 5, 3] , _a = [32, 16, 24, 40, 80, 112, 192] , _a = [16, 24, 40, 80, 112, 192, 320] , _a = [] , _a = [1, 2, 2, 2, 1, 2, 1] , _a = [1, 2, 2, 3, 3, 4, 1] , _a = [1, 6, 6, 6, 6, 6, 6] , _a = 0.25 , _a = "swish" , _a = 2560 , _a = "mean" , _a = 0.02 , _a = 0.001 , _a = 0.99 , _a = 0.2 , **_a , ) -> str: super().__init__(**_a ) _A : Optional[Any] = num_channels _A : int = image_size _A : int = width_coefficient _A : Any = depth_coefficient _A : List[str] = depth_divisor _A : int = kernel_sizes _A : Union[str, Any] = in_channels _A : List[Any] = out_channels _A : Tuple = depthwise_padding _A : Union[str, Any] = strides _A : int = num_block_repeats _A : Any = expand_ratios _A : Optional[int] = squeeze_expansion_ratio _A : str = hidden_act _A : Optional[Any] = hidden_dim _A : List[Any] = pooling_type _A : List[str] = initializer_range _A : Union[str, Any] = batch_norm_eps _A : Any = batch_norm_momentum _A : str = drop_connect_rate _A : List[str] = sum(_a ) * 4 @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : Any = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": _A : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "align" _a = True def __init__( self , _a=None , _a=None , _a=640 , _a=1.0 , _a=0.02 , **_a , ) -> List[str]: super().__init__(**_a ) if text_config is None: _A : List[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: _A : str = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) _A : str = AlignTextConfig(**_a ) _A : Optional[int] = AlignVisionConfig(**_a ) _A : Dict = projection_dim _A : Union[str, Any] = temperature_init_value _A : Any = initializer_range @classmethod def a__ ( cls , _a , _a , **_a ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def a__ ( self ) -> str: _A : Optional[int] = copy.deepcopy(self.__dict__ ) _A : List[str] = self.text_config.to_dict() _A : Any = self.vision_config.to_dict() _A : Tuple = self.__class__.model_type return output
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name _snake_case = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=8 ): _A : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , ) -> Optional[int]: super().__init__() self.register_modules( unet=_a , scheduler=_a , movq=_a , ) _A : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Dict: if latents is None: _A : Any = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _A : List[Any] = latents.to(_a ) _A : Any = latents * scheduler.init_noise_sigma return latents def a__ ( self , _a=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) _A : Any = torch.device(F'''cuda:{gpu_id}''' ) _A : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) def a__ ( self , _a=0 ) -> Any: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) _A : List[str] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=_a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A : List[str] = cpu_offload_with_hook(_a , _a , prev_module_hook=_a ) # We'll offload the last model manually. _A : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ ( self ) -> Optional[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(_a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_a ) def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 100 , _a = 4.0 , _a = 1 , _a = None , _a = None , _a = "pil" , _a = True , ) -> Optional[int]: _A : Optional[int] = self._execution_device _A : Any = guidance_scale > 1.0 if isinstance(_a , _a ): _A : Union[str, Any] = torch.cat(_a , dim=0 ) if isinstance(_a , _a ): _A : Any = torch.cat(_a , dim=0 ) if isinstance(_a , _a ): _A : List[str] = torch.cat(_a , dim=0 ) _A : List[str] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _A : Any = image_embeds.repeat_interleave(_a , dim=0 ) _A : Dict = negative_image_embeds.repeat_interleave(_a , dim=0 ) _A : Union[str, Any] = hint.repeat_interleave(_a , dim=0 ) _A : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_a ) _A : Union[str, Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_a ) self.scheduler.set_timesteps(_a , device=_a ) _A : int = self.scheduler.timesteps _A : str = self.movq.config.latent_channels _A , _A : int = downscale_height_and_width(_a , _a , self.movq_scale_factor ) # create initial latent _A : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : List[str] = {"""image_embeds""": image_embeds, """hint""": hint} _A : Dict = self.unet( sample=_a , timestep=_a , encoder_hidden_states=_a , added_cond_kwargs=_a , return_dict=_a , )[0] if do_classifier_free_guidance: _A , _A : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) _A , _A : Dict = noise_pred.chunk(2 ) _A , _A : Optional[int] = variance_pred.chunk(2 ) _A : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step( _a , _a , _a , generator=_a , )[0] # post-processing _A : str = self.movq.decode(_a , force_not_quantize=_a )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _A : Optional[Any] = image * 0.5 + 0.5 _A : Union[str, Any] = image.clamp(0 , 1 ) _A : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A : int = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase__ ) class lowercase ( UpperCamelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _a = field(default="summarization",metadata={"include_in_asdict_even_if_is_default": True} ) _a = Features({"text": Value("string" )} ) _a = Features({"summary": Value("string" )} ) _a = "text" _a = "summary" @property def a__ ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> int: torch.manual_seed(0 ) _A : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def a__ ( self ) -> Dict: _A : List[str] = self.dummy_uncond_unet _A : Tuple = KarrasVeScheduler() _A : Any = KarrasVePipeline(unet=_a , scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Dict = torch.manual_seed(0 ) _A : Optional[Any] = pipe(num_inference_steps=2 , generator=_a , output_type="""numpy""" ).images _A : Optional[Any] = torch.manual_seed(0 ) _A : Tuple = pipe(num_inference_steps=2 , generator=_a , output_type="""numpy""" , return_dict=_a )[0] _A : Tuple = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase ( unittest.TestCase ): def a__ ( self ) -> Tuple: _A : int = """google/ncsnpp-celebahq-256""" _A : str = UNetaDModel.from_pretrained(_a ) _A : int = KarrasVeScheduler() _A : str = KarrasVePipeline(unet=_a , scheduler=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : int = torch.manual_seed(0 ) _A : Tuple = pipe(num_inference_steps=20 , generator=_a , output_type="""numpy""" ).images _A : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _A : Optional[Any] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""",[ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""",num_bytes=1337,num_examples=42,dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""",num_bytes=1337,num_examples=42 )} ), SplitDict({"""train""": SplitInfo()} ), ],) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = split_dict._to_yaml_list() assert len(snake_case_ ) == len(snake_case_ ) _A : Tuple = SplitDict._from_yaml_list(snake_case_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _A : Optional[Any] = None # the split name of split_dict takes over the name of the split info object _A : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""",[SplitInfo(), SplitInfo(dataset_name=snake_case_ ), SplitInfo(dataset_name="""my_dataset""" )] ) def lowerCAmelCase_ ( snake_case_ ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _A : List[str] = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _snake_case = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class lowercase ( unittest.TestCase ): def a__ ( self , _a , _a = None , _a = None , _a = None , _a = True , ) -> Any: _A : str = [file for file in os.listdir(_a ) if os.path.isfile(os.path.join(_a , _a ) )] if identifier is not None: _A : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_a , _a ): for n_ in n_identifier: _A : Optional[Any] = [file for file in files if n_ not in file] else: _A : List[Any] = [file for file in files if n_identifier not in file] _A : Optional[Any] = ignore_files or [] ignore_files.append("""__init__.py""" ) _A : Union[str, Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _a ) if only_modules: _A : str = file.split(""".""" )[0] try: _A : Union[str, Any] = getattr(_a , _a ) _A : Dict = doctest.DocTestSuite(_a ) _A : Tuple = unittest.TextTestRunner().run(_a ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: _A : Any = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def a__ ( self ) -> Optional[int]: _A : Optional[int] = Path("""src/transformers""" ) _A : Union[str, Any] = """modeling""" _A : Optional[Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_a , identifier=_a , ignore_files=_a ) def a__ ( self ) -> int: _A : int = Path("""src/transformers""" ) _A : List[str] = """tokenization""" self.analyze_directory(_a , identifier=_a ) def a__ ( self ) -> Optional[int]: _A : List[str] = Path("""src/transformers""" ) _A : Dict = """configuration""" self.analyze_directory(_a , identifier=_a ) def a__ ( self ) -> List[str]: _A : List[Any] = Path("""src/transformers""" ) _A : Union[str, Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_a , n_identifier=_a ) def a__ ( self ) -> int: _A : Optional[Any] = Path("""docs/source""" ) _A : int = ["""favicon.ico"""] self.analyze_directory(_a , ignore_files=_a , only_modules=_a )
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
import math def lowerCAmelCase_ ( snake_case_,snake_case_ ): if ( not isinstance(snake_case_,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def lowerCAmelCase_ ( snake_case_,snake_case_ ): if ( not isinstance(snake_case_,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Optional[int]: _A : Tuple = parent _A : Optional[Any] = batch_size _A : str = seq_length _A : Optional[int] = is_training _A : List[str] = use_input_mask _A : List[str] = use_token_type_ids _A : int = use_labels _A : Union[str, Any] = vocab_size _A : List[str] = hidden_size _A : str = num_hidden_layers _A : Any = num_attention_heads _A : Union[str, Any] = intermediate_size _A : int = hidden_act _A : Optional[int] = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[str] = type_vocab_size _A : Union[str, Any] = type_sequence_label_size _A : Union[str, Any] = initializer_range _A : Any = num_labels _A : Any = num_choices _A : Any = scope def a__ ( self ) -> Optional[Any]: _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[int] = None if self.use_input_mask: _A : str = random_attention_mask([self.batch_size, self.seq_length] ) _A : List[Any] = None if self.use_token_type_ids: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Optional[Any] = None _A : int = None _A : List[str] = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : int = ids_tensor([self.batch_size] , self.num_choices ) _A : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[str]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _A : Optional[int] = LlamaModel(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a ) _A : Optional[Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Any: _A : Optional[int] = True _A : Optional[Any] = LlamaModel(_a ) model.to(_a ) model.eval() _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _A : Dict = model( _a , attention_mask=_a , encoder_hidden_states=_a , ) _A : Union[str, Any] = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> int: _A : Optional[int] = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() _A : int = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Tuple: _A : List[str] = True _A : Any = True _A : str = LlamaForCausalLM(config=_a ) model.to(_a ) model.eval() # first forward pass _A : int = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , use_cache=_a , ) _A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _A : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _A : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _A : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) _A : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _A : Optional[Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , output_hidden_states=_a , )["""hidden_states"""][0] _A : List[Any] = model( _a , attention_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , past_key_values=_a , output_hidden_states=_a , )["""hidden_states"""][0] # select random slice _A : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _A : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: _A : Any = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[Any] = config_and_inputs _A : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _a = (LlamaForCausalLM,) if is_torch_available() else () _a = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = False def a__ ( self ) -> Union[str, Any]: _A : Dict = LlamaModelTester(self ) _A : Union[str, Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def a__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def a__ ( self ) -> int: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> int: _A : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Optional[Any] = type self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Union[str, Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : List[str] = 3 _A : Tuple = input_dict["""input_ids"""] _A : Tuple = input_ids.ne(1 ).to(_a ) _A : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : List[Any] = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Tuple = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> str: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Tuple = 3 _A : Union[str, Any] = """single_label_classification""" _A : List[str] = input_dict["""input_ids"""] _A : int = input_ids.ne(1 ).to(_a ) _A : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _A : Tuple = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ ( self ) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Tuple = 3 _A : Dict = """multi_label_classification""" _A : Optional[Any] = input_dict["""input_ids"""] _A : Any = input_ids.ne(1 ).to(_a ) _A : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _A : int = LlamaForSequenceClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def a__ ( self ) -> Optional[int]: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def a__ ( self , _a ) -> Optional[Any]: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Tuple = ids_tensor([1, 10] , config.vocab_size ) _A : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : int = LlamaModel(_a ) original_model.to(_a ) original_model.eval() _A : List[str] = original_model(_a ).last_hidden_state _A : str = original_model(_a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _A : Union[str, Any] = {"""type""": scaling_type, """factor""": 10.0} _A : Optional[Any] = LlamaModel(_a ) scaled_model.to(_a ) scaled_model.eval() _A : List[str] = scaled_model(_a ).last_hidden_state _A : Any = scaled_model(_a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_a , _a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_a , _a , atol=1e-5 ) ) @require_torch class lowercase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Tuple: _A : Optional[int] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Tuple = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) _A : Optional[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _A : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : str = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> List[str]: _A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) _A : List[str] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def a__ ( self ) -> Dict: _A : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : List[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) _A : Optional[Any] = model(torch.tensor(_a ) ) # Expected mean on dim = -1 _A : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _A : List[Any] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def a__ ( self ) -> int: _A : List[str] = [1, 306, 4658, 278, 6593, 310, 2834, 338] _A : Optional[Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) _A : Any = model(torch.tensor(_a ) ) _A : List[str] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _a , atol=1e-2 , rtol=1e-2 ) # fmt: off _A : Any = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _a , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def a__ ( self ) -> Optional[int]: _A : str = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" _A : Optional[int] = """Simply put, the theory of relativity states that """ _A : List[str] = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) _A : Dict = tokenizer.encode(_a , return_tensors="""pt""" ) _A : Any = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_a ) # greedy generation outputs _A : Optional[Any] = model.generate(_a , max_new_tokens=64 , top_p=_a , temperature=1 , do_sample=_a ) _A : List[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_a ) self.assertEqual(_a , _a )
