code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a__ ( self , _a=0 ) -> List[str]: _A : Dict = np.random.RandomState(_a ) _A : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Optional[int]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Any = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : Tuple = pipe(**_a ).images _A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : List[Any] = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Tuple = self.get_dummy_inputs() _A : Any = pipe(**_a ).images _A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Optional[int] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Union[str, Any]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Any = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Tuple: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : Any = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Tuple = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> str: _A : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) _A : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _A : int = self.get_dummy_inputs() _A : int = pipe(**_a ).images _A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A : Optional[int] = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Dict: _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : str = self.get_dummy_inputs() _A : List[str] = 3 * [inputs["""prompt"""]] # forward _A : Any = pipe(**_a ) _A : Any = output.images[0, -3:, -3:, -1] _A : Optional[int] = self.get_dummy_inputs() _A : Optional[Any] = 3 * [inputs.pop("""prompt""" )] _A : Dict = pipe.tokenizer( _a , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""np""" , ) _A : Union[str, Any] = text_inputs["""input_ids"""] _A : Union[str, Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _A : int = prompt_embeds # forward _A : Dict = pipe(**_a ) _A : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def a__ ( self ) -> List[str]: _A : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_dummy_inputs() _A : Dict = 3 * ["""this is a negative prompt"""] _A : List[Any] = negative_prompt _A : int = 3 * [inputs["""prompt"""]] # forward _A : str = pipe(**_a ) _A : Dict = output.images[0, -3:, -3:, -1] _A : Optional[int] = self.get_dummy_inputs() _A : List[Any] = 3 * [inputs.pop("""prompt""" )] _A : Tuple = [] for p in [prompt, negative_prompt]: _A : str = pipe.tokenizer( _a , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""np""" , ) _A : Union[str, Any] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _A , _A : List[Any] = embeds # forward _A : Tuple = pipe(**_a ) _A : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> Dict: _A : Any = ort.SessionOptions() _A : int = False return options def a__ ( self ) -> List[Any]: # using the PNDM scheduler by default _A : str = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) _A : Union[str, Any] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) _A : Union[str, Any] = output.images _A : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : int = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : Optional[int] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = """open neural network exchange""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" ) _A : Dict = output.images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : Union[str, Any] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> List[str]: _A : str = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) _A : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_a ) _A : str = """open neural network exchange""" _A : int = np.random.RandomState(0 ) _A : Union[str, Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="""np""" ) _A : List[Any] = output.images _A : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _A : Union[str, Any] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def a__ ( self ) -> int: _A : List[Any] = 0 def test_callback_fn(_a , _a , _a ) -> None: _A : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _A : Optional[int] = latents[0, -3:, -3:, -1] _A : str = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _A : Union[str, Any] = latents[0, -3:, -3:, -1] _A : Tuple = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 _A : List[Any] = False _A : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = """Andromeda galaxy in a bottle""" _A : Optional[int] = np.random.RandomState(0 ) pipe( prompt=_a , num_inference_steps=5 , guidance_scale=7.5 , generator=_a , callback=_a , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def a__ ( self ) -> Union[str, Any]: _A : Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_a , _a ) assert pipe.safety_checker is None _A : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) _A : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None _A : Union[str, Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): def a__ ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : List[str] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return model @property def a__ ( self ) -> List[Any]: torch.manual_seed(0 ) _A : Optional[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , cross_attention_dim=10 , ) return model @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , ) _A : int = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("""AttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """AttnUpBlock2D""") , ) return vqvae, unet @slow def a__ ( self ) -> int: _A : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : List[str] = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) _A : List[str] = DDPMScheduler() _A : Dict = AudioDiffusionPipeline(vqvae=_a , unet=self.dummy_unet , mel=_a , scheduler=_a ) _A : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = torch.Generator(device=_a ).manual_seed(42 ) _A : Union[str, Any] = pipe(generator=_a , steps=4 ) _A : int = output.audios[0] _A : Dict = output.images[0] _A : Any = torch.Generator(device=_a ).manual_seed(42 ) _A : Tuple = pipe(generator=_a , steps=4 , return_dict=_a ) _A : List[Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) _A : List[str] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _A : Union[str, Any] = np.frombuffer(image_from_tuple.tobytes() , dtype="""uint8""" )[:10] _A : List[Any] = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 _A : str = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) _A : Any = DDIMScheduler() _A : Tuple = self.dummy_vqvae_and_unet _A : List[str] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_a , scheduler=_a ) _A : List[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) np.random.seed(0 ) _A : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) _A : int = torch.Generator(device=_a ).manual_seed(42 ) _A : int = pipe(raw_audio=_a , generator=_a , start_step=5 , steps=10 ) _A : Dict = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) _A : Optional[Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _A : List[Any] = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 _A : List[Any] = self.dummy_unet_condition _A : List[Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_a , mel=_a , scheduler=_a ) _A : List[str] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) np.random.seed(0 ) _A : List[str] = torch.rand((1, 1, 10) ) _A : Tuple = pipe(generator=_a , encoding=_a ) _A : Tuple = output.images[0] _A : Optional[int] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _A : int = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Optional[int]: _A : Tuple = torch_device _A : Union[str, Any] = DiffusionPipeline.from_pretrained("""teticio/audio-diffusion-ddim-256""" ) _A : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[str] = torch.Generator(device=_a ).manual_seed(42 ) _A : Dict = pipe(generator=_a ) _A : Optional[int] = output.audios[0] _A : Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] _A : Union[str, Any] = np.frombuffer(image.tobytes() , dtype="""uint8""" )[:10] _A : Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Optional[Any]: _A : List[str] = torch.nn.Linear(10 , 10 ) _A : int = torch.optim.SGD(model.parameters() , 0.1 ) _A : str = Accelerator() _A : List[Any] = accelerator.prepare(_a ) try: pickle.loads(pickle.dumps(_a ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ) ): _A : Dict = tau * frequency / samplerate _A : List[str] = sin(snake_case_ ) _A : Tuple = cos(snake_case_ ) _A : Optional[Any] = _sin / (2 * q_factor) _A : Union[str, Any] = (1 - _cos) / 2 _A : Optional[int] = 1 - _cos _A : List[Any] = 1 + alpha _A : Tuple = -2 * _cos _A : Optional[int] = 1 - alpha _A : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ) ): _A : List[Any] = tau * frequency / samplerate _A : Optional[Any] = sin(snake_case_ ) _A : int = cos(snake_case_ ) _A : int = _sin / (2 * q_factor) _A : Dict = (1 + _cos) / 2 _A : Tuple = -1 - _cos _A : Dict = 1 + alpha _A : List[Any] = -2 * _cos _A : List[Any] = 1 - alpha _A : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ) ): _A : List[Any] = tau * frequency / samplerate _A : Tuple = sin(snake_case_ ) _A : Tuple = cos(snake_case_ ) _A : Any = _sin / (2 * q_factor) _A : List[str] = _sin / 2 _A : Any = 0 _A : Optional[Any] = -ba _A : str = 1 + alpha _A : int = -2 * _cos _A : Any = 1 - alpha _A : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ) ): _A : Optional[Any] = tau * frequency / samplerate _A : Any = sin(snake_case_ ) _A : List[str] = cos(snake_case_ ) _A : str = _sin / (2 * q_factor) _A : Optional[int] = 1 - alpha _A : int = -2 * _cos _A : Optional[Any] = 1 + alpha _A : List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ),): _A : str = tau * frequency / samplerate _A : int = sin(snake_case_ ) _A : List[str] = cos(snake_case_ ) _A : Optional[Any] = _sin / (2 * q_factor) _A : Any = 10 ** (gain_db / 40) _A : List[Any] = 1 + alpha * big_a _A : int = -2 * _cos _A : Dict = 1 - alpha * big_a _A : Tuple = 1 + alpha / big_a _A : str = -2 * _cos _A : Optional[Any] = 1 - alpha / big_a _A : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ),): _A : Optional[int] = tau * frequency / samplerate _A : List[str] = sin(snake_case_ ) _A : str = cos(snake_case_ ) _A : List[Any] = _sin / (2 * q_factor) _A : Tuple = 10 ** (gain_db / 40) _A : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _A : Dict = (big_a + 1) + (big_a - 1) * _cos _A : str = (big_a - 1) - (big_a + 1) * _cos _A : str = (big_a - 1) + (big_a + 1) * _cos _A : str = 2 * sqrt(snake_case_ ) * alpha _A : Optional[Any] = big_a * (pmc + aaa) _A : Optional[Any] = 2 * big_a * mpc _A : str = big_a * (pmc - aaa) _A : Any = ppmc + aaa _A : str = -2 * pmpc _A : Optional[int] = ppmc - aaa _A : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = 1 / sqrt(2 ),): _A : Optional[int] = tau * frequency / samplerate _A : List[Any] = sin(snake_case_ ) _A : List[str] = cos(snake_case_ ) _A : List[Any] = _sin / (2 * q_factor) _A : Dict = 10 ** (gain_db / 40) _A : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _A : Any = (big_a + 1) + (big_a - 1) * _cos _A : Union[str, Any] = (big_a - 1) - (big_a + 1) * _cos _A : int = (big_a - 1) + (big_a + 1) * _cos _A : Dict = 2 * sqrt(snake_case_ ) * alpha _A : List[Any] = big_a * (ppmc + aaa) _A : Any = -2 * big_a * pmpc _A : Union[str, Any] = big_a * (ppmc - aaa) _A : Union[str, Any] = pmc + aaa _A : int = 2 * mpc _A : Optional[int] = pmc - aaa _A : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa],[ba, ba, ba] ) return filt
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: _A : Any = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _A : Optional[int] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _A : int = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above _A : Union[str, Any] = tf_top_k_top_p_filtering(_a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _A : Tuple = output[output != -float("""inf""" )] _A : List[Any] = tf.cast( tf.where(tf.not_equal(_a , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_a , _a , rtol=1e-12 ) tf.debugging.assert_equal(_a , _a ) @require_tf class lowercase ( unittest.TestCase,UpperCamelCase__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): _a = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def a__ ( self ) -> List[Any]: # TF-only test: tf.saved_model export _A : Optional[Any] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _A : int = 2 _A : int = 2 class lowercase ( tf.Module ): def __init__( self , _a ) -> List[str]: super(_a , self ).__init__() _A : int = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_a , ) def a__ ( self , _a , _a ) -> Any: _A : Any = self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} _A : int = [[2, 0], [102, 103]] _A : Any = [[1, 0], [1, 1]] _A : Optional[int] = DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={"""serving_default""": dummy_model.serving} ) _A : Union[str, Any] = tf.saved_model.load(_a ).signatures["""serving_default"""] for batch_size in range(1 , len(_a ) + 1 ): _A : List[Any] = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } _A : List[Any] = serving_func(**_a )["""sequences"""] _A : List[Any] = test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow def a__ ( self ) -> str: # TF-only test: tf.saved_model export _A : Tuple = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _A : Union[str, Any] = 1 _A : str = 2 class lowercase ( tf.Module ): def __init__( self , _a ) -> str: super(_a , self ).__init__() _A : Optional[Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_a , ) def a__ ( self , _a , _a ) -> Any: _A : Tuple = self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} _A : Optional[Any] = [[2], [102, 103]] _A : List[Any] = [[1], [1, 1]] _A : List[Any] = DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={"""serving_default""": dummy_model.serving} ) _A : Optional[int] = tf.saved_model.load(_a ).signatures["""serving_default"""] for input_row in range(len(_a ) ): _A : List[str] = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } _A : int = serving_func(**_a )["""sequences"""] _A : str = test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow @require_tensorflow_text def a__ ( self ) -> Tuple: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_a ) class lowercase ( tf.keras.layers.Layer ): def __init__( self ) -> Tuple: super().__init__() _A : str = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_a , """spiece.model""" ) , """rb""" ).read() ) _A : str = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def a__ ( self , _a , *_a , **_a ) -> str: _A : Any = self.tokenizer.tokenize(_a ) _A , _A : Any = text.pad_model_inputs( _a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _A : Any = self.model.generate(input_ids=_a , attention_mask=_a ) return self.tokenizer.detokenize(_a ) _A : Optional[int] = CompleteSentenceTransformer() _A : Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) _A : List[str] = complete_model(_a ) _A : List[Any] = tf.keras.Model(_a , _a ) keras_model.save(_a ) def a__ ( self ) -> Optional[Any]: # Has PT equivalent: this test relies on random sampling _A : Optional[int] = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } _A : Any = 14 _A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _A : str = """Hello, my dog is cute and""" _A : Optional[Any] = tokenizer(_a , return_tensors="""tf""" ) _A : List[str] = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _A : Optional[Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) _A : Dict = model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _A : int = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) _A : int = model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def a__ ( self ) -> Optional[Any]: # Has PT equivalent: ample use of framework-specific code _A : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _A : Tuple = """Hugging Face is a technology company based in New York and Paris.""" _A : Union[str, Any] = bart_tokenizer(_a , return_tensors="""tf""" ).input_ids _A : Dict = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _A : Optional[Any] = bart_model.generate(_a ).numpy() class lowercase ( UpperCamelCase__ ): def a__ ( self , _a , _a=None , **_a ) -> Dict: return super().call(_a , **_a ) _A : Union[str, Any] = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) _A : List[str] = bart_model.generate(_a , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_a , _a ) ) class lowercase ( bart_model.model.encoder.__class__ ): def a__ ( self , _a , **_a ) -> Union[str, Any]: return super().call(_a , **_a ) _A : Optional[int] = FakeEncoder(bart_model.config , bart_model.model.shared ) _A : Optional[int] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _A : Optional[int] = bart_model.generate(_a ).numpy() with self.assertRaises(_a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_a , foo="""bar""" )