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "xlm-prophetnet" _a = ["past_key_values"] _a = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self , _a = 0.1 , _a = "gelu" , _a = 3_0522 , _a = 1024 , _a = 4096 , _a = 12 , _a = 16 , _a = 4096 , _a = 12 , _a = 16 , _a = 0.1 , _a = 0.1 , _a = 512 , _a = 0.02 , _a = True , _a = True , _a = 0 , _a = 2 , _a = 32 , _a = 128 , _a = False , _a = 0.0 , _a = True , _a = 0 , _a = 1 , _a = 2 , **_a , ) -> int: _A : List[Any] = vocab_size _A : Dict = hidden_size _A : int = encoder_ffn_dim _A : List[Any] = num_encoder_layers _A : str = num_encoder_attention_heads _A : Optional[int] = decoder_ffn_dim _A : Any = num_decoder_layers _A : List[str] = num_decoder_attention_heads _A : List[str] = max_position_embeddings _A : Dict = init_std # Normal(0, this parameter) _A : Optional[int] = activation_function # parameters for xlmprophetnet _A : Union[str, Any] = ngram _A : List[Any] = num_buckets _A : int = relative_max_distance _A : Dict = disable_ngram_loss _A : Union[str, Any] = eps # 3 Types of Dropout _A : int = attention_dropout _A : Optional[Any] = activation_dropout _A : Union[str, Any] = dropout _A : Tuple = use_cache super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , add_cross_attention=_a , decoder_start_token_id=_a , **_a , ) @property def a__ ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def a__ ( self , _a ) -> Any: raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PIL.Image.BICUBIC , _a = True , _a = None , _a = 1 / 255 , _a = True , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) _A : Union[str, Any] = size if size is not None else {"""height""": 256, """width""": 256} _A : List[Any] = get_size_dict(_a ) _A : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _A : Union[str, Any] = get_size_dict(_a , param_name="""crop_size""" ) _A : str = do_resize _A : Optional[int] = size _A : Any = resample _A : Any = do_center_crop _A : List[Any] = crop_size _A : Any = do_rescale _A : List[Any] = rescale_factor _A : Union[str, Any] = do_normalize _A : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , _a , _a , _a = PIL.Image.BICUBIC , _a = None , **_a , ) -> np.ndarray: _A : List[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _a , size=(size["""height"""], size["""width"""]) , resample=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _A : Optional[Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> Optional[int]: return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def a__ ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _A : int = do_resize if do_resize is not None else self.do_resize _A : List[str] = resample if resample is not None else self.resample _A : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Any = do_rescale if do_rescale is not None else self.do_rescale _A : str = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Tuple = do_normalize if do_normalize is not None else self.do_normalize _A : Any = image_mean if image_mean is not None else self.image_mean _A : List[Any] = image_std if image_std is not None else self.image_std _A : List[Any] = size if size is not None else self.size _A : Optional[int] = get_size_dict(_a ) _A : List[str] = crop_size if crop_size is not None else self.crop_size _A : Any = get_size_dict(_a , param_name="""crop_size""" ) _A : Tuple = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A : Dict = [to_numpy_array(_a ) for image in images] if do_resize: _A : Union[str, Any] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _A : Tuple = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _A : Any = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A : Union[str, Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A : Optional[int] = [to_channel_dimension_format(_a , _a ) for image in images] _A : int = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): _A : Dict = 0.00 _A : Tuple = 0 for resistor in resistors: if resistor <= 0: _A : Dict = f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case_ ) first_sum += 1 / float(snake_case_ ) index += 1 return 1 / first_sum def lowerCAmelCase_ ( snake_case_ ): _A : int = 0.00 _A : Dict = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _A : Dict = f'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _snake_case = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self , _a ) -> Any: _A : Optional[Any] = data _A : Node[T] | None = None def __str__( self ) -> str: return F'''{self.data}''' class lowercase ( Generic[T] ): def __init__( self ) -> None: _A : Node[T] | None = None def __iter__( self ) -> Iterator[T]: _A : Tuple = self.top while node: yield node.data _A : Union[str, Any] = node.next def __str__( self ) -> str: return "->".join([str(_a ) for item in self] ) def __len__( self ) -> int: return len(tuple(iter(self ) ) ) def a__ ( self ) -> bool: return self.top is None def a__ ( self , _a ) -> None: _A : Optional[Any] = Node(_a ) if not self.is_empty(): _A : Optional[Any] = self.top _A : Union[str, Any] = node def a__ ( self ) -> T: if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _a ) _A : List[Any] = self.top _A : str = self.top.next return pop_node.data def a__ ( self ) -> T: if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def a__ ( self ) -> None: _A : List[Any] = None if __name__ == "__main__": from doctest import testmod testmod()
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from __future__ import annotations import os from collections.abc import Mapping _snake_case = tuple[int, int] class lowercase : def __init__( self , _a , _a ) -> None: _A : set[int] = vertices _A : dict[EdgeT, int] = { (min(_a ), max(_a )): weight for edge, weight in edges.items() } def a__ ( self , _a , _a ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _A : Union[str, Any] = weight def a__ ( self ) -> Graph: _A : Graph = Graph({min(self.vertices )} , {} ) _A : EdgeT _A : int _A : EdgeT _A : int while len(subgraph.vertices ) < len(self.vertices ): _A : Dict = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _A : List[str] = edge _A : Any = weight subgraph.add_edge(_a , _a ) return subgraph def lowerCAmelCase_ ( snake_case_ = "p107_network.txt" ): _A : str = os.path.abspath(os.path.dirname(snake_case_ ) ) _A : str = os.path.join(snake_case_,snake_case_ ) _A : dict[EdgeT, int] = {} _A : list[str] _A : int _A : int with open(snake_case_ ) as f: _A : Union[str, Any] = f.read().strip().split("""\n""" ) _A : Tuple = [line.split(""",""" ) for line in data] for edgea in range(1,len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": _A : Optional[Any] = int(adjaceny_matrix[edgea][edgea] ) _A : Graph = Graph(set(range(len(snake_case_ ) ) ),snake_case_ ) _A : Graph = graph.prims_algorithm() _A : int = sum(graph.edges.values() ) _A : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase_ ( *snake_case_ ): with open(snake_case_,"""r""" ) as fh: fcntl.flock(snake_case_,fcntl.LOCK_EX ) try: print(*snake_case_ ) finally: fcntl.flock(snake_case_,fcntl.LOCK_UN ) _snake_case = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) _snake_case = torch.device("cuda", local_rank) _snake_case = socket.gethostname() _snake_case = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _snake_case = dist.get_rank() _snake_case = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0,snake_case_ = 0 ): _A : List[Any] = right or len(snake_case_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case_,snake_case_,left + 1,right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : List[Any] = global_rng _A : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=1 , _a=0.0 , _a=1_6000 , _a=True , _a=80 , _a=16 , _a=64 , _a="hann_window" , _a=80 , _a=7600 , _a=1e-10 , _a=True , ) -> List[str]: _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : int = min_seq_length _A : Tuple = max_seq_length _A : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Any = feature_size _A : List[Any] = padding_value _A : Tuple = sampling_rate _A : int = do_normalize _A : str = num_mel_bins _A : List[str] = hop_length _A : Tuple = win_length _A : List[str] = win_function _A : List[str] = fmin _A : Dict = fmax _A : Tuple = mel_floor _A : Tuple = return_attention_mask def a__ ( self ) -> Tuple: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _A : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : int = [np.asarray(_a ) for x in speech_inputs] return speech_inputs def a__ ( self , _a=False , _a=False ) -> str: if equal_length: _A : int = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : str = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[str] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = SpeechTaFeatureExtractor def a__ ( self ) -> Union[str, Any]: _A : Any = SpeechTaFeatureExtractionTester(self ) def a__ ( self , _a ) -> Union[str, Any]: self.assertTrue(np.all(np.mean(_a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a , axis=0 ) - 1 ) < 1e-3 ) ) def a__ ( self ) -> int: # Tests that all call wrap to encode_plus and batch_encode_plus _A : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : int = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : List[Any] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _A : Dict = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : List[str] = feat_extract(_a , return_tensors="""np""" ).input_values _A : List[str] = feat_extract(_a , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: _A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = ["""longest""", """max_length""", """do_not_pad"""] _A : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(_a , _a ): _A : Optional[Any] = feat_extract(_a , padding=_a , max_length=_a , return_tensors="""np""" ) _A : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : List[str] = range(800 , 1400 , 200 ) _A : Any = [floats_list((1, x) )[0] for x in lengths] _A : List[Any] = ["""longest""", """max_length""", """do_not_pad"""] _A : Optional[Any] = [None, 1600, None] for max_length, padding in zip(_a , _a ): _A : Optional[Any] = feat_extract(_a , max_length=_a , padding=_a ) _A : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def a__ ( self ) -> Tuple: _A : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = feat_extract( _a , truncation=_a , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) _A : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : str = feat_extract( _a , truncation=_a , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) _A : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) _A : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Dict = feat_extract( _a , truncation=_a , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) _A : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def a__ ( self ) -> int: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Any = np.random.rand(100 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : List[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _A : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Optional[Any] = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(audio_target=_a , padding=_a , return_tensors="""np""" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input _A : Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_values _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Dict = feature_extractor(_a , return_tensors="""np""" ).input_values _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Tuple = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_values _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Tuple: _A : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() _A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _A : List[Any] = feat_extract.model_input_names[0] _A : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) _A : Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) _A : Any = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _A : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: _A : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self ) -> List[Any]: _A : Any = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_a ) _A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) _A : Any = feat_extract.model_input_names[0] _A : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _A : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: _A : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self ) -> Any: _A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) _A : Any = self.feat_extract_tester.prepare_inputs_for_target() _A : Any = feat_extract.model_input_names[0] _A : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _A : Dict = feat_extract.num_mel_bins # hack! _A : Union[str, Any] = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" )[input_name] _A : Union[str, Any] = feat_extract.pad(_a , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a__ ( self ) -> List[Any]: _A : List[str] = self.feat_extract_dict _A : Any = True _A : List[Any] = self.feature_extraction_class(**_a ) _A : List[Any] = self.feat_extract_tester.prepare_inputs_for_target() _A : str = [len(_a ) for x in speech_inputs] _A : Dict = feat_extract.model_input_names[0] _A : str = BatchFeature({input_name: speech_inputs} ) _A : Tuple = feat_extract.num_mel_bins # hack! _A : Tuple = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = self.feat_extract_dict _A : int = True _A : Optional[Any] = self.feature_extraction_class(**_a ) _A : Any = self.feat_extract_tester.prepare_inputs_for_target() _A : Dict = [len(_a ) for x in speech_inputs] _A : Tuple = feat_extract.model_input_names[0] _A : Optional[Any] = BatchFeature({input_name: speech_inputs} ) _A : str = min(_a ) _A : Any = feat_extract.num_mel_bins # hack! _A : Union[str, Any] = feat_extract.pad( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def a__ ( self , _a ) -> Tuple: from datasets import load_dataset _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : int = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on _A : List[str] = self._load_datasamples(1 ) _A : Optional[Any] = SpeechTaFeatureExtractor() _A : Dict = feature_extractor(_a , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , _a , atol=1e-6 ) ) def a__ ( self ) -> Dict: # fmt: off _A : Tuple = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Any = SpeechTaFeatureExtractor() _A : List[str] = feature_extractor(audio_target=_a , return_tensors="""pt""" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _a , atol=1e-4 ) )
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def a__ ( self , _a , _a , _a = 1 , _a = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_a , hypotheses=_a , min_len=_a , max_len=_a ) }
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
class lowercase : def __init__( self ) -> Optional[int]: _A : Optional[Any] = {} def a__ ( self ) -> None: print(self.vertex ) for i in self.vertex: print(_a , """ -> """ , """ -> """.join([str(_a ) for j in self.vertex[i]] ) ) def a__ ( self , _a , _a ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(_a ) else: # else make a new vertex _A : List[str] = [to_vertex] def a__ ( self ) -> None: # visited array for storing already visited nodes _A : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_a , _a ) def a__ ( self , _a , _a ) -> None: # mark start vertex as visited _A : Tuple = True print(_a , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_a , _a ) if __name__ == "__main__": _snake_case = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
def lowerCAmelCase_ ( snake_case_ = 1,snake_case_ = 1000 ): _A : Optional[int] = 1 _A : List[Any] = 0 for divide_by_number in range(snake_case_,digit + 1 ): _A : list[int] = [] _A : Any = numerator for _ in range(1,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(snake_case_ ): _A : Optional[Any] = len(snake_case_ ) _A : Optional[Any] = divide_by_number else: has_been_divided.append(snake_case_ ) _A : Tuple = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[Any] = [0 for i in range(r + 1 )] # nc0 = 1 _A : Optional[Any] = 1 for i in range(1,n + 1 ): # to compute current row from previous row. _A : int = min(snake_case_,snake_case_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
def lowerCAmelCase_ ( ): for n in range(1,1000000 ): yield n * (n + 1) // 2 def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = 1 _A : str = 2 while i * i <= n: _A : Dict = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCAmelCase_ ( ): return next(i for i in triangle_number_generator() if count_divisors(snake_case_ ) > 500 ) if __name__ == "__main__": print(solution())
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=1024,snake_case_=1024,snake_case_=False,**snake_case_ ): _A : Tuple = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = SeqaSeqDataset(snake_case_,snake_case_,snake_case_,snake_case_,type_path="""train""",**snake_case_ ) _A : List[str] = tok.pad_token_id def get_lens(snake_case_ ): _A : Union[str, Any] = tqdm( DataLoader(snake_case_,batch_size=512,num_workers=8,shuffle=snake_case_,collate_fn=ds.collate_fn ),desc=str(ds.len_file ),) _A : Tuple = [] for batch in dl: _A : Dict = batch["""input_ids"""].ne(snake_case_ ).sum(1 ).tolist() _A : Tuple = batch["""labels"""].ne(snake_case_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case_,snake_case_ ): max_lens.append(max(snake_case_,snake_case_ ) ) else: max_lens.extend(snake_case_ ) return max_lens _A : List[Any] = get_lens(snake_case_ ) _A : Any = SeqaSeqDataset(snake_case_,snake_case_,snake_case_,snake_case_,type_path="""val""",**snake_case_ ) _A : Dict = get_lens(snake_case_ ) pickle_save(snake_case_,train_ds.len_file ) pickle_save(snake_case_,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowercase ( UpperCamelCase__ ): _a = "altclip_text_model" def __init__( self , _a=25_0002 , _a=1024 , _a=24 , _a=16 , _a=4096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=514 , _a=1 , _a=0.02 , _a=0.02 , _a=1e-05 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=768 , **_a , ) -> Optional[Any]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Optional[int] = vocab_size _A : List[str] = hidden_size _A : Optional[int] = num_hidden_layers _A : str = num_attention_heads _A : Dict = hidden_act _A : Optional[Any] = intermediate_size _A : Dict = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : str = max_position_embeddings _A : Optional[int] = type_vocab_size _A : Optional[int] = initializer_range _A : Any = initializer_factor _A : List[Any] = layer_norm_eps _A : Dict = position_embedding_type _A : int = use_cache _A : Dict = project_dim class lowercase ( UpperCamelCase__ ): _a = "altclip_vision_model" def __init__( self , _a=768 , _a=3072 , _a=512 , _a=12 , _a=12 , _a=3 , _a=224 , _a=32 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Any: super().__init__(**_a ) _A : Tuple = hidden_size _A : Optional[int] = intermediate_size _A : int = projection_dim _A : Tuple = num_hidden_layers _A : str = num_attention_heads _A : Tuple = num_channels _A : Union[str, Any] = patch_size _A : List[str] = image_size _A : Tuple = initializer_range _A : Optional[int] = initializer_factor _A : str = attention_dropout _A : Dict = layer_norm_eps _A : Dict = hidden_act @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_a ) _A , _A : int = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": _A : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "altclip" _a = True def __init__( self , _a=None , _a=None , _a=768 , _a=2.6592 , **_a ) -> int: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). _A : Union[str, Any] = kwargs.pop("""text_config_dict""" , _a ) _A : Optional[int] = kwargs.pop("""vision_config_dict""" , _a ) super().__init__(**_a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _A : Optional[int] = {} # This is the complete result when using `text_config_dict`. _A : str = AltCLIPTextConfig(**_a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _A : Dict = ( F'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' F'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _A : List[str] = ( F'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' F'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(_a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _A : Dict = {} # This is the complete result when using `vision_config_dict`. _A : Union[str, Any] = AltCLIPVisionConfig(**_a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _A : List[Any] = { str(_a ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _A : int = ( F'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' F'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: _A : List[Any] = ( F'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' F'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(_a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _A : Any = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: _A : List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) _A : Tuple = AltCLIPTextConfig(**_a ) _A : List[Any] = AltCLIPVisionConfig(**_a ) _A : Optional[Any] = projection_dim _A : Tuple = logit_scale_init_value _A : Dict = 1.0 @classmethod def a__ ( cls , _a , _a , **_a ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def a__ ( self ) -> Tuple: _A : List[Any] = copy.deepcopy(self.__dict__ ) _A : List[Any] = self.text_config.to_dict() _A : Dict = self.vision_config.to_dict() _A : List[Any] = self.__class__.model_type return output
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [int(snake_case_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(snake_case_ ) == 4 and all(0 <= int(snake_case_ ) <= 254 for octet in octets ) if __name__ == "__main__": _snake_case = input().strip() _snake_case = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
from math import ceil def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = list(range(0,snake_case_ ) ) _A : Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _A : Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(snake_case_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case_ ) # Missing blocks _A : List[str] = [i for i in blocks if i not in device_map_blocks] _A : Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(snake_case_ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case_ ) ) if len(snake_case_ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = list(range(snake_case_ ) ) _A : Tuple = int(ceil(n_layers / len(snake_case_ ) ) ) _A : int = [layers[i : i + n_blocks] for i in range(0,snake_case_,snake_case_ )] return dict(zip(snake_case_,snake_case_ ) )
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , _a=None , _a=None , **_a ) -> Dict: super().__init__(*_a , **_a ) _A : Optional[Any] = eval_examples _A : int = post_process_function def a__ ( self , _a = None , _a=None , _a = None , _a = "eval" , **_a , ) -> Dict[str, float]: _A : Tuple = gen_kwargs.copy() _A : int = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) _A : List[Any] = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) _A : str = gen_kwargs _A : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset _A : List[str] = self.get_eval_dataloader(_a ) _A : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A : Optional[int] = self.compute_metrics _A : Dict = None _A : Any = time.time() _A : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _A : Union[str, Any] = eval_loop( _a , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: _A : List[Any] = compute_metrics _A : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A : Dict = self.post_process_function(_a , _a , _a ) _A : List[Any] = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A : Optional[int] = metrics.pop(_a ) metrics.update(output.metrics ) else: _A : Optional[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , _a ) return metrics def a__ ( self , _a , _a , _a=None , _a = "test" , **_a ) -> Union[str, Any]: _A : List[str] = gen_kwargs.copy() _A : Optional[int] = self.get_test_dataloader(_a ) # Temporarily disable metric computation, we will do it in the loop here. _A : List[str] = self.compute_metrics _A : str = None _A : List[Any] = time.time() _A : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _A : Optional[Any] = eval_loop( _a , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_a , metric_key_prefix=_a , ) finally: _A : Any = compute_metrics _A : Dict = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _a , _a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A : List[str] = self.post_process_function(_a , _a , _a , """predict""" ) _A : Union[str, Any] = self.compute_metrics(_a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A : int = metrics.pop(_a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_a )
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowercase ( nn.Module ): def __init__( self , _a = 16 , _a = 88 , _a = None , _a = 1 , _a = 0.0 , _a = 32 , _a = None , _a = False , _a = None , _a = None , _a = "geglu" , _a = None , ) -> str: super().__init__() _A : Union[str, Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_a , attention_head_dim=_a , in_channels=_a , num_layers=_a , dropout=_a , norm_num_groups=_a , cross_attention_dim=_a , attention_bias=_a , sample_size=_a , num_vector_embeds=_a , activation_fn=_a , num_embeds_ada_norm=_a , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _A : Dict = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _A : Union[str, Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _A : Tuple = [1, 0] def a__ ( self , _a , _a , _a=None , _a=None , _a=None , _a = True , ) -> List[Any]: _A : List[Any] = hidden_states _A : List[str] = [] _A : Optional[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _A : Tuple = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _A : List[str] = self.transformer_index_for_condition[i] _A : int = self.transformers[transformer_index]( _a , encoder_hidden_states=_a , timestep=_a , cross_attention_kwargs=_a , return_dict=_a , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _A : List[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _A : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_a )
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _A : List[str] = [p / w for p, w in zip(snake_case_,snake_case_ )] # Creating a copy of the list and sorting profit/weight in ascending order _A : Optional[Any] = sorted(snake_case_ ) # declaring useful variables _A : Optional[Any] = len(snake_case_ ) _A : List[Any] = 0 _A : int = 0 _A : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _A : str = sorted_profit_by_weight[length - i - 1] _A : Any = profit_by_weight.index(snake_case_ ) _A : List[Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( "Input profits, weights, and then max_weight (all positive ints) separated by " "spaces." ) _snake_case = [int(x) for x in input("Input profits separated by spaces: ").split()] _snake_case = [int(x) for x in input("Input weights separated by spaces: ").split()] _snake_case = int(input("Max weight allowed: ")) # Function Call calc_profit(profit, weight, max_weight)
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if exponent == 1: return base if exponent % 2 == 0: _A : Optional[Any] = _modexpt(snake_case_,exponent // 2,snake_case_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(snake_case_,exponent - 1,snake_case_ )) % modulo_value def lowerCAmelCase_ ( snake_case_ = 1777,snake_case_ = 1855,snake_case_ = 8 ): _A : Union[str, Any] = base for _ in range(1,snake_case_ ): _A : List[str] = _modexpt(snake_case_,snake_case_,10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = torch.device("cpu") def lowerCAmelCase_ ( ): _A : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im def lowerCAmelCase_ ( snake_case_ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = dct.pop(snake_case_ ) _A : Optional[int] = val def lowerCAmelCase_ ( snake_case_ ): _A : int = [] for k in state_dict.keys(): _A : Dict = k if ".pwconv" in k: _A : Dict = k_new.replace(""".pwconv""",""".point_wise_conv""" ) if ".dwconv" in k: _A : int = k_new.replace(""".dwconv""",""".depth_wise_conv""" ) if ".Proj." in k: _A : Tuple = k_new.replace(""".Proj.""",""".proj.""" ) if "patch_embed" in k_new: _A : str = k_new.replace("""patch_embed""","""swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: _A : Optional[int] = k_new.split(""".""" ) if ls[2].isdigit(): _A : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: _A : int = k_new.replace("""network""","""swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _A : Dict = 1000 _A : Optional[int] = """huggingface/label-files""" _A : Optional[Any] = """imagenet-1k-id2label.json""" _A : Optional[int] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : Any = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Optional[Any] = idalabel _A : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _A : Dict = [3, 3, 6, 4] _A : Optional[Any] = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _A : List[str] = [3, 3, 9, 6] _A : List[str] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _A : Optional[Any] = [4, 3, 10, 5] _A : Dict = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _A : List[str] = [4, 4, 12, 6] _A : Any = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): _A : Any = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""",check_hash=snake_case_ ) else: _A : Union[str, Any] = torch.load(snake_case_,map_location="""cpu""" ) _A : List[str] = checkpoint _A : List[Any] = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load HuggingFace model _A : Union[str, Any] = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs _A : Tuple = prepare_img() _A : Dict = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) _A : Optional[Any] = processor(images=snake_case_,return_tensors="""pt""" ) # compare outputs from both models _A : Optional[int] = get_expected_output(snake_case_ ) _A : Union[str, Any] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5],snake_case_,atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") _snake_case = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase_ ( snake_case_ ): _A : int = model.config _A : List[str] = DonutSwinConfig( image_size=original_config.input_size,patch_size=4,depths=original_config.encoder_layer,num_heads=[4, 8, 16, 32],window_size=original_config.window_size,embed_dim=128,) _A : str = MBartConfig( is_decoder=snake_case_,is_encoder_decoder=snake_case_,add_cross_attention=snake_case_,decoder_layers=original_config.decoder_layer,max_position_embeddings=original_config.max_position_embeddings,vocab_size=len( model.decoder.tokenizer ),scale_embedding=snake_case_,add_final_layer_norm=snake_case_,) return encoder_config, decoder_config def lowerCAmelCase_ ( snake_case_ ): if "encoder.model" in name: _A : Tuple = name.replace("""encoder.model""","""encoder""" ) if "decoder.model" in name: _A : List[Any] = name.replace("""decoder.model""","""decoder""" ) if "patch_embed.proj" in name: _A : str = name.replace("""patch_embed.proj""","""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _A : int = name.replace("""patch_embed.norm""","""embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: _A : Dict = """encoder.""" + name if "attn.proj" in name: _A : Dict = name.replace("""attn.proj""","""attention.output.dense""" ) if "attn" in name and "mask" not in name: _A : Tuple = name.replace("""attn""","""attention.self""" ) if "norm1" in name: _A : str = name.replace("""norm1""","""layernorm_before""" ) if "norm2" in name: _A : List[str] = name.replace("""norm2""","""layernorm_after""" ) if "mlp.fc1" in name: _A : Union[str, Any] = name.replace("""mlp.fc1""","""intermediate.dense""" ) if "mlp.fc2" in name: _A : Dict = name.replace("""mlp.fc2""","""output.dense""" ) if name == "encoder.norm.weight": _A : Any = """encoder.layernorm.weight""" if name == "encoder.norm.bias": _A : Dict = """encoder.layernorm.bias""" return name def lowerCAmelCase_ ( snake_case_,snake_case_ ): for key in orig_state_dict.copy().keys(): _A : str = orig_state_dict.pop(snake_case_ ) if "qkv" in