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) // 2 # choose the middle 3 elements _A : int = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _snake_case = "\\n Text data.\n Second line of data." _snake_case = "file" @pytest.fixture(scope="""session""" ) def lowerCAmelCase_ ( snake_case_ ): _A : Dict = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") _A : Tuple = bytes(snake_case_,"""utf-8""" ) with zstd.open(snake_case_,"""wb""" ) as f: f.write(snake_case_ ) return path @pytest.fixture def lowerCAmelCase_ ( snake_case_ ): with open(os.path.join(tmpfs.local_root_dir,snake_case_ ),"""w""" ) as f: f.write(snake_case_ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""",["""gzip""", """xz""", """zstd"""] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Tuple = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} _A : Optional[int] = input_paths[compression_format] _A : Any = tmp_path / """cache""" _A : List[str] = DownloadConfig(cache_dir=snake_case_,extract_compressed_file=snake_case_ ) _A : Union[str, Any] = cached_path(snake_case_,download_config=snake_case_ ) with open(snake_case_ ) as f: _A : List[Any] = f.read() with open(snake_case_ ) as f: _A : List[Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""",[True, False] ) @pytest.mark.parametrize("""default_cache_dir""",[True, False] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Union[str, Any] = """custom_cache""" _A : Any = """custom_extracted_dir""" _A : Union[str, Any] = tmp_path / """custom_extracted_path""" if default_extracted: _A : int = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""",snake_case_ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""",str(snake_case_ ) ) _A : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _A : Dict = xz_file _A : Optional[int] = ( DownloadConfig(extract_compressed_file=snake_case_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir,extract_compressed_file=snake_case_ ) ) _A : int = cached_path(snake_case_,download_config=snake_case_ ) assert Path(snake_case_ ).parent.parts[-2:] == expected def lowerCAmelCase_ ( snake_case_ ): # absolute path _A : int = str(Path(snake_case_ ).resolve() ) assert cached_path(snake_case_ ) == text_file # relative path _A : str = str(Path(snake_case_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case_ ) == text_file def lowerCAmelCase_ ( snake_case_ ): # absolute path _A : Union[str, Any] = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(snake_case_ ): cached_path(snake_case_ ) # relative path _A : Tuple = """./__missing_file__.txt""" with pytest.raises(snake_case_ ): cached_path(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(snake_case_ ) as f: _A : int = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""",snake_case_ ) def lowerCAmelCase_ ( ): with pytest.raises(snake_case_ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""",snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Any = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): http_get("""https://huggingface.co""",temp_file=snake_case_ ) with pytest.raises(snake_case_ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""",snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : str = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): ftp_get("""ftp://huggingface.co""",temp_file=snake_case_ ) with pytest.raises(snake_case_ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""",snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(snake_case_ ): fsspec_get("""s3://huggingface.co""",temp_file=snake_case_ ) with pytest.raises(snake_case_ ): fsspec_head("""s3://huggingface.co""" )
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _snake_case = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=None ): # Initialise PyTorch model _A : Union[str, Any] = XLNetConfig.from_json_file(snake_case_ ) _A : List[str] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A : str = finetuning_task _A : int = GLUE_TASKS_NUM_LABELS[finetuning_task] _A : int = XLNetForSequenceClassification(snake_case_ ) elif "squad" in finetuning_task: _A : Optional[Any] = finetuning_task _A : str = XLNetForQuestionAnswering(snake_case_ ) else: _A : Optional[int] = XLNetLMHeadModel(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model _A : Union[str, Any] = os.path.join(snake_case_,snake_case_ ) _A : Any = os.path.join(snake_case_,snake_case_ ) print(f'''Save PyTorch model to {os.path.abspath(snake_case_ )}''' ) torch.save(model.state_dict(),snake_case_ ) print(f'''Save configuration file to {os.path.abspath(snake_case_ )}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _snake_case = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
def lowerCAmelCase_ ( snake_case_ = 200 ): _A : Optional[Any] = [1, 2, 5, 10, 20, 50, 100, 200] _A : List[str] = [0] * (pence + 1) _A : int = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case_,pence + 1,1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): if len(snake_case_ ) == 0: return False _A : str = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint],snake_case_ ) else: return binary_search(a_list[midpoint + 1 :],snake_case_ ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = [int(item.strip()) for item in user_input.split(",")] _snake_case = int(input("Enter the number to be found in the list:\n").strip()) _snake_case = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _snake_case = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _snake_case = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _snake_case = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _snake_case = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _snake_case = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _snake_case = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _snake_case = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowerCAmelCase_ ( ): _A , _A : int = randrange(len(snake_case_ ) ), randrange(len(snake_case_ ) ) _A : Dict = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _A , _A : List[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCAmelCase_ ( snake_case_ = 100 ): return (generate_random_hand() for _ in range(snake_case_ )) @pytest.mark.parametrize("""hand, expected""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): assert PokerHand(snake_case_ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): assert PokerHand(snake_case_ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[str] = PokerHand(snake_case_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): assert PokerHand(snake_case_ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): assert PokerHand(snake_case_ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""",generate_random_hands() ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected def lowerCAmelCase_ ( ): _A : Any = [PokerHand(snake_case_ ) for hand in SORTED_HANDS] _A : Any = poker_hands.copy() shuffle(snake_case_ ) _A : Union[str, Any] = chain(sorted(snake_case_ ) ) for index, hand in enumerate(snake_case_ ): assert hand == poker_hands[index] def lowerCAmelCase_ ( ): # Test that five high straights are compared correctly. _A : List[Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=snake_case_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCAmelCase_ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _A : str = PokerHand("""2C 4S AS 3D 5C""" ) _A : Union[str, Any] = True _A : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCAmelCase_ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file _A : List[str] = 0 _A : int = os.path.abspath(os.path.dirname(snake_case_ ) ) _A : Dict = os.path.join(snake_case_,"""poker_hands.txt""" ) with open(snake_case_ ) as file_hand: for line in file_hand: _A : Optional[Any] = line[:14].strip() _A : List[str] = line[15:].strip() _A , _A : Union[str, Any] = PokerHand(snake_case_ ), PokerHand(snake_case_ ) _A : Tuple = player.compare_with(snake_case_ ) if output == "Win": answer += 1 assert answer == 376
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
def lowerCAmelCase_ ( snake_case_,snake_case_ ): return abs(snake_case_ ) if a == 0 else greatest_common_divisor(b % a,snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): while y: # --> when y=0 then loop will terminate and return x as final GCD. _A , _A : Dict = y, x % y return abs(snake_case_ ) def lowerCAmelCase_ ( ): try: _A : Tuple = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) _A : Any = int(nums[0] ) _A : int = int(nums[1] ) print( f'''greatest_common_divisor({num_a}, {num_a}) = ''' f'''{greatest_common_divisor(snake_case_,snake_case_ )}''' ) print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(snake_case_,snake_case_ )}''' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=None , ) -> str: _A : Union[str, Any] = parent _A : Union[str, Any] = batch_size _A : Optional[int] = image_size _A : Any = patch_size _A : int = num_channels _A : Tuple = is_training _A : int = use_labels _A : str = hidden_size _A : Any = num_hidden_layers _A : int = num_attention_heads _A : Optional[Any] = intermediate_size _A : Dict = hidden_act _A : int = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : Dict = type_sequence_label_size _A : Optional[Any] = initializer_range _A : List[str] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : Optional[int] = (image_size // patch_size) ** 2 _A : Any = num_patches + 1 def a__ ( self ) -> Any: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Tuple = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Union[str, Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Any: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Optional[int]: _A : Tuple = TFViTModel(config=_a ) _A : Optional[int] = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _A : List[Any] = self.image_size // 2 _A : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _A : Union[str, Any] = model(_a , interpolate_pos_encoding=_a , training=_a ) _A : Union[str, Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> Optional[Any]: _A : Optional[Any] = self.type_sequence_label_size _A : int = TFViTForImageClassification(_a ) _A : Tuple = model(_a , labels=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _A : Tuple = self.image_size // 2 _A : int = pixel_values[:, :, :image_size, :image_size] _A : str = model(_a , interpolate_pos_encoding=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Optional[int] = 1 _A : List[Any] = TFViTForImageClassification(_a ) _A : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : List[Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : List[Any] = self.prepare_config_and_inputs() _A , _A , _A : str = config_and_inputs _A : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _a = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) _a = False _a = False _a = False def a__ ( self ) -> Any: _A : List[Any] = TFViTModelTester(self ) _A : Dict = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def a__ ( self ) -> Optional[int]: pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Any: _A , _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) _A : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) ) def a__ ( self ) -> Union[str, Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[int] = model_class(_a ) _A : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Any: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Tuple: _A : str = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Dict: _A : List[Any] = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _A : Tuple = self.default_image_processor _A : Any = prepare_img() _A : List[Any] = image_processor(images=_a , return_tensors="""tf""" ) # forward pass _A : str = model(**_a ) # verify the logits _A : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Dict = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _a , atol=1e-4 )
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _snake_case = {"allegro/herbert-base-cased": 514} _snake_case = {} class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = HerbertTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a="</s>" , **_a , ) -> Optional[int]: super().__init__( _a , _a , tokenizer_file=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , sep_token=_a , **_a , ) def a__ ( self , _a , _a = None ) -> List[int]: _A : List[Any] = [self.cls_token_id] _A : int = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def a__ ( self , _a , _a = None ) -> List[int]: _A : int = [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : List[Any] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
class lowercase : def __init__( self ) -> Optional[Any]: _A : int = 0 _A : Any = 0 _A : Union[str, Any] = {} def a__ ( self , _a ) -> int: if vertex not in self.adjacency: _A : Any = {} self.num_vertices += 1 def a__ ( self , _a , _a , _a ) -> str: self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _A : Optional[int] = weight _A : int = weight def a__ ( self ) -> List[str]: _A : List[str] = self.get_edges() for edge in edges: _A , _A , _A : Tuple = edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _A : Optional[int] = list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _A : Optional[Any] = edges[i][2] + 1 for edge in edges: _A , _A , _A : Any = edge _A : Any = weight _A : Optional[Any] = weight def __str__( self ) -> Optional[int]: _A : Any = """""" for tail in self.adjacency: for head in self.adjacency[tail]: _A : str = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def a__ ( self ) -> Tuple: _A : str = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def a__ ( self ) -> str: return self.adjacency.keys() @staticmethod def a__ ( _a=None , _a=None ) -> Any: _A : str = Graph() if vertices is None: _A : List[Any] = [] if edges is None: _A : Optional[int] = [] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class lowercase : def __init__( self ) -> Optional[Any]: _A : int = {} _A : List[str] = {} def __len__( self ) -> Optional[int]: return len(self.parent ) def a__ ( self , _a ) -> Union[str, Any]: if item in self.parent: return self.find(_a ) _A : Union[str, Any] = item _A : Any = 0 return item def a__ ( self , _a ) -> Tuple: if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _A : Tuple = self.find(self.parent[item] ) return self.parent[item] def a__ ( self , _a , _a ) -> Optional[int]: _A : int = self.find(_a ) _A : Any = self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _A : Optional[int] = roota return roota if self.rank[roota] < self.rank[roota]: _A : Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _A : Optional[int] = roota return roota return None @staticmethod def a__ ( _a ) -> int: _A : List[Any] = graph.num_vertices _A : Optional[int] = Graph.UnionFind() _A : List[str] = [] while num_components > 1: _A : Union[str, Any] = {} for vertex in graph.get_vertices(): _A : List[Any] = -1 _A : List[str] = graph.get_edges() for edge in edges: _A , _A , _A : Any = edge edges.remove((tail, head, weight) ) for edge in edges: _A , _A , _A : int = edge _A : Tuple = union_find.find(_a ) _A : str = union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _A : Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _A : List[str] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _A , _A , _A : Union[str, Any] = cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _A : Any = num_components - 1 _A : List[str] = Graph.build(edges=_a ) return mst
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[Any] = tempfile.mkdtemp() # fmt: off _A : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _A : Optional[Any] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _A : List[Any] = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def a__ ( self , **_a ) -> int: return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> List[str]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def a__ ( self ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> List[str]: _A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _A : int = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> Dict: _A : Any = self.get_tokenizer() _A : int = self.get_image_processor() _A : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _A : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def a__ ( self ) -> int: _A : List[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _A : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def a__ ( self ) -> Optional[int]: _A : List[Any] = self.get_image_processor() _A : Optional[Any] = self.get_tokenizer() _A : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _A : List[str] = self.prepare_image_inputs() _A : List[str] = image_processor(_a , return_tensors="""np""" ) _A : Optional[Any] = processor(images=_a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self ) -> List[Any]: _A : Optional[Any] = self.get_image_processor() _A : Optional[int] = self.get_tokenizer() _A : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _A : Dict = """lower newer""" _A : Tuple = processor(text=_a ) _A : Tuple = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self ) -> int: _A : List[str] = self.get_image_processor() _A : Any = self.get_tokenizer() _A : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _A : Tuple = """lower newer""" _A : Any = self.prepare_image_inputs() _A : List[str] = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(_a ): processor() def a__ ( self ) -> Union[str, Any]: _A : Dict = self.get_image_processor() _A : Optional[Any] = self.get_tokenizer() _A : Dict = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A : int = processor.batch_decode(_a ) _A : Union[str, Any] = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: _A : int = self.get_image_processor() _A : Any = self.get_tokenizer() _A : str = VisionTextDualEncoderProcessor(tokenizer=_a , image_processor=_a ) _A : int = """lower newer""" _A : Optional[int] = self.prepare_image_inputs() _A : int = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> Tuple: super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def a__ ( self , _a = "auto" ) -> List[Any]: if slice_size == "auto": _A : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def a__ ( self ) -> Tuple: self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=1_6000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ) -> int: _A : Dict = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) _A : Optional[int] = self.speech_model.generate(_a , max_length=48_0000 ) _A : Union[str, Any] = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): _A : Any = 1 elif isinstance(_a , _a ): _A : Optional[int] = len(_a ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_a )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_a )}.''' ) # get prompt text embeddings _A : List[Any] = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) _A : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A : str = text_input_ids[:, : self.tokenizer.model_max_length] _A : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _A , _A , _A : List[Any] = text_embeddings.shape _A : Tuple = text_embeddings.repeat(1 , _a , 1 ) _A : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _A : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _A : List[str] if negative_prompt is None: _A : List[Any] = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=''' F''' {type(_a )}.''' ) elif isinstance(_a , _a ): _A : str = [negative_prompt] elif batch_size != len(_a ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: _A : Optional[int] = negative_prompt _A : Tuple = text_input_ids.shape[-1] _A : Dict = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) _A : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A : Optional[Any] = uncond_embeddings.shape[1] _A : Dict = uncond_embeddings.repeat(1 , _a , 1 ) _A : str = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A : Union[str, Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _A : Union[str, Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _A : Optional[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _A : List[str] = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: _A : Dict = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _A : Any = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _A : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A : Optional[int] = {} if accepts_eta: _A : Dict = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A : Dict = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual _A : Optional[Any] = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: _A , _A : Dict = noise_pred.chunk(2 ) _A : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _A : str = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) _A : List[str] = 1 / 0.18215 * latents _A : List[str] = self.vae.decode(_a ).sample _A : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _A : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _A : Dict = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__ ( self ) -> Union[str, Any]: _A : Dict = 1 _A : List[Any] = 3 _A : str = (32, 32) _A : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def a__ ( self ) -> str: torch.manual_seed(0 ) _A : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def a__ ( self ) -> int: torch.manual_seed(0 ) _A : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def a__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _A : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_a ) @property def a__ ( self ) -> int: def extract(*_a , **_a ): class lowercase : def __init__( self ) -> Any: _A : List[Any] = torch.ones([0] ) def a__ ( self , _a ) -> Optional[Any]: self.pixel_values.to(_a ) return self return Out() return extract def a__ ( self ) -> Tuple: _A : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : int = self.dummy_cond_unet _A : List[Any] = PNDMScheduler(skip_prk_steps=_a ) _A : Optional[int] = self.dummy_vae _A : Dict = self.dummy_text_encoder _A : Union[str, Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _A : List[Any] = 77 _A : str = self.dummy_image.to(_a ) _A : Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _A : Optional[Any] = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _A : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _A : Optional[int] = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _A : List[str] = """A painting of a squirrel eating a burger""" _A : Union[str, Any] = torch.Generator(device=_a ).manual_seed(0 ) _A : Any = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_a , ) _A : Any = output.images _A : int = torch.Generator(device=_a ).manual_seed(0 ) _A : Tuple = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=_a , return_dict=_a , )[0] _A : List[Any] = image[0, -3:, -3:, -1] _A : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A : Dict = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def a__ ( self ) -> Optional[Any]: _A : int = self.dummy_cond_unet _A : List[str] = PNDMScheduler(skip_prk_steps=_a ) _A : List[str] = self.dummy_vae _A : Tuple = self.dummy_text_encoder _A : str = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _A : str = 77 _A : List[Any] = self.dummy_image.to(_a ) # put models in fp16 _A : List[str] = unet.half() _A : Union[str, Any] = vae.half() _A : Tuple = bert.half() # make sure here that pndm scheduler skips prk _A : int = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _A : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _A : Tuple = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _A : int = """A painting of a squirrel eating a burger""" _A : Tuple = torch.manual_seed(0 ) _A : List[str] = alt_pipe( [prompt] , generator=_a , num_inference_steps=2 , output_type="""np""" , image=_a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def a__ ( self ) -> str: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _A : Union[str, Any] = init_image.resize((760, 504) ) _A : Union[str, Any] = """BAAI/AltDiffusion""" _A : Any = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : int = """A fantasy landscape, trending on artstation""" _A : Tuple = torch.manual_seed(0 ) _A : int = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type="""np""" , ) _A : int = output.images[0] _A : List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _A : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Tuple: _A : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _A : str = init_image.resize((768, 512) ) _A : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _A : str = """BAAI/AltDiffusion""" _A : str = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Dict = """A fantasy landscape, trending on artstation""" _A : str = torch.manual_seed(0 ) _A : int = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type="""np""" , ) _A : int = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> Union[str, Any]: super().__init__(*_a , **_a ) requires_backends(self , """vision""" ) self.check_model_type(_a ) def __call__( self , _a , **_a ) -> Any: return super().__call__(_a , **_a ) def a__ ( self , **_a ) -> str: return {}, {}, {} def a__ ( self , _a ) -> List[Any]: _A : Any = load_image(_a ) _A : Dict = image.size _A : Optional[int] = self.image_processor(images=_a , return_tensors=self.framework ) return model_inputs def a__ ( self , _a ) -> int: _A : Optional[int] = self.model(**_a ) return model_outputs def a__ ( self , _a ) -> str: _A : Any = model_outputs.predicted_depth _A : Dict = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=_a ) _A : Tuple = prediction.squeeze().cpu().numpy() _A : Optional[int] = (output * 255 / np.max(_a )).astype("""uint8""" ) _A : Optional[Any] = Image.fromarray(_a ) _A : List[str] = {} _A : str = predicted_depth _A : Optional[int] = depth return output_dict
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , **_a , ) -> None: super().__init__(**_a ) _A : Optional[Any] = size if size is not None else {"""shortest_edge""": 256} _A : List[str] = get_size_dict(_a , default_to_square=_a ) _A : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _A : int = get_size_dict(_a ) _A : Union[str, Any] = do_resize _A : Union[str, Any] = size _A : Union[str, Any] = resample _A : Dict = do_center_crop _A : str = crop_size _A : Dict = do_rescale _A : Tuple = rescale_factor _A : Any = do_normalize _A : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _A : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _A : List[str] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _A : int = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _A : Union[str, Any] = get_size_dict(_a ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a ) -> np.ndarray: return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> List[str]: _A : Dict = do_resize if do_resize is not None else self.do_resize _A : Any = size if size is not None else self.size _A : List[str] = get_size_dict(_a , default_to_square=_a ) _A : Optional[int] = resample if resample is not None else self.resample _A : int = do_center_crop if do_center_crop is not None else self.do_center_crop _A : str = crop_size if crop_size is not None else self.crop_size _A : List[Any] = get_size_dict(_a ) _A : Tuple = do_rescale if do_rescale is not None else self.do_rescale _A : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Any = do_normalize if do_normalize is not None else self.do_normalize _A : Optional[Any] = image_mean if image_mean is not None else self.image_mean _A : List[Any] = image_std if image_std is not None else self.image_std _A : Any = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _A : int = [to_numpy_array(_a ) for image in images] if do_resize: _A : List[str] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _A : str = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _A : Optional[int] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A : Any = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A : str = [to_channel_dimension_format(_a , _a ) for image in images] _A : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