key: _A : Optional[int] = key.split(""".""" ) _A : Tuple = int(key_split[3] ) _A : Dict = int(key_split[5] ) _A : Any = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _A : Optional[int] = val[:dim, :] _A : List[Any] = val[dim : dim * 2, :] _A : Any = val[-dim:, :] else: _A : Union[str, Any] = val[:dim] _A : Optional[Any] = val[dim : dim * 2] _A : Tuple = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: _A : Any = val return orig_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_=None,snake_case_=False ): # load original model _A : Any = DonutModel.from_pretrained(snake_case_ ).eval() # load HuggingFace model _A , _A : Dict = get_configs(snake_case_ ) _A : Dict = DonutSwinModel(snake_case_ ) _A : str = MBartForCausalLM(snake_case_ ) _A : Optional[int] = VisionEncoderDecoderModel(encoder=snake_case_,decoder=snake_case_ ) model.eval() _A : Dict = original_model.state_dict() _A : Optional[Any] = convert_state_dict(snake_case_,snake_case_ ) model.load_state_dict(snake_case_ ) # verify results on scanned document _A : List[str] = load_dataset("""hf-internal-testing/example-documents""" ) _A : Any = dataset["""test"""][0]["""image"""].convert("""RGB""" ) _A : str = XLMRobertaTokenizerFast.from_pretrained(snake_case_,from_slow=snake_case_ ) _A : Tuple = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis,size=original_model.config.input_size[::-1] ) _A : Optional[Any] = DonutProcessor(snake_case_,snake_case_ ) _A : List[str] = processor(snake_case_,return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": _A : List[Any] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" _A : Any = """When is the coffee break?""" _A : Union[str, Any] = task_prompt.replace("""{user_input}""",snake_case_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": _A : List[str] = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: _A : str = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": _A : Union[str, Any] = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": _A : List[Any] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt _A : List[Any] = """hello world""" else: raise ValueError("""Model name not supported""" ) _A : Dict = original_model.decoder.tokenizer(snake_case_,add_special_tokens=snake_case_,return_tensors="""pt""" )[ """input_ids""" ] _A : List[Any] = original_model.encoder.model.patch_embed(snake_case_ ) _A , _A : Any = model.encoder.embeddings(snake_case_ ) assert torch.allclose(snake_case_,snake_case_,atol=1e-3 ) # verify encoder hidden states _A : Optional[Any] = original_model.encoder(snake_case_ ) _A : Union[str, Any] = model.encoder(snake_case_ ).last_hidden_state assert torch.allclose(snake_case_,snake_case_,atol=1e-2 ) # verify decoder hidden states _A : List[str] = original_model(snake_case_,snake_case_,snake_case_ ).logits _A : Union[str, Any] = model(snake_case_,decoder_input_ids=snake_case_ ).logits assert torch.allclose(snake_case_,snake_case_,atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1],commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1],commit_message="""Update model""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _snake_case = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "swinv2" _a = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=[2, 2, 6, 2] , _a=[3, 6, 12, 24] , _a=7 , _a=4.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1e-5 , _a=32 , **_a , ) -> List[str]: super().__init__(**_a ) _A : Optional[int] = image_size _A : List[Any] = patch_size _A : List[str] = num_channels _A : Optional[Any] = embed_dim _A : List[str] = depths _A : List[Any] = len(_a ) _A : str = num_heads _A : Optional[int] = window_size _A : List[str] = mlp_ratio _A : Union[str, Any] = qkv_bias _A : List[Any] = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : List[str] = drop_path_rate _A : Optional[int] = hidden_act _A : List[str] = use_absolute_embeddings _A : Dict = layer_norm_eps _A : Optional[Any] = initializer_range _A : List[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A : str = int(embed_dim * 2 ** (len(_a ) - 1) ) _A : Tuple = (0, 0, 0, 0)
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : str = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) _A : Union[str, Any] = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""",snake_case_ ) if matches: _A : Dict = float(matches[1] ) _A : Union[str, Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _A : Optional[int] = 1001 _A : Union[str, Any] = """imagenet-1k-id2label.json""" _A : int = """huggingface/label-files""" _A : int = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : Tuple = {int(snake_case_ ) + 1: v for k, v in idalabel.items()} _A : Union[str, Any] = """background""" _A : int = idalabel _A : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ): _A : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Union[str, Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=False ): _A : Dict = get_mobilenet_va_config(snake_case_ ) # Load 🤗 model _A : Optional[Any] = MobileNetVaForImageClassification(snake_case_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(snake_case_,snake_case_,snake_case_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _A : Union[str, Any] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size},size={"""shortest_edge""": config.image_size + 32},) _A : Any = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[int] = model(**snake_case_ ) _A : List[str] = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": _A : Any = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": _A : Any = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: _A : List[Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print("""Pushing to the hub...""" ) _A : Union[str, Any] = """google/""" + model_name image_processor.push_to_hub(snake_case_ ) model.push_to_hub(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
from math import sqrt def lowerCAmelCase_ ( snake_case_ ): _A : Dict = 0 for i in range(1,int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowerCAmelCase_ ( snake_case_ = 10000 ): _A : Optional[Any] = sum( i for i in range(1,snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase ( UpperCamelCase__ ): _a = "Wav2Vec2FeatureExtractor" _a = "AutoTokenizer" def __init__( self , _a , _a ) -> List[str]: super().__init__(_a , _a ) _A : int = self.feature_extractor _A : Optional[int] = False @classmethod def a__ ( cls , _a , **_a ) -> str: try: return super().from_pretrained(_a , **_a ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , _a , ) _A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_a , **_a ) _A : str = WavaVecaCTCTokenizer.from_pretrained(_a , **_a ) return cls(feature_extractor=_a , tokenizer=_a ) def __call__( self , *_a , **_a ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_a , **_a ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _A : Dict = kwargs.pop("""raw_speech""" ) else: _A : int = kwargs.pop("""audio""" , _a ) _A : str = kwargs.pop("""sampling_rate""" , _a ) _A : Tuple = kwargs.pop("""text""" , _a ) if len(_a ) > 0: _A : Dict = args[0] _A : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _A : Optional[Any] = self.feature_extractor(_a , *_a , sampling_rate=_a , **_a ) if text is not None: _A : str = self.tokenizer(_a , **_a ) if text is None: return inputs elif audio is None: return encodings else: _A : Dict = encodings["""input_ids"""] return inputs def a__ ( self , *_a , **_a ) -> Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_a , **_a ) _A : Optional[Any] = kwargs.pop("""input_features""" , _a ) _A : Dict = kwargs.pop("""labels""" , _a ) if len(_a ) > 0: _A : Union[str, Any] = args[0] _A : List[Any] = args[1:] if input_features is not None: _A : Dict = self.feature_extractor.pad(_a , *_a , **_a ) if labels is not None: _A : List[Any] = self.tokenizer.pad(_a , **_a ) if labels is None: return input_features elif input_features is None: return labels else: _A : List[str] = labels["""input_ids"""] return input_features def a__ ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.decode(*_a , **_a ) @contextmanager def a__ ( self ) -> Optional[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _A : List[str] = True _A : Optional[int] = self.tokenizer yield _A : List[str] = self.feature_extractor _A : str = False
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = len(snake_case_ ) print("""The following activities are selected:""" ) # The first activity is always selected _A : Tuple = 0 print(snake_case_,end=""",""" ) # Consider rest of the activities for j in range(snake_case_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case_,end=""",""" ) _A : Optional[int] = j if __name__ == "__main__": import doctest doctest.testmod() _snake_case = [1, 3, 0, 5, 8, 5] _snake_case = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "AutoImageProcessor" _a = "AutoTokenizer" def __init__( self , _a , _a ) -> Dict: super().__init__(_a , _a ) _A : Tuple = self.image_processor def __call__( self , _a=None , _a=None , _a=None , **_a ) -> List[Any]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _A : Dict = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: _A : Union[str, Any] = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: _A : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[int]: return ["input_ids", "attention_mask", "pixel_values"]
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _snake_case = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") _snake_case = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("utf-8").split() _snake_case = "|".join(sys.argv[1:]) _snake_case = re.compile(rf"""^({joined_dirs}).*?\.py$""") _snake_case = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = os.path.join(args.tf_model_dir,"""parameters.json""" ) _A : Optional[Any] = json.loads(open(snake_case_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(""".pt""" ): _A : Union[str, Any] = args.output + """.pt""" _A : List[Any] = OrderedDict() with tf.device("""/CPU:0""" ): _A : Optional[Any] = tf.train.load_checkpoint(args.tf_model_dir ) _A : Optional[int] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _A : Dict = reader.get_tensor(snake_case_ ).astype(np.floataa ) if key_name.endswith("""/adam_m""" ) or key_name.endswith("""/adam_v""" ): continue if key_name.startswith("""pasts/""" ): if key_name.startswith("""pasts/mlp""" ): _A : List[Any] = int(key_name[9] ) elif key_name.startswith("""pasts/out""" ): _A : List[str] = 8 _A : Dict = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _A : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : List[str] = torch.tensor(snake_case_ ) elif key_name.startswith("""model/moe""" ): _A : Optional[Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/switch_gating/kernel""" ): _A : Optional[int] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player _A : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : int = torch.tensor(snake_case_ ) elif key_name.endswith("""/softmlp/kernel""" ): _A : Optional[Any] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player _A : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : Optional[int] = torch.tensor(snake_case_ ) elif key_name.endswith("""/wo/kernel""" ) or key_name.endswith("""/wi/kernel""" ): _A : List[str] = key_name[-9:-7] for i in range(16 ): _A : Dict = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) _A : Optional[int] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _A : Optional[Any] = torch.tensor(snake_case_ ) elif key_name.startswith("""model/mlp""" ): _A : Union[str, Any] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/p1/kernel""" ): _A : Tuple = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player _A : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : List[str] = torch.tensor(snake_case_ ) elif key_name.endswith("""/p1/bias""" ): _A : List[Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player _A : Optional[Any] = vnp.copy() # same because it is one dimensional _A : Optional[Any] = torch.tensor(snake_case_ ) elif key_name.endswith("""/p2/kernel""" ): _A : Optional[Any] = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player _A : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : int = torch.tensor(snake_case_ ) elif key_name.endswith("""/p2/bias""" ): _A : List[Any] = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player _A : List[str] = vnp.copy() # same because it is one dimensional _A : List[str] = torch.tensor(snake_case_ ) elif key_name.startswith("""model/ln""" ): _A : Tuple = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _A : Any = """model.blocks.%d.feed_forward.norm.bias""" % player _A : Optional[int] = vnp.copy() # same because it is one dimensional _A : str = torch.tensor(snake_case_ ) elif key_name.endswith("""/g""" ): _A : int = """model.blocks.%d.feed_forward.norm.weight""" % player _A : List[Any] = vnp.copy() # same because it is one dimensional _A : Tuple = torch.tensor(snake_case_ ) elif key_name.startswith("""model/att""" ): _A : Optional[int] = int(key_name[9:].split("""/""" )[0] ) if key_name.endswith("""/qkv/kernel""" ): _A : Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _A : List[Any] = state[:, 0, :, :] _A : Any = state[:, 1, :, :] _A : int = state[:, 2, :, :] _A : List[str] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A : str = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _A : Any = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player _A : Optional[Any] = torch.tensor(snake_case_ ) _A : Optional[int] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player _A : int = torch.tensor(snake_case_ ) _A : Optional[int] = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player _A : Any = torch.tensor(snake_case_ ) elif key_name.endswith("""/o/kernel""" ): _A : int = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player _A : int = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _A : List[str] = torch.tensor(snake_case_ ) elif key_name.startswith("""model/an""" ): _A : Dict = int(key_name[8:].split("""/""" )[0] ) if key_name.endswith("""/b""" ): _A : Optional[Any] = """model.blocks.%d.self_attn.norm.bias""" % player _A : Dict = vnp.copy() # same because it is one dimensional _A : int = torch.tensor(snake_case_ ) elif key_name.endswith("""/g""" ): _A : Tuple = """model.blocks.%d.self_attn.norm.weight""" % player _A : Union[str, Any] = vnp.copy() # same because it is one dimensional _A : Optional[Any] = torch.tensor(snake_case_ ) elif ( key_name.startswith("""model/wte""" ) or key_name.startswith("""model/wpe""" ) or key_name.startswith("""model/ete""" ) ): _A : Union[str, Any] = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] _A : Dict = """model.%s.weight""" % nlayer _A : Tuple = vnp.copy() # same in embedded _A : Union[str, Any] = torch.tensor(snake_case_ ) if key_name.startswith("""model/wte""" ): _A : Dict = """lm_head.weight""" _A : Union[str, Any] = vnp.copy() # same in embedded _A : Optional[int] = torch.tensor(snake_case_ ) elif key_name.startswith("""model/wob""" ): _A : Union[str, Any] = """final_logits_bias""" _A : Tuple = vnp.copy() # same in embedded _A : Optional[Any] = state.reshape((1, -1) ) _A : str = torch.tensor(snake_case_ ) elif key_name == "model/dense/kernel": _A : Dict = """model.last_project.weight""" _A : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _A : Optional[Any] = torch.tensor(snake_case_ ) elif key_name == "model/dense_1/bias": _A : Dict = """model.last_project.bias""" _A : Union[str, Any] = vnp.copy() # same because it is one dimensional _A : List[str] = torch.tensor(snake_case_ ) torch.save(snake_case_,args.output ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") _snake_case = parser.parse_args() convert_tf_gptsan_to_pt(args)
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from scipy.stats import spearmanr import datasets _snake_case = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" _snake_case = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" _snake_case = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def a__ ( self , _a , _a , _a=False ) -> Dict: _A : int = spearmanr(_a , _a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCAmelCase_ ( snake_case_ ): _A : str = [] for line in lines: _A : Dict = re.sub(r"""#.*""","""""",snake_case_ ) # remove comments if line: filtered_lines.append(snake_case_ ) _A : Dict = """\n""".join(snake_case_ ) # Make a hash from all this code _A : Dict = full_str.encode("""utf-8""" ) return shaaaa(snake_case_ ).hexdigest() # get importable module names and hash for caching _snake_case = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _snake_case = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _snake_case = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _snake_case = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import argparse import os import re import packaging.version _snake_case = "examples/" _snake_case = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } _snake_case = { "init": "src/transformers/__init__.py", "setup": "setup.py", } _snake_case = "README.md" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): with open(snake_case_,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Optional[Any] = f.read() _A , _A : Tuple = REPLACE_PATTERNS[pattern] _A : Union[str, Any] = replace.replace("""VERSION""",snake_case_ ) _A : Dict = re_pattern.sub(snake_case_,snake_case_ ) with open(snake_case_,"""w""",encoding="""utf-8""",newline="""\n""" ) as f: f.write(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): for folder, directories, fnames in os.walk(snake_case_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(snake_case_,snake_case_ ),snake_case_,pattern="""examples""" ) def lowerCAmelCase_ ( snake_case_,snake_case_=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case_,snake_case_,snake_case_ ) if not patch: update_version_in_examples(snake_case_ ) def lowerCAmelCase_ ( ): _A : Any = """🤗 Transformers currently provides the following architectures""" _A : int = """1. Want to contribute a new model?""" with open(snake_case_,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Union[str, Any] = f.readlines() # Find the start of the list. _A : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _A : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _A : Optional[int] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""","""https://huggingface.co/docs/transformers/model_doc""",) index += 1 with open(snake_case_,"""w""",encoding="""utf-8""",newline="""\n""" ) as f: f.writelines(snake_case_ ) def lowerCAmelCase_ ( ): with open(REPLACE_FILES["""init"""],"""r""" ) as f: _A : Dict = f.read() _A : str = REPLACE_PATTERNS["""init"""][0].search(snake_case_ ).groups()[0] return packaging.version.parse(snake_case_ ) def lowerCAmelCase_ ( snake_case_=False ): _A : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _A : Optional[Any] = default_version.base_version elif patch: _A : Any = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _A : str = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _A : Dict = input(f'''Which version are you releasing? [{default_version}]''' ) if len(snake_case_ ) == 0: _A : List[str] = default_version print(f'''Updating version to {version}.''' ) global_version_update(snake_case_,patch=snake_case_ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCAmelCase_ ( ): _A : List[str] = get_version() _A : Union[str, Any] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _A : List[str] = current_version.base_version # Check with the user we got that right. _A : Union[str, Any] = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case_ ) == 0: _A : Union[str, Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(snake_case_ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") _snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _snake_case = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _snake_case = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.1_5}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names _snake_case = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _snake_case = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _snake_case = "allenai" def lowerCAmelCase_ ( snake_case_ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _A : Union[str, Any] = dict((re.sub(r"""@@$""","""""",snake_case_ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""","""</w>""",snake_case_ ), v) for k, v in d.items() ) _A : Optional[int] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] _A : Union[str, Any] = d[k] # restore return da def lowerCAmelCase_ ( snake_case_,snake_case_ ): # prep assert os.path.exists(snake_case_ ) os.makedirs(snake_case_,exist_ok=snake_case_ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _A : Any = basename(snake_case_ ) _A : Dict = dirname(snake_case_ ) _A : str = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _A : Tuple = cls.hub_models() _A : str = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} _A : Tuple = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) _A : List[str] = hub_utils.from_pretrained( snake_case_,snake_case_,snake_case_,archive_map=snake_case_,**snake_case_ ) _A : Tuple = vars(chkpt["""args"""]["""model"""] ) _A : List[Any] = args["""source_lang"""] _A : Optional[Any] = args["""target_lang"""] _A : List[str] = dirname(snake_case_ ) _A : Optional[Any] = basename(snake_case_ ) # dicts _A : List[Any] = os.path.join(snake_case_,f'''dict.{src_lang}.txt''' ) _A : List[Any] = os.path.join(snake_case_,f'''dict.{tgt_lang}.txt''' ) _A : Optional[int] = Dictionary.load(snake_case_ ) _A : Any = rewrite_dict_keys(src_dict.indices ) _A : int = len(snake_case_ ) _A : int = os.path.join(snake_case_,"""vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,ensure_ascii=snake_case_,indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _A : int = True for k in src_vocab.keys(): if not k.islower(): _A : str = False break _A : List[str] = Dictionary.load(snake_case_ ) _A : Tuple = rewrite_dict_keys(tgt_dict.indices ) _A : Union[str, Any] = len(snake_case_ ) _A : str = os.path.join(snake_case_,"""vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,ensure_ascii=snake_case_,indent=snake_case_ ) ) # merges_file (bpecodes) _A : Optional[int] = os.path.join(snake_case_,VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _A : Union[str, Any] = os.path.join(snake_case_,snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_,encoding="""utf-8""" ) as fin: _A : Any = fin.read() _A : Optional[int] = re.sub(r""" \d+$""","""""",snake_case_,0,re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as fout: fout.write(snake_case_ ) # model config _A : List[Any] = os.path.join(snake_case_,"""config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' _A : Tuple = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with _A : int = 5 _A : int = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _A : Tuple = best_score_hparams[model_dir]["""length_penalty"""] else: _A : Optional[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,ensure_ascii=snake_case_,indent=snake_case_ ) ) # tokenizer config _A : Dict = os.path.join(snake_case_,snake_case_ ) _A : Any = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1024, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,ensure_ascii=snake_case_,indent=snake_case_ ) ) # model _A : Tuple = chkpt["""models"""][0] _A : Union[str, Any] = model.state_dict() # rename keys to start with 'model.' _A : Union[str, Any] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _A : Optional[int] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(snake_case_,snake_case_ ) _A : Union[str, Any] = FSMTConfig.from_pretrained(snake_case_ ) _A : Any = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_,strict=snake_case_ ) # save _A : str = os.path.join(snake_case_,snake_case_ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) <= 1: return [tuple(snake_case_ )] _A : str = [] def generate(snake_case_,snake_case_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1,snake_case_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _A , _A : Optional[Any] = arr[k - 1], arr[i] else: # k is odd _A , _A : Dict = arr[k - 1], arr[0] generate(k - 1,snake_case_ ) generate(len(snake_case_ ),snake_case_ ) return res if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(heaps(arr))
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: _A : Tuple = tempfile.mkdtemp() _A : List[str] = BlipImageProcessor() _A : List[Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A : List[str] = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _A : Any = InstructBlipProcessor(_a , _a , _a ) processor.save_pretrained(self.tmpdirname ) def a__ ( self , **_a ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).tokenizer def a__ ( self , **_a ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).image_processor def a__ ( self , **_a ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **_a ).qformer_tokenizer def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Optional[Any]: _A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _A : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _A : List[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A : str = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _A : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) self.assertIsInstance(processor.qformer_tokenizer , _a ) def a__ ( self ) -> Any: _A : Tuple = self.get_image_processor() _A : List[str] = self.get_tokenizer() _A : Tuple = self.get_qformer_tokenizer() _A : Optional[int] = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _A : Union[str, Any] = self.prepare_image_inputs() _A : str = image_processor(_a , return_tensors="""np""" ) _A : Optional[int] = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self ) -> Any: _A : Optional[int] = self.get_image_processor() _A : Tuple = self.get_tokenizer() _A : Any = self.get_qformer_tokenizer() _A : str = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _A : Union[str, Any] = """lower newer""" _A : Dict = processor(text=_a ) _A : Optional[int] = tokenizer(_a , return_token_type_ids=_a ) _A : int = qformer_tokenizer(_a , return_token_type_ids=_a ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def a__ ( self ) -> Tuple: _A : Dict = self.get_image_processor() _A : str = self.get_tokenizer() _A : List[Any] = self.get_qformer_tokenizer() _A : str = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _A : Any = """lower newer""" _A : Union[str, Any] = self.prepare_image_inputs() _A : List[Any] = processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def a__ ( self ) -> str: _A : str = self.get_image_processor() _A : List[Any] = self.get_tokenizer() _A : List[Any] = self.get_qformer_tokenizer() _A : Dict = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _A : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A : List[Any] = processor.batch_decode(_a ) _A : List[str] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> List[Any]: _A : Tuple = self.get_image_processor() _A : Union[str, Any] = self.get_tokenizer() _A : int = self.get_qformer_tokenizer() _A : Dict = InstructBlipProcessor( tokenizer=_a , image_processor=_a , qformer_tokenizer=_a ) _A : Union[str, Any] = """lower newer""" _A : Any = self.prepare_image_inputs() _A : List[Any] = processor(text=_a , images=_a ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import numpy as np class lowercase : def __init__( self ) -> Optional[Any]: _A : Tuple = (0, 0) _A : Tuple = None _A : Tuple = 0 _A : Tuple = 0 _A : Optional[int] = 0 def __eq__( self , _a ) -> Optional[int]: return self.position == cell.position def a__ ( self ) -> Tuple: print(self.position ) class lowercase : def __init__( self , _a=(5, 5) ) -> List[str]: _A : List[str] = np.zeros(_a ) _A : Union[str, Any] = world_size[0] _A : Optional[int] = world_size[1] def a__ ( self ) -> Optional[Any]: print(self.w ) def a__ ( self , _a ) -> Optional[int]: _A : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _A : Union[str, Any] = cell.position[0] _A : Tuple = cell.position[1] _A : List[Any] = [] for n in neughbour_cord: _A : Any = current_x + n[0] _A : int = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _A : str = Cell() _A : Optional[Any] = (x, y) _A : Union[str, Any] = cell neighbours.append(_a ) return neighbours def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = [] _A : Tuple = [] _open.append(snake_case_ ) while _open: _A : Any = np.argmin([n.f for n in _open] ) _A : Any = _open[min_f] _closed.append(_open.pop(snake_case_ ) ) if current == goal: break for n in world.get_neigbours(snake_case_ ): for c in _closed: if c == n: continue _A : Optional[int] = current.g + 1 _A , _A : List[Any] = n.position _A , _A : Optional[int] = goal.position _A : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 _A : List[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case_ ) _A : Tuple = [] while current.parent is not None: path.append(current.position ) _A : str = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _snake_case = Gridworld() # Start position and goal _snake_case = Cell() _snake_case = (0, 0) _snake_case = Cell() _snake_case = (4, 4) print(f"""path from {start.position} to {goal.position}""") _snake_case = astar(world, start, goal) # Just for visual reasons. for i in s: _snake_case = 1 print(world.w)
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
import re from filelock import FileLock try: import nltk _snake_case = True except (ImportError, ModuleNotFoundError): _snake_case = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCAmelCase_ ( snake_case_ ): re.sub("""<n>""","""""",snake_case_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(snake_case_ ) )
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=False ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _A : List[Any] = os.path.abspath(snake_case_ ) logger.info(f'''Loading PyTorch weights from {pt_path}''' ) _A : Union[str, Any] = torch.load(snake_case_,map_location="""cpu""" ) logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) _A : List[str] = convert_pytorch_state_dict_to_flax(snake_case_,snake_case_ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _A : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(snake_case_,snake_case_ ) return flax_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): def is_key_or_prefix_key_in_dict(snake_case_ ) -> bool: return len(set(snake_case_ ) & {key, (model_prefix,) + key} ) > 0 # layer norm _A : int = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _A : Optional[int] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _A : Union[str, Any] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case_ ): return renamed_pt_tuple_key, pt_tensor # embedding _A : str = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case_ ): return renamed_pt_tuple_key, pt_tensor # conv layer _A : str = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case_ ): _A : Optional[Any] = pt_tensor.transpose(2,3,1,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _A : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case_ ): _A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _A : Tuple = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _A : str = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _A : Tuple = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _A : Optional[int] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _A : Optional[Any] = pt_tuple_key[-2] + """_v""" if name is not None: _A : List[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case_,snake_case_ ): # convert pytorch tensor to numpy _A : Any = {k: v.numpy() for k, v in pt_state_dict.items()} _A : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _A : List[Any] = flax_model.params["""params"""] else: _A : Dict = flax_model.params _A : Optional[int] = flatten_dict(snake_case_ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _A : str = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(snake_case_ ) _A : Any = {} _A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _A : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _A : Dict = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _A : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _A , _A : Dict = rename_key_and_reshape_tensor( snake_case_,snake_case_,snake_case_,snake_case_ ) # add model prefix if necessary _A : str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _A : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _A : Tuple = jnp.asarray(snake_case_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case_,snake_case_ ) continue # also add unexpected weight so that warning is thrown _A : Any = jnp.asarray(snake_case_ ) else: # also add unexpected weight so that warning is thrown _A : List[Any] = jnp.asarray(snake_case_ ) return unflatten_dict(snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): import torch # Load the index _A : List[Any] = {} for shard_file in shard_filenames: # load using msgpack utils _A : Union[str, Any] = torch.load(snake_case_ ) _A : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} _A : Optional[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _A : int = flax_model.params["""params"""] _A : Dict = flatten_dict(snake_case_ ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _A : int = flax_model.params _A : Optional[Any] = flatten_dict(snake_case_ ) _A : Union[str, Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _A : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _A : Any = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _A : List[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _A : List[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _A , _A : Union[str, Any] = rename_key_and_reshape_tensor( snake_case_,snake_case_,snake_case_,snake_case_ ) # add model prefix if necessary _A : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _A : Tuple = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _A : Optional[Any] = jnp.asarray(snake_case_ ) continue if "var" in flax_key[-1]: _A : Any = jnp.asarray(snake_case_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case_,snake_case_ ) continue # also add unexpected weight so that warning is thrown _A : List[str] = jnp.asarray(snake_case_ ) else: # also add unexpected weight so that warning is thrown _A : Dict = jnp.asarray(snake_case_ ) return unflatten_dict(snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = os.path.abspath(snake_case_ ) logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class _A : Optional[Any] = getattr(snake_case_,"""Flax""" + model.