class lowercase : def __init__( self ) -> None: _A : dict[str, TrieNode] = {} # Mapping from char to TrieNode _A : Optional[Any] = False def a__ ( self , _a ) -> None: for word in words: self.insert(_a ) def a__ ( self , _a ) -> None: _A : Optional[Any] = self for char in word: if char not in curr.nodes: _A : Optional[Any] = TrieNode() _A : List[Any] = curr.nodes[char] _A : Optional[int] = True def a__ ( self , _a ) -> bool: _A : Union[str, Any] = self for char in word: if char not in curr.nodes: return False _A : str = curr.nodes[char] return curr.is_leaf def a__ ( self , _a ) -> None: def _delete(_a , _a , _a ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False _A : Any = False return len(curr.nodes ) == 0 _A : List[Any] = word[index] _A : Optional[Any] = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _A : List[str] = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if node.is_leaf: print(snake_case_,end=""" """ ) for key, value in node.nodes.items(): print_words(snake_case_,word + key ) def lowerCAmelCase_ ( ): _A : int = """banana bananas bandana band apple all beast""".split() _A : Optional[int] = TrieNode() root.insert_many(snake_case_ ) # print_words(root, "") assert all(root.find(snake_case_ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCAmelCase_ ( snake_case_,snake_case_ ): print(str(snake_case_ ),"""works!""" if passes else """doesn't work :(""" ) def lowerCAmelCase_ ( ): assert test_trie() def lowerCAmelCase_ ( ): print_results("""Testing trie functionality""",test_trie() ) if __name__ == "__main__": main()
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 128 , _a = 256 , _a = 2000.0 , _a = 768 , _a = 12 , _a = 12 , _a = 64 , _a = 2048 , _a = 0.1 , ) -> Tuple: super().__init__() _A : Optional[int] = nn.Sequential( nn.Linear(_a , d_model * 4 , bias=_a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_a ) , nn.SiLU() , ) _A : Tuple = nn.Embedding(_a , _a ) _A : str = False _A : Optional[int] = nn.Linear(_a , _a , bias=_a ) _A : Optional[Any] = nn.Dropout(p=_a ) _A : Dict = nn.ModuleList() for lyr_num in range(_a ): # FiLM conditional T5 decoder _A : int = DecoderLayer(d_model=_a , d_kv=_a , num_heads=_a , d_ff=_a , dropout_rate=_a ) self.decoders.append(_a ) _A : List[str] = TaLayerNorm(_a ) _A : Tuple = nn.Dropout(p=_a ) _A : str = nn.Linear(_a , _a , bias=_a ) def a__ ( self , _a , _a ) -> Tuple: _A : Optional[int] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def a__ ( self , _a , _a , _a ) -> Optional[Any]: _A , _A , _A : Any = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _A : int = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _A : int = self.conditioning_emb(_a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _A : List[str] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _A : int = torch.broadcast_to( torch.arange(_a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _A : List[Any] = self.position_encoding(_a ) _A : Optional[int] = self.continuous_inputs_projection(_a ) inputs += position_encodings _A : Dict = self.dropout(_a ) # decoder: No padding present. _A : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _A : List[str] = [(x, self.encoder_decoder_mask(_a , _a )) for x, y in encodings_and_masks] # cross attend style: concat encodings _A : Dict = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _A : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _A : Tuple = lyr( _a , conditioning_emb=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , )[0] _A : str = self.decoder_norm(_a ) _A : Dict = self.post_dropout(_a ) _A : List[str] = self.spec_out(_a ) return spec_out class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a , _a , _a=1e-6 ) -> List[Any]: super().__init__() _A : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_a , d_kv=_a , num_heads=_a , dropout_rate=_a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_a , d_kv=_a , num_heads=_a , dropout_rate=_a , layer_norm_epsilon=_a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_a , d_ff=_a , dropout_rate=_a , layer_norm_epsilon=_a ) ) def a__ ( self , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Union[str, Any]: _A : Any = self.layer[0]( _a , conditioning_emb=_a , attention_mask=_a , ) if encoder_hidden_states is not None: _A : Any = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) _A : Any = self.layer[1]( _a , key_value_states=_a , attention_mask=_a , ) # Apply Film Conditional Feed Forward layer _A : Optional[int] = self.layer[-1](_a , _a ) return (hidden_states,) class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a ) -> Tuple: super().__init__() _A : Any = TaLayerNorm(_a ) _A : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=_a ) _A : Union[str, Any] = Attention(query_dim=_a , heads=_a , dim_head=_a , out_bias=_a , scale_qk=_a ) _A : Any = nn.Dropout(_a ) def a__ ( self , _a , _a=None , _a=None , ) -> Tuple: # pre_self_attention_layer_norm _A : List[str] = self.layer_norm(_a ) if conditioning_emb is not None: _A : int = self.FiLMLayer(_a , _a ) # Self-attention block _A : List[str] = self.attention(_a ) _A : Optional[Any] = hidden_states + self.dropout(_a ) return hidden_states class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a , _a ) -> List[str]: super().__init__() _A : Union[str, Any] = Attention(query_dim=_a , heads=_a , dim_head=_a , out_bias=_a , scale_qk=_a ) _A : Any = TaLayerNorm(_a , eps=_a ) _A : List[Any] = nn.Dropout(_a ) def a__ ( self , _a , _a=None , _a=None , ) -> Tuple: _A : Optional[Any] = self.layer_norm(_a ) _A : str = self.attention( _a , encoder_hidden_states=_a , attention_mask=attention_mask.squeeze(1 ) , ) _A : Any = hidden_states + self.dropout(_a ) return layer_output class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a ) -> Dict: super().__init__() _A : List[Any] = TaDenseGatedActDense(d_model=_a , d_ff=_a , dropout_rate=_a ) _A : str = TaFiLMLayer(in_features=d_model * 4 , out_features=_a ) _A : List[Any] = TaLayerNorm(_a , eps=_a ) _A : Optional[Any] = nn.Dropout(_a ) def a__ ( self , _a , _a=None ) -> int: _A : Optional[int] = self.layer_norm(_a ) if conditioning_emb is not None: _A : str = self.film(_a , _a ) _A : Tuple = self.DenseReluDense(_a ) _A : Tuple = hidden_states + self.dropout(_a ) return hidden_states class lowercase ( nn.Module ): def __init__( self , _a , _a , _a ) -> str: super().__init__() _A : str = nn.Linear(_a , _a , bias=_a ) _A : Optional[int] = nn.Linear(_a , _a , bias=_a ) _A : int = nn.Linear(_a , _a , bias=_a ) _A : Dict = nn.Dropout(_a ) _A : Optional[Any] = NewGELUActivation() def a__ ( self , _a ) -> Union[str, Any]: _A : Union[str, Any] = self.act(self.wi_a(_a ) ) _A : Tuple = self.wi_a(_a ) _A : Optional[Any] = hidden_gelu * hidden_linear _A : Tuple = self.dropout(_a ) _A : str = self.wo(_a ) return hidden_states class lowercase ( nn.Module ): def __init__( self , _a , _a=1e-6 ) -> Union[str, Any]: super().__init__() _A : Dict = nn.Parameter(torch.ones(_a ) ) _A : List[Any] = eps def a__ ( self , _a ) -> Tuple: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _A : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_a ) _A : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _A : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase ( nn.Module ): def a__ ( self , _a ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(_a , 3.0 )) )) class lowercase ( nn.Module ): def __init__( self , _a , _a ) -> int: super().__init__() _A : Any = nn.Linear(_a , out_features * 2 , bias=_a ) def a__ ( self , _a , _a ) -> int: _A : Dict = self.scale_bias(_a ) _A , _A : Union[str, Any] = torch.chunk(_a , 2 , -1 ) _A : Dict = x * (1 + scale) + shift return x