__class__.__name__ ) # load flax weight dict with open(snake_case_,"""rb""" ) as state_f: try: _A : Dict = from_bytes(snake_case_,state_f.read() ) except UnpicklingError: raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _A : int = flatten_dict(jax.tree_util.tree_map(lambda snake_case_ : x.dtype == jnp.bfloataa,snake_case_ ) ).values() if any(snake_case_ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _A : str = jax.tree_util.tree_map( lambda snake_case_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params,snake_case_ ) _A : Dict = flatten_dict(snake_case_ ) _A : str = pt_model.state_dict() _A : List[str] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _A : List[str] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _A : List[Any] = [] _A : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _A : Dict = flax_key_tuple[0] == pt_model.base_model_prefix _A : List[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _A : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _A : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case_ ) not in pt_model_dict: # conv layer _A : str = flax_key_tuple[:-1] + ("""weight""",) _A : List[str] = jnp.transpose(snake_case_,(3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case_ ) not in pt_model_dict: # linear layer _A : List[str] = flax_key_tuple[:-1] + ("""weight""",) _A : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _A : Optional[Any] = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _A : Optional[Any] = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _A : List[Any] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _A : Optional[int] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _A : List[Any] = """.""".join(snake_case_ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _A : Optional[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _A : Optional[Any] = key.split(""".""" ) _A : List[str] = None if key_components[-3::2] == ["parametrizations", "original0"]: _A : str = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _A : Any = key_components[-2] + """_v""" if name is not None: _A : int = key_components[:-3] + [name] _A : List[str] = """.""".join(snake_case_ ) _A : int = key if flax_key in special_pt_names: _A : List[str] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _A : Union[str, Any] = np.asarray(snake_case_ ) if not isinstance(snake_case_,np.ndarray ) else flax_tensor _A : int = torch.from_numpy(snake_case_ ) # remove from missing keys missing_keys.remove(snake_case_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case_ ) pt_model.load_state_dict(snake_case_ ) # re-transform missing_keys to list _A : Union[str, Any] = list(snake_case_ ) if len(snake_case_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(snake_case_ ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) else: logger.warning( f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' """If your task is similar to the task the model of the checkpoint was trained on, """ f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
from manim import * class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Tuple: _A : Any = Rectangle(height=0.5 , width=0.5 ) _A : str = Rectangle(height=0.25 , width=0.25 ) _A : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A : Union[str, Any] = [mem.copy() for i in range(6 )] _A : Tuple = [mem.copy() for i in range(6 )] _A : Dict = VGroup(*_a ).arrange(_a , buff=0 ) _A : List[Any] = VGroup(*_a ).arrange(_a , buff=0 ) _A : Optional[int] = VGroup(_a , _a ).arrange(_a , buff=0 ) _A : Dict = Text("""CPU""" , font_size=24 ) _A : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _A : List[Any] = [mem.copy() for i in range(4 )] _A : List[Any] = VGroup(*_a ).arrange(_a , buff=0 ) _A : Optional[Any] = Text("""GPU""" , font_size=24 ) _A : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _A : List[Any] = [mem.copy() for i in range(6 )] _A : Optional[int] = VGroup(*_a ).arrange(_a , buff=0 ) _A : Tuple = Text("""Model""" , font_size=24 ) _A : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _A : Optional[int] = [] _A : Tuple = [] _A : List[Any] = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _A : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _A : List[Any] = [mem.copy() for i in range(6 )] _A : Any = VGroup(*_a ).arrange(_a , buff=0 ) _A : Any = Text("""Loaded Checkpoint""" , font_size=24 ) _A : str = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _A : int = [] _A : List[str] = [] for i, rect in enumerate(_a ): _A : Optional[Any] = fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _A : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _A : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A : Optional[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _A : Optional[Any] = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _A : Optional[int] = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) _A : List[Any] = [meta_mem.copy() for i in range(6 )] _A : List[str] = [meta_mem.copy() for i in range(6 )] _A : Union[str, Any] = VGroup(*_a ).arrange(_a , buff=0 ) _A : Tuple = VGroup(*_a ).arrange(_a , buff=0 ) _A : Any = VGroup(_a , _a ).arrange(_a , buff=0 ) _A : Tuple = Text("""Disk""" , font_size=24 ) _A : int = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _A : Optional[int] = [] for i, rect in enumerate(_a ): _A : Optional[int] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _A : List[Any] = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> None: warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> str: _A : Optional[int] = parent _A : List[Any] = batch_size _A : List[str] = image_size _A : Optional[int] = num_channels _A : Optional[Any] = num_stages _A : Optional[int] = hidden_sizes _A : Optional[Any] = depths _A : int = is_training _A : Any = use_labels _A : Optional[Any] = intermediate_size _A : Optional[int] = hidden_act _A : Union[str, Any] = num_labels _A : Dict = initializer_range _A : Dict = out_features _A : List[str] = out_indices _A : int = scope def a__ ( self ) -> Tuple: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Optional[Any] = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> Any: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : Union[str, Any] = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> Optional[int]: _A : List[str] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : Dict = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> Optional[int]: _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Dict = None _A : Dict = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[Any] = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> Any: _A : List[str] = self.prepare_config_and_inputs() _A , _A , _A : Tuple = config_and_inputs _A : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : Tuple = ConvNextModelTester(self ) _A : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> List[str]: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Any: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[int]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[str]: pass def a__ ( self ) -> Optional[int]: _A , _A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = model_class(_a ) _A : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[int] = [*signature.parameters.keys()] _A : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> int: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Union[str, Any]: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Optional[Any]: def check_hidden_states_output(_a , _a , _a ): _A : Any = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> List[str]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> List[str]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Dict: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> List[str]: _A : List[Any] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : Optional[Any] = self.default_image_processor _A : Union[str, Any] = prepare_img() _A : int = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Tuple = model(**_a ) # verify the logits _A : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : str = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = ConvNextModelTester(self )
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
import random from .binary_exp_mod import bin_exp_mod def lowerCAmelCase_ ( snake_case_,snake_case_=1000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _A : List[str] = n - 1 _A : Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _A : int = 0 while count < prec: _A : Any = random.randint(2,n - 1 ) _A : Any = bin_exp_mod(snake_case_,snake_case_,snake_case_ ) if b != 1: _A : List[Any] = True for _ in range(snake_case_ ): if b == n - 1: _A : List[str] = False break _A : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _snake_case = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
class lowercase : def __init__( self , _a ) -> List[str]: _A : Any = val _A : int = None _A : Union[str, Any] = None def a__ ( self , _a ) -> Optional[int]: if self.val: if val < self.val: if self.left is None: _A : Optional[Any] = Node(_a ) else: self.left.insert(_a ) elif val > self.val: if self.right is None: _A : Dict = Node(_a ) else: self.right.insert(_a ) else: _A : str = val def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Recursive traversal if root: inorder(root.left,snake_case_ ) res.append(root.val ) inorder(root.right,snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): # Build BST if len(snake_case_ ) == 0: return arr _A : Optional[int] = Node(arr[0] ) for i in range(1,len(snake_case_ ) ): root.insert(arr[i] ) # Traverse BST in order. _A : List[Any] = [] inorder(snake_case_,snake_case_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
import csv import tweepy # Twitter API credentials _snake_case = "" _snake_case = "" _snake_case = "" _snake_case = "" def lowerCAmelCase_ ( snake_case_ ): # authorize twitter, initialize tweepy _A : str = tweepy.OAuthHandler(snake_case_,snake_case_ ) auth.set_access_token(snake_case_,snake_case_ ) _A : int = tweepy.API(snake_case_ ) # initialize a list to hold all the tweepy Tweets _A : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _A : List[str] = api.user_timeline(screen_name=snake_case_,count=200 ) # save most recent tweets alltweets.extend(snake_case_ ) # save the id of the oldest tweet less one _A : List[str] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(snake_case_ ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates _A : int = api.user_timeline( screen_name=snake_case_,count=200,max_id=snake_case_ ) # save most recent tweets alltweets.extend(snake_case_ ) # update the id of the oldest tweet less one _A : Union[str, Any] = alltweets[-1].id - 1 print(f'''...{len(snake_case_ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv _A : List[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''',"""w""" ) as f: _A : List[Any] = csv.writer(snake_case_ ) writer.writerow(["""id""", """created_at""", """text"""] ) writer.writerows(snake_case_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( snake_case_ ): return np.dot(snake_case_,snake_case_ ) class lowercase : def __init__( self , *, _a = np.inf , _a = "linear" , _a = 0.0 , ) -> None: _A : Tuple = regularization _A : str = gamma if kernel == "linear": _A : str = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) _A : List[str] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _A : Optional[Any] = F'''Unknown kernel: {kernel}''' raise ValueError(_a ) def a__ ( self , _a , _a ) -> float: return np.dot(_a , _a ) def a__ ( self , _a , _a ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def a__ ( self , _a , _a ) -> None: _A : int = observations _A : int = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_A) , ) : Optional[int] = np.shape(_a ) def to_minimize(_a ) -> float: _A : Union[str, Any] = 0 ((_A) , ) : Optional[Any] = np.shape(_a ) for i in range(_a ): for j in range(_a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_a ) _A : Any = LinearConstraint(_a , 0 , 0 ) _A : Optional[Any] = Bounds(0 , self.regularization ) _A : Union[str, Any] = minimize( _a , np.ones(_a ) , bounds=_a , constraints=[ly_contraint] ).x _A : Dict = l_star # calculating mean offset of separation plane to points _A : Tuple = 0 for i in range(_a ): for j in range(_a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _A : List[str] = s / n def a__ ( self , _a ) -> int: _A : Union[str, Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _snake_case = logging.getLogger(__name__) _snake_case = tf.data.AUTOTUNE def lowerCAmelCase_ ( ): _A : Tuple = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""",type=snake_case_,default="""roberta-base""",help="""The model config to use. Note that we don't copy the model's weights, only the config!""",) parser.add_argument( """--tokenizer""",type=snake_case_,default="""unigram-tokenizer-wikitext""",help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""",) parser.add_argument( """--per_replica_batch_size""",type=snake_case_,default=8,help="""Batch size per TPU core.""",) parser.add_argument( """--no_tpu""",action="""store_true""",help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""",) parser.add_argument( """--tpu_name""",type=snake_case_,help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""",default="""local""",) parser.add_argument( """--tpu_zone""",type=snake_case_,help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""",) parser.add_argument( """--gcp_project""",type=snake_case_,help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""",action="""store_true""",help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""",) parser.add_argument( """--train_dataset""",type=snake_case_,help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""",) parser.add_argument( """--shuffle_buffer_size""",type=snake_case_,default=2**18,help="""Size of the shuffle buffer (in samples)""",) parser.add_argument( """--eval_dataset""",type=snake_case_,help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""",) parser.add_argument( """--num_epochs""",type=snake_case_,default=1,help="""Number of epochs to train for.""",) parser.add_argument( """--learning_rate""",type=snake_case_,default=1e-4,help="""Learning rate to use for training.""",) parser.add_argument( """--weight_decay_rate""",type=snake_case_,default=1e-3,help="""Weight decay rate to use for training.""",) parser.add_argument( """--max_length""",type=snake_case_,default=512,help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""",) parser.add_argument( """--mlm_probability""",type=snake_case_,default=0.15,help="""Fraction of tokens to mask during training.""",) parser.add_argument("""--output_dir""",type=snake_case_,required=snake_case_,help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""",type=snake_case_,help="""Model ID to upload to on the Hugging Face Hub.""" ) _A : Any = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ ): try: if args.tpu_name: _A : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name,zone=args.tpu_zone,project=args.gcp_project ) else: _A : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(snake_case_ ) tf.tpu.experimental.initialize_tpu_system(snake_case_ ) return tpu def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = 0 for file in file_list: _A : Optional[Any] = file.split("""/""" )[-1] _A : List[Any] = re.search(r"""-\d+-(\d+)\.tfrecord""",snake_case_ ).group(1 ) _A : Dict = int(snake_case_ ) num_samples += sample_count return num_samples def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=None ): _A : Tuple = count_samples(snake_case_ ) _A : List[str] = tf.data.Dataset.from_tensor_slices(snake_case_ ) if shuffle: _A : Union[str, Any] = dataset.shuffle(len(snake_case_ ) ) _A : Dict = tf.data.TFRecordDataset(snake_case_,num_parallel_reads=snake_case_ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _A : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(snake_case_ ) ) _A : int = dataset.map(snake_case_,num_parallel_calls=snake_case_ ) if shuffle: assert shuffle_buffer_size is not None _A : int = dataset.shuffle(args.shuffle_buffer_size ) _A : str = dataset.batch(snake_case_,drop_remainder=snake_case_ ) _A : Tuple = dataset.map(snake_case_,num_parallel_calls=snake_case_ ) _A : Any = dataset.prefetch(snake_case_ ) return dataset def lowerCAmelCase_ ( snake_case_ ): if not args.no_tpu: _A : Dict = initialize_tpu(snake_case_ ) _A : str = tf.distribute.TPUStrategy(snake_case_ ) else: _A : Optional[int] = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) _A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer ) _A : int = AutoConfig.from_pretrained(args.pretrained_model_config ) _A : int = tokenizer.vocab_size _A : Tuple = tf.io.gfile.glob(os.path.join(args.train_dataset,"""*.tfrecord""" ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _A : Dict = tf.io.gfile.glob(os.path.join(args.eval_dataset,"""*.tfrecord""" ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _A : Optional[Any] = count_samples(snake_case_ ) _A : List[str] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _A : Any = steps_per_epoch * args.num_epochs with strategy.scope(): _A : List[str] = TFAutoModelForMaskedLM.from_config(snake_case_ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _A , _A : List[str] = create_optimizer( num_train_steps=snake_case_,num_warmup_steps=total_train_steps // 20,init_lr=args.learning_rate,weight_decay_rate=args.weight_decay_rate,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=snake_case_,metrics=["""accuracy"""] ) def decode_fn(snake_case_ ): _A : Union[str, Any] = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa,shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa,shape=(args.max_length,) ), } return tf.io.parse_single_example(snake_case_,snake_case_ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _A : List[Any] = DataCollatorForLanguageModeling( tokenizer=snake_case_,mlm_probability=args.mlm_probability,mlm=snake_case_,return_tensors="""tf""" ) def mask_with_collator(snake_case_ ): # TF really needs an isin() function _A : Tuple = ( ~tf.cast(batch["""attention_mask"""],tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) _A , _A : str = data_collator.tf_mask_tokens( batch["""input_ids"""],vocab_size=len(snake_case_ ),mask_token_id=tokenizer.mask_token_id,special_tokens_mask=snake_case_,) return batch _A : List[str] = args.per_replica_batch_size * strategy.num_replicas_in_sync _A : Optional[int] = prepare_dataset( snake_case_,decode_fn=snake_case_,mask_fn=snake_case_,batch_size=snake_case_,shuffle=snake_case_,shuffle_buffer_size=args.shuffle_buffer_size,) _A : int = prepare_dataset( snake_case_,decode_fn=snake_case_,mask_fn=snake_case_,batch_size=snake_case_,shuffle=snake_case_,) _A : Optional[int] = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir,hub_model_id=args.hub_model_id,tokenizer=snake_case_ ) ) model.fit( snake_case_,validation_data=snake_case_,epochs=args.num_epochs,callbacks=snake_case_,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _snake_case = parse_args() main(args)
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCAmelCase_ ( snake_case_ ): return DownloadCommand(args.model,args.cache_dir,args.force,args.trust_remote_code ) class lowercase ( UpperCamelCase__ ): @staticmethod def a__ ( _a ) -> List[str]: _A : List[Any] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=_a , default=_a , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=_a , help="""Name of the model to download""" ) download_parser.set_defaults(func=_a ) def __init__( self , _a , _a , _a , _a ) -> Tuple: _A : Dict = model _A : str = cache _A : List[Any] = force _A : Optional[Any] = trust_remote_code def a__ ( self ) -> Any: from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "bridgetower_vision_model" def __init__( self , _a=768 , _a=12 , _a=3 , _a=16 , _a=288 , _a=1 , _a=1e-05 , _a=False , _a=True , _a=False , **_a , ) -> List[str]: super().__init__(**_a ) _A : int = hidden_size _A : Optional[int] = num_hidden_layers _A : Tuple = num_channels _A : Optional[Any] = patch_size _A : Optional[Any] = image_size _A : List[Any] = initializer_factor _A : Tuple = layer_norm_eps _A : List[Any] = stop_gradient _A : Dict = share_layernorm _A : Optional[Any] = remove_last_layer @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": _A , _A : List[Any] = cls.get_config_dict(_a , **_a ) if config_dict.get("""model_type""" ) == "bridgetower": _A : List[str] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "bridgetower_text_model" def __init__( self , _a=5_0265 , _a=768 , _a=12 , _a=12 , _a=1 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=514 , _a=1 , _a=1e-05 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , **_a , ) -> Optional[Any]: super().__init__(**_a ) _A : List[str] = vocab_size _A : Optional[int] = hidden_size _A : Union[str, Any] = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : Optional[Any] = hidden_act _A : List[str] = initializer_factor _A : Any = intermediate_size _A : List[str] = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : Optional[int] = type_vocab_size _A : Optional[Any] = layer_norm_eps _A : List[Any] = position_embedding_type _A : List[str] = use_cache _A : Tuple = pad_token_id _A : List[Any] = bos_token_id _A : Dict = eos_token_id @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": _A , _A : Tuple = cls.get_config_dict(_a , **_a ) if config_dict.get("""model_type""" ) == "bridgetower": _A : int = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( UpperCamelCase__ ): _a = "bridgetower" def __init__( self , _a=True , _a="gelu" , _a=768 , _a=1 , _a=1e-05 , _a=False , _a="add" , _a=12 , _a=6 , _a=False , _a=False , _a=None , _a=None , **_a , ) -> List[Any]: # TODO: remove this once the Hub files are updated. _A : Optional[Any] = kwargs.pop("""text_config_dict""" , _a ) _A : Optional[Any] = kwargs.pop("""vision_config_dict""" , _a ) super().__init__(**_a ) _A : Dict = share_cross_modal_transformer_layers _A : List[Any] = hidden_act _A : List[Any] = hidden_size _A : Union[str, Any] = initializer_factor _A : str = layer_norm_eps _A : Dict = share_link_tower_layers _A : Optional[Any] = link_tower_type _A : List[str] = num_attention_heads _A : List[Any] = num_hidden_layers _A : Union[str, Any] = tie_word_embeddings _A : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: _A : Any = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A : str = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A : Optional[Any] = BridgeTowerTextConfig(**_a ) _A : str = BridgeTowerVisionConfig(**_a ) @classmethod def a__ ( cls , _a , _a , **_a ) -> Tuple: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def a__ ( self ) -> Optional[Any]: _A : Optional[int] = copy.deepcopy(self.__dict__ ) _A : List[Any] = self.text_config.to_dict() _A : int = self.vision_config.to_dict() _A : int = self.__class__.model_type return output
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _snake_case = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _snake_case = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _snake_case = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def lowerCAmelCase_ ( snake_case_,snake_case_ ): for tf_name, hf_name in patterns: _A : Optional[Any] = k.replace(snake_case_,snake_case_ ) return k def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = BigBirdPegasusConfig(**snake_case_ ) _A : Tuple = BigBirdPegasusForConditionalGeneration(snake_case_ ) _A : Union[str, Any] = torch_model.state_dict() _A : List[str] = {} # separating decoder weights _A : Any = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} _A : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items(),"""tf -> hf conversion""" ): _A : Tuple = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue _A : Optional[int] = DECODER_PATTERNS _A : List[Any] = rename_state_dict_key(snake_case_,snake_case_ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _A : List[Any] = v.T _A : Dict = torch.from_numpy(snake_case_ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(),"""tf -> hf conversion""" ): _A : Dict = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue _A : Any = REMAINING_PATTERNS _A : List[Any] = rename_state_dict_key(snake_case_,snake_case_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): _A : List[Any] = v.T _A : Tuple = torch.from_numpy(snake_case_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _A : List[Any] = mapping["""model.embed_positions.weight"""] _A : List[str] = mapping.pop("""model.embed_positions.weight""" ) _A , _A : Dict = torch_model.load_state_dict(snake_case_,strict=snake_case_ ) _A : List[str] = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = tf.train.list_variables(snake_case_ ) _A : Any = {} _A : Optional[Any] = ["""global_step"""] for name, shape in tqdm(snake_case_,desc="""converting tf checkpoint to dict""" ): _A : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue _A : List[str] = tf.train.load_variable(snake_case_,snake_case_ ) _A : Optional[int] = array return tf_weights def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : int = get_tf_weights_as_numpy(snake_case_ ) _A : Optional[Any] = convert_bigbird_pegasus(snake_case_,snake_case_ ) torch_model.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
_snake_case = 8.3_1_4_4_5_9_8 def lowerCAmelCase_ ( snake_case_,snake_case_ ): if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase ( UpperCamelCase__ ): _a = "data2vec-audio" def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.02 , _a=1e-5 , _a="gelu" , _a=(512, 512, 512, 512, 512, 512, 512) , _a=(5, 2, 2, 2, 2, 2, 2) , _a=(10, 3, 3, 3, 3, 2, 2) , _a=False , _a=16 , _a=19 , _a=5 , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="sum" , _a=False , _a=False , _a=256 , _a=(512, 512, 512, 512, 1500) , _a=(5, 3, 3, 1, 1) , _a=(1, 2, 3, 1, 1) , _a=512 , _a=0 , _a=1 , _a=2 , _a=False , _a=3 , _a=2 , _a=3 , _a=None , **_a , ) -> Union[str, Any]: super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) _A : Any = hidden_size _A : List[str] = feat_extract_activation _A : Optional[int] = list(_a ) _A : Tuple = list(_a ) _A : Union[str, Any] = list(_a ) _A : Tuple = conv_bias _A : Optional[int] = num_conv_pos_embeddings _A : Tuple = num_conv_pos_embedding_groups _A : Optional[int] = conv_pos_kernel_size _A : List[str] = len(self.conv_dim ) _A : str = num_hidden_layers _A : List[str] = intermediate_size _A : Any = hidden_act _A : Optional[Any] = num_attention_heads _A : Optional[Any] = hidden_dropout _A : Union[str, Any] = attention_dropout _A : Optional[Any] = activation_dropout _A : List[Any] = feat_proj_dropout _A : int = final_dropout _A : List[Any] = layerdrop _A : Optional[int] = layer_norm_eps _A : Tuple = initializer_range _A : str = vocab_size _A : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A : int = mask_time_prob _A : Union[str, Any] = mask_time_length _A : Dict = mask_time_min_masks _A : List[str] = mask_feature_prob _A : Optional[Any] = mask_feature_length _A : List[Any] = mask_feature_min_masks # ctc loss _A : Any = ctc_loss_reduction _A : str = ctc_zero_infinity # adapter _A : List[Any] = add_adapter _A : Any = adapter_kernel_size _A : List[Any] = adapter_stride _A : Optional[Any] = num_adapter_layers _A : Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A : Union[str, Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A : Optional[int] = list(_a ) _A : Dict = list(_a ) _A : Any = list(_a ) _A : int = xvector_output_dim @property def a__ ( self ) -> List[str]: return math.prod(self.conv_stride )
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "Pix2StructImageProcessor" _a = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _a , _a ) -> Dict: _A : Dict = False super().__init__(_a , _a ) def __call__( self , _a=None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 2048 , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: _A : List[str] = self.tokenizer _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _A : Dict = self.image_processor( _a , return_tensors=_a , max_patches=_a , **_a ) else: # add pixel_values and bbox _A : Dict = self.image_processor( _a , return_tensors=_a , max_patches=_a , header_text=_a , **_a ) if text is not None and not self.image_processor.is_vqa: _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) if "attention_mask" in text_encoding: _A : List[str] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: _A : str = text_encoding.pop("""input_ids""" ) else: _A : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> Union[str, Any]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> List[Any]: _A : Union[str, Any] = self.tokenizer.model_input_names _A : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase ( UpperCamelCase__ ): _a = 42 _a = 42 def __init__( self , _a , _a ) -> int: super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = 1 , _a = 50 , _a = None , _a = "pil" , _a = True , **_a , ) -> Union[Tuple, ImagePipelineOutput]: _A : int = self.unet.config.sample_size _A : Any = (batch_size, 3, img_size, img_size) _A : Optional[Any] = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A : int = randn_tensor(_a , generator=_a , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A : int = self.scheduler.schedule[t] _A : int = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A : Any = self.scheduler.add_noise_to_input(_a , _a , generator=_a ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A : Tuple = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A : Tuple = self.scheduler.step(_a , _a , _a , _a ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A : Dict = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A : str = self.scheduler.step_correct( _a , _a , _a , _a , step_output.prev_sample , step_output["""derivative"""] , ) _A : str = step_output.prev_sample _A : Tuple = (sample / 2 + 0.5).clamp(0 , 1 ) _A : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A : int = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) _A : int = size if size is not None else {"""shortest_edge""": 384} _A : str = get_size_dict(_a , default_to_square=_a ) _A : str = do_resize _A : Optional[Any] = size # Default value set here for backwards compatibility where the value in config is None _A : List[str] = crop_pct if crop_pct is not None else 224 / 256 _A : List[Any] = resample _A : Union[str, Any] = do_rescale _A : Optional[int] = rescale_factor _A : List[Any] = do_normalize _A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , _a , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _A : Dict = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _A : List[str] = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _A : Any = int(shortest_edge / crop_pct ) _A : Union[str, Any] = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) _A : Any = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> Dict: return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _A : Optional[int] = do_resize if do_resize is not None else self.do_resize _A : str = crop_pct if crop_pct is not None else self.crop_pct _A : Tuple = resample if resample is not None else self.resample _A : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _A : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _A : Tuple = image_mean if image_mean is not None else self.image_mean _A : List[str] = image_std if image_std is not None else self.image_std _A : Any = size if size is not None else self.size _A : str = get_size_dict(_a , default_to_square=_a ) _A : List[str] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A : List[Any] = [to_numpy_array(_a ) for image in images] if do_resize: _A : Dict = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: _A : Optional[int] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A : Optional[int] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A : Union[str, Any] = [to_channel_dimension_format(_a , _a ) for image in images] _A : Tuple = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = 1_0_0_0_0 _a = None _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = ParquetConfig def a__ ( self ) -> Optional[int]: return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Any: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : Optional[Any] = data_files if isinstance(_a , _a ): _A : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A : Optional[Any] = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : List[str] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A : Dict = [dl_manager.iter_files(_a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_a ): with open(_a , """rb""" ) as f: _A : int = datasets.Features.from_arrow_schema(pq.read_schema(_a ) ) break splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _A : List[Any] = table_cast(_a , self.info.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Tuple: _A : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , """rb""" ) as f: _A : Union[str, Any] = pq.ParquetFile(_a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _A : Optional[int] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_a ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
def lowerCAmelCase_ ( snake_case_ ): if not head: return True # split the list to two parts _A , _A : Union[str, Any] = head.next, head while fast and fast.next: _A : Union[str, Any] = fast.next.next _A : List[Any] = slow.next _A : Optional[Any] = slow.next _A : Union[str, Any] = None # Don't forget here! But forget still works! # reverse the second part _A : List[str] = None while second: _A : str = second.next _A : str = node _A : Tuple = second _A : List[str] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _A : List[str] = node.next _A : int = head.next return True def lowerCAmelCase_ ( snake_case_ ): if not head or not head.next: return True # 1. Get the midpoint (slow) _A : Tuple = head while fast and fast.next: _A , _A : Dict = fast.next.next, slow.next # 2. Push the second half into the stack _A : Any = [slow.val] while slow.next: _A : Dict = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _A : Optional[Any] = cur.next return True def lowerCAmelCase_ ( snake_case_ ): if not head or not head.next: return True _A : int = {} _A : Optional[int] = 0 while head: if head.val in d: d[head.val].append(snake_case_ ) else: _A : List[Any] = [pos] _A : int = head.next pos += 1 _A : Tuple = pos - 1 _A : str = 0 for v in d.values(): if len(snake_case_ ) % 2 != 0: middle += 1 else: _A : Dict = 0 for i in range(0,len(snake_case_ ) ): if v[i] + v[len(snake_case_ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
import math def lowerCAmelCase_ ( snake_case_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5,int(math.sqrt(snake_case_ ) + 1 ),6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( snake_case_ = 10001 ): try: _A : Dict = int(snake_case_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _A : list[int] = [] _A : List[Any] = 2 while len(snake_case_ ) < nth: if is_prime(snake_case_ ): primes.append(snake_case_ ) num += 1 else: num += 1 return primes[len(snake_case_ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CanineTokenizer _a = False def a__ ( self ) -> str: super().setUp() _A : Union[str, Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> List[str]: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def a__ ( self , **_a ) -> CanineTokenizer: _A : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) _A : int = 1024 return tokenizer @require_torch def a__ ( self ) -> int: _A : Union[str, Any] = self.canine_tokenizer _A : Optional[int] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _A : Optional[int] = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on _A : Union[str, Any] = tokenizer(_a , padding=_a , return_tensors="""pt""" ) self.assertIsInstance(_a , _a ) _A : str = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a , _a ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def a__ ( self ) -> Dict: _A : List[Any] = self.canine_tokenizer _A : Dict = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _A : Any = tokenizer(_a , padding=_a , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , _a ) self.assertIn("""attention_mask""" , _a ) self.assertIn("""token_type_ids""" , _a ) @require_torch def a__ ( self ) -> List[Any]: _A : Tuple = self.canine_tokenizer _A : int = [ """What's the weater?""", """It's about 25 degrees.""", ] _A : str = tokenizer( text_target=_a , max_length=32 , padding="""max_length""" , truncation=_a , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def a__ ( self ) -> int: # safety check on max_len default value so we are sure the test works _A : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A : str = tempfile.mkdtemp() _A : Optional[Any] = """ He is very happy, UNwant\u00E9d,running""" _A : Union[str, Any] = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A : str = tokenizer.__class__.from_pretrained(_a ) _A : Dict = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) shutil.rmtree(_a ) _A : Tuple = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _A : Optional[int] = tempfile.mkdtemp() _A : List[Any] = """ He is very happy, UNwant\u00E9d,running""" _A : List[Any] = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _A : int = chr(0xe0_07 ) additional_special_tokens.append(_a ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _A : int = tokenizer.encode(_a , add_special_tokens=_a ) tokenizer.save_pretrained(_a ) _A : List[str] = tokenizer.__class__.from_pretrained(_a ) _A : Dict = after_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) self.assertIn(_a , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A : Optional[Any] = tokenizer.__class__.from_pretrained(_a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A , _A : int = self.get_clean_sequence(_a ) # a special token for Canine can be defined as follows: _A : Tuple = 0xe0_05 _A : str = chr(_a ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _A : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _A : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=_a ) _A : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _A : str = tokenizer.encode(_a , add_special_tokens=_a ) _A : str = tokenizer.encode(_a , add_special_tokens=_a ) self.assertEqual(_a , input_encoded + special_token_id ) _A : str = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def a__ ( self ) -> str: _A : str = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : Tuple = chr(0xe0_05 ) _A : int = chr(0xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=_a ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _A : Union[str, Any] = tokenizer.tokenize(_a ) _A : List[Any] = tokenizer.tokenize(_a ) self.assertEqual(len(_a ) , 1 ) self.assertEqual(len(_a ) , 1 ) self.assertEqual(token_a[0] , _a ) self.assertEqual(token_a[0] , _a ) @require_tokenizers def a__ ( self ) -> Union[str, Any]: _A : List[str] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: _A : Optional[Any] = 0xe0_06 _A : str = chr(_a ) _A : Any = AddedToken(_a , lstrip=_a ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_a ) tokenizer.from_pretrained(_a ) def a__ ( self ) -> List[str]: _A : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _A : Union[str, Any] = json.load(_a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _A : int = json.load(_a ) # a special token for Canine can be defined as follows: _A : List[Any] = 0xe0_06 _A : Optional[int] = chr(_a ) _A : str = [new_token_a] _A : str = [new_token_a] with open(os.path.join(_a , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) with open(os.path.join(_a , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_a , _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A : Optional[Any] = tokenizer_class.from_pretrained(_a , extra_ids=0 ) self.assertIn(_a , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _A : Dict = 0xe0_07 _A : Optional[Any] = chr(_a ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A : int = [AddedToken(_a , lstrip=_a )] _A : List[str] = tokenizer_class.from_pretrained( _a , additional_special_tokens=_a , extra_ids=0 ) self.assertIn(_a , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def a__ ( self ) -> int: _A : Optional[Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : Tuple = """hello world""" if self.space_between_special_tokens: _A : Tuple = """[CLS] hello world [SEP]""" else: _A : int = input _A : Optional[int] = tokenizer.encode(_a , add_special_tokens=_a ) _A : Dict = tokenizer.decode(_a , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_a , [output, output.lower()] ) def a__ ( self ) -> Optional[int]: _A : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : Any = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _A : int = """a""" _A : Optional[int] = ord(_a ) for attr in attributes_list: setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , attr + """_id""" , _a ) self.assertEqual(getattr(_a , _a ) , _a ) self.assertEqual(getattr(_a , attr + """_id""" ) , _a ) setattr(_a , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [] ) _A : Optional[Any] = 0xe0_06 _A : Dict = chr(_a ) setattr(_a , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(_a , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(_a , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> int: pass def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> int: pass def a__ ( self ) -> int: pass def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Union[str, Any]: pass def a__ ( self ) -> str: pass
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
def lowerCAmelCase_ ( snake_case_ ): if not isinstance(snake_case_,snake_case_ ): raise TypeError("""Input value must be an 'int' type""" ) _A : Dict = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[str] = os.path.abspath(snake_case_ ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _A : List[str] = tf.train.list_variables(snake_case_ ) _A : List[Any] = [] _A : Optional[Any] = [] _A : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _A : Tuple = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _A : int = name[1:] # figure out how many levels deep the name is _A : Any = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(snake_case_ ) # read data _A : List[str] = tf.train.load_variable(snake_case_,snake_case_ ) names.append("""/""".join(snake_case_ ) ) arrays.append(snake_case_ ) logger.info(f'''Read a total of {len(snake_case_ ):,} layers''' ) # Sanity check if len(set(snake_case_ ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(snake_case_ ) )})''' ) _A : List[str] = list(set(snake_case_ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(snake_case_,snake_case_ ): _A : Optional[Any] = full_name.split("""/""" ) _A : Any = model _A : Any = [] for i, m_name in enumerate(snake_case_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): _A : Optional[Any] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) _A : int = getattr(snake_case_,"""embeddings""" ) _A : Dict = getattr(snake_case_,"""LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) _A : Any = getattr(snake_case_,"""encoder""" ) _A : Tuple = getattr(snake_case_,"""layer""" ) _A : str = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) _A : str = getattr(snake_case_,"""pooler""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) _A : List[str] = getattr(snake_case_,"""embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) _A : Optional[Any] = getattr(snake_case_,"""token_type_embeddings""" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) _A : Any = getattr(snake_case_,"""weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) _A : Optional[int] = getattr(snake_case_,"""attention""" ) _A : List[Any] = getattr(snake_case_,"""self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) _A : Optional[int] = getattr(snake_case_,"""attention""" ) _A : Tuple = getattr(snake_case_,"""output""" ) _A : int = getattr(snake_case_,"""LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) _A : Optional[Any] = getattr(snake_case_,"""attention""" ) _A : Any = getattr(snake_case_,"""output""" ) _A : Optional[int] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) _A : Any = getattr(snake_case_,"""output""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) _A : str = getattr(snake_case_,"""output""" ) _A : Union[str, Any] = getattr(snake_case_,"""LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) _A : Optional[int] = getattr(snake_case_,"""key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) _A : Optional[int] = getattr(snake_case_,"""query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) _A : Optional[Any] = getattr(snake_case_,"""value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) _A : Dict = getattr(snake_case_,"""intermediate""" ) _A : Union[str, Any] = getattr(snake_case_,"""dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) _A : int = getattr(snake_case_,"""output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) _A : List[str] = getattr(snake_case_,"""bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) _A : Optional[Any] = getattr(snake_case_,"""weight""" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary _A : List[str] = """.""".join(snake_case_ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""",snake_case_ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""",snake_case_ ): _A : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: _A : Tuple = array.transpose() if pointer.shape == array.shape: _A : Union[str, Any] = torch.from_numpy(snake_case_ ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) _A : Tuple = BertConfig.from_json_file(snake_case_ ) _A : Union[str, Any] = BertModel(snake_case_ ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) _snake_case = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } _snake_case = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } _snake_case = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ElectraTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> int: super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) _A : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _a ) != do_lower_case or normalizer_state.get("""strip_accents""" , _a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars ): _A : Dict = getattr(_a , normalizer_state.pop("""type""" ) ) _A : Tuple = do_lower_case _A : str = strip_accents _A : int = tokenize_chinese_chars _A : List[Any] = normalizer_class(**_a ) _A : Optional[int] = do_lower_case def a__ ( self , _a , _a=None ) -> str: _A : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self , _a , _a = None ) -> List[int]: _A : str = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : str = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1