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart _snake_case = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } _snake_case = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] _a = BartTokenizer def __init__( self , _a=None , _a=None , _a=None , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , _a=True , **_a , ) -> Tuple: super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _A : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _a ) != add_prefix_space: _A : Tuple = getattr(_a , pre_tok_state.pop("""type""" ) ) _A : Union[str, Any] = add_prefix_space _A : List[str] = pre_tok_class(**_a ) _A : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _A : int = """post_processor""" _A : Optional[Any] = getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _A : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A : str = tuple(state["""sep"""] ) if "cls" in state: _A : List[str] = tuple(state["""cls"""] ) _A : str = False if state.get("""add_prefix_space""" , _a ) != add_prefix_space: _A : Any = add_prefix_space _A : Dict = True if state.get("""trim_offsets""" , _a ) != trim_offsets: _A : List[Any] = trim_offsets _A : Union[str, Any] = True if changes_to_apply: _A : List[str] = getattr(_a , state.pop("""type""" ) ) _A : int = component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property def a__ ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self , _a ) -> Tuple: _A : Union[str, Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _A : Any = value def a__ ( self , *_a , **_a ) -> BatchEncoding: _A : Optional[int] = kwargs.get("""is_split_into_words""" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*_a , **_a ) def a__ ( self , *_a , **_a ) -> BatchEncoding: _A : str = kwargs.get("""is_split_into_words""" , _a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*_a , **_a ) def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : Union[str, Any] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def a__ ( self , _a , _a=None ) -> Tuple: _A : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self , _a , _a = None ) -> List[int]: _A : List[Any] = [self.sep_token_id] _A : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from __future__ import annotations from typing import Any def lowerCAmelCase_ ( snake_case_ ): if not postfix_notation: return 0 _A : Any = {"""+""", """-""", """*""", """/"""} _A : list[Any] = [] for token in postfix_notation: if token in operations: _A , _A : Optional[Any] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(snake_case_ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
import heapq def lowerCAmelCase_ ( snake_case_ ): _A : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(snake_case_,[-1 * len(snake_case_ ), (key, value)] ) # chosen_vertices = set of chosen vertices _A : Optional[int] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _A : str = heapq.heappop(snake_case_ )[1][0] chosen_vertices.add(snake_case_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _A : List[Any] = elem[1][1].index(snake_case_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(snake_case_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _snake_case = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) if "model" in sd.keys(): _A : Dict = torch.load(snake_case_,map_location="""cpu""" )["""model"""] # pop unnecessary weights _A : int = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) _A : str = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _A : Dict = sd.pop(snake_case_ ) _A : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _A : Tuple = sd[key] # We split QKV in separate Q,K,V _A : Optional[Any] = key.replace(""".qkv_proj.""",""".q_proj.""" ) _A : Tuple = key.replace(""".qkv_proj.""",""".k_proj.""" ) _A : List[str] = key.replace(""".qkv_proj.""",""".v_proj.""" ) _A : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _A , _A , _A : List[str] = torch.split(snake_case_,depth // 3,dim=0 ) _A : str = q _A : int = k _A : List[str] = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None ): _A : Any = load_checkpoint(snake_case_ ) if config is not None: _A : Union[str, Any] = OPTConfig.from_pretrained(snake_case_ ) else: _A : str = OPTConfig() _A : Optional[Any] = OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _snake_case = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = test_results.split(""" """ ) _A : Optional[int] = 0 _A : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _A : int = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(snake_case_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase_ ( snake_case_ ): _A : Dict = {} _A : Optional[Any] = None _A : Union[str, Any] = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""",snake_case_ ): _A : int = True _A : Optional[int] = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): _A : int = line _A : Dict = False return failures class lowercase : def __init__( self , _a , _a ) -> str: _A : Dict = title _A : Dict = doc_test_results["""time_spent"""].split(""",""" )[0] _A : Optional[Any] = doc_test_results["""success"""] _A : List[Any] = doc_test_results["""failures"""] _A : Any = self.n_success + self.n_failures # Failures and success of the modeling tests _A : List[str] = doc_test_results @property def a__ ( self ) -> str: _A : str = [self._time_spent] _A : List[Any] = 0 for time in time_spent: _A : Optional[int] = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_a ) == 1: _A : List[str] = [0, 0, time_parts[0]] _A , _A , _A : Any = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds _A , _A , _A : Optional[Any] = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'''{int(_a )}h{int(_a )}m{int(_a )}s''' @property def a__ ( self ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def a__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def a__ ( self ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def a__ ( self ) -> Dict: _A : Tuple = 40 _A : Optional[Any] = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(_a , _a )} _A : Tuple = """""" for category, failures in category_failures.items(): if len(_a ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def a__ ( self ) -> str: _A : Tuple = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_a ) @staticmethod def a__ ( ) -> List[str]: _A : Tuple = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(_a )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=_a , ) def a__ ( self ) -> Dict: print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) _A : Tuple = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" _A : List[str] = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=_a , ) def a__ ( self , _a , _a , _a , _a ) -> Tuple: _A : Dict = """""" for key, value in failures.items(): _A : List[str] = value[:200] + """ [Truncated]""" if len(_a ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' _A : Any = job_name _A : str = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: _A : List[str] = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def a__ ( self ) -> str: if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) _A : int = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) _A : Tuple = sorted(self.doc_test_results.items() , key=lambda _a : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): _A : Tuple = F'''*Num failures* :{len(job_result["failed"] )} \n''' _A : Any = job_result["""failures"""] _A : Tuple = self.get_reply_blocks(_a , _a , _a , text=_a ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'''Results for {job}''' , blocks=_a , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def lowerCAmelCase_ ( ): _A : Optional[int] = os.environ["""GITHUB_RUN_ID"""] _A : Tuple = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _A : Tuple = requests.get(snake_case_ ).json() _A : str = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : Optional[Any] = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""",snake_case_ ) return {} def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = {} if os.path.exists(snake_case_ ): _A : Optional[Any] = os.listdir(snake_case_ ) for file in files: try: with open(os.path.join(snake_case_,snake_case_ ),encoding="""utf-8""" ) as f: _A : int = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(snake_case_,snake_case_ )}.''' ) from e return _artifact def lowerCAmelCase_ ( ): class lowercase : def __init__( self , _a ) -> Optional[Any]: _A : str = name _A : Any = [] def __str__( self ) -> Optional[Any]: return self.name def a__ ( self , _a ) -> Tuple: self.paths.append({"""name""": self.name, """path""": path} ) _A : Dict[str, Artifact] = {} _A : Optional[int] = filter(os.path.isdir,os.listdir() ) for directory in directories: _A : Optional[int] = directory if artifact_name not in _available_artifacts: _A : Optional[int] = Artifact(snake_case_ ) _available_artifacts[artifact_name].add_path(snake_case_ ) return _available_artifacts if __name__ == "__main__": _snake_case = get_job_links() _snake_case = retrieve_available_artifacts() _snake_case = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _snake_case = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job _snake_case = github_actions_job_links.get("run_doctests") _snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0] _snake_case = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: _snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"]) _snake_case = failed _snake_case = success _snake_case = time_spent[1:-1] + ", " _snake_case = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): _snake_case = line.replace("FAILED ", "") _snake_case = line.split()[0].replace("\n", "") if "::" in line: _snake_case , _snake_case = line.split("::") else: _snake_case , _snake_case = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _snake_case = docs[file_regex] doc_test_results[category]["failed"].append(test) _snake_case = all_failures[test] if test in all_failures else "N/A" _snake_case = failure break _snake_case = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( snake_case_,snake_case_=0.9_99,snake_case_="cosine",): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _A : Tuple = [] for i in range(snake_case_ ): _A : str = i / num_diffusion_timesteps _A : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ),snake_case_ ) ) return torch.tensor(snake_case_,dtype=torch.floataa ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in KarrasDiffusionSchedulers] _a = 2 @register_to_config def __init__( self , _a = 1000 , _a = 0.00085 , _a = 0.012 , _a = "linear" , _a = None , _a = "epsilon" , _a = False , _a = False , _a = 1.0 , _a = "linspace" , _a = 0 , ) -> int: if trained_betas is not None: _A : Optional[int] = torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": _A : List[str] = torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : int = betas_for_alpha_bar(_a , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": _A : List[str] = betas_for_alpha_bar(_a , alpha_transform_type="""exp""" ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _A : Tuple = 1.0 - self.betas _A : Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) _A : Any = use_karras_sigmas def a__ ( self , _a , _a=None ) -> str: if schedule_timesteps is None: _A : Optional[Any] = self.timesteps _A : str = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A : List[Any] = 1 if len(_a ) > 1 else 0 else: _A : Any = timestep.cpu().item() if torch.is_tensor(_a ) else timestep _A : Any = self._index_counter[timestep_int] return indices[pos].item() @property def a__ ( self ) -> Any: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def a__ ( self , _a , _a , ) -> torch.FloatTensor: _A : Dict = self.index_for_timestep(_a ) _A : Optional[int] = self.sigmas[step_index] _A : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def a__ ( self , _a , _a = None , _a = None , ) -> Union[str, Any]: _A : str = num_inference_steps _A : Optional[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A : Dict = np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _A : Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : Any = (np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A : Dict = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : Tuple = (np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _A : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A : Optional[int] = np.log(_a ) _A : List[str] = np.interp(_a , np.arange(0 , len(_a ) ) , _a ) if self.config.use_karras_sigmas: _A : str = self._convert_to_karras(in_sigmas=_a , num_inference_steps=self.num_inference_steps ) _A : str = np.array([self._sigma_to_t(_a , _a ) for sigma in sigmas] ) _A : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A : str = torch.from_numpy(_a ).to(device=_a ) _A : int = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A : Dict = torch.from_numpy(_a ) _A : str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_a ).startswith("""mps""" ): # mps does not support float64 _A : Tuple = timesteps.to(_a , dtype=torch.floataa ) else: _A : Optional[int] = timesteps.to(device=_a ) # empty dt and derivative _A : Union[str, Any] = None _A : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A : Dict = defaultdict(_a ) def a__ ( self , _a , _a ) -> List[Any]: # get log sigma _A : str = np.log(_a ) # get distribution _A : List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A : int = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A : Any = low_idx + 1 _A : Dict = log_sigmas[low_idx] _A : List[str] = log_sigmas[high_idx] # interpolate sigmas _A : Tuple = (low - log_sigma) / (low - high) _A : Optional[int] = np.clip(_a , 0 , 1 ) # transform interpolation to time range _A : List[Any] = (1 - w) * low_idx + w * high_idx _A : str = t.reshape(sigma.shape ) return t def a__ ( self , _a , _a ) -> torch.FloatTensor: _A : float = in_sigmas[-1].item() _A : float = in_sigmas[0].item() _A : List[str] = 7.0 # 7.0 is the value used in the paper _A : Optional[int] = np.linspace(0 , 1 , _a ) _A : Optional[Any] = sigma_min ** (1 / rho) _A : Optional[Any] = sigma_max ** (1 / rho) _A : Union[str, Any] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def a__ ( self ) -> Dict: return self.dt is None def a__ ( self , _a , _a , _a , _a = True , ) -> Union[SchedulerOutput, Tuple]: _A : str = self.index_for_timestep(_a ) # advance index counter by 1 _A : Optional[int] = timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A : Optional[Any] = self.sigmas[step_index] _A : Any = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A : Optional[int] = self.sigmas[step_index - 1] _A : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A : Union[str, Any] = 0 _A : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A : List[str] = sigma_hat if self.state_in_first_order else sigma_next _A : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A : Tuple = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A : Optional[Any] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: _A : Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A : Any = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A : Tuple = sigma_next - sigma_hat # store for 2nd order step _A : List[Any] = derivative _A : Dict = dt _A : Dict = sample else: # 2. 2nd order / Heun's method _A : Dict = (sample - pred_original_sample) / sigma_next _A : Dict = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A : Any = self.dt _A : List[str] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A : List[str] = None _A : List[Any] = None _A : List[Any] = None _A : List[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def a__ ( self , _a , _a , _a , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A : List[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _A : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A : str = self.timesteps.to(original_samples.device ) _A : List[str] = timesteps.to(original_samples.device ) _A : Union[str, Any] = [self.index_for_timestep(_a , _a ) for t in timesteps] _A : Union[str, Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A : Optional[int] = sigma.unsqueeze(-1 ) _A : Dict = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCAmelCase_ ( snake_case_ ): _A : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _A : Dict = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _A : Optional[Any] = 4 _A : str = 48 _A : List[str] = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _A : Dict = [6, 6, 6, 6] _A : Union[str, Any] = 60 _A : int = [6, 6, 6, 6] _A : Dict = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _A : str = 4 _A : Optional[Any] = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _A : int = 1 _A : Optional[int] = 1 _A : str = 126 _A : Optional[Any] = 7 _A : Tuple = 2_55.0 _A : Any = """""" return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): if "patch_embed.proj" in name and "layers" not in name: _A : Optional[int] = name.replace("""patch_embed.proj""","""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _A : List[Any] = name.replace("""patch_embed.norm""","""embeddings.patch_embeddings.layernorm""" ) if "layers" in name: _A : int = name.replace("""layers""","""encoder.stages""" ) if "residual_group.blocks" in name: _A : Dict = name.replace("""residual_group.blocks""","""layers""" ) if "attn.proj" in name: _A : int = name.replace("""attn.proj""","""attention.output.dense""" ) if "attn" in name: _A : List[str] = name.replace("""attn""","""attention.self""" ) if "norm1" in name: _A : int = name.replace("""norm1""","""layernorm_before""" ) if "norm2" in name: _A : Tuple = name.replace("""norm2""","""layernorm_after""" ) if "mlp.fc1" in name: _A : Tuple = name.replace("""mlp.fc1""","""intermediate.dense""" ) if "mlp.fc2" in name: _A : str = name.replace("""mlp.fc2""","""output.dense""" ) if "q_bias" in name: _A : Union[str, Any] = name.replace("""q_bias""","""query.bias""" ) if "k_bias" in name: _A : List[str] = name.replace("""k_bias""","""key.bias""" ) if "v_bias" in name: _A : str = name.replace("""v_bias""","""value.bias""" ) if "cpb_mlp" in name: _A : Dict = name.replace("""cpb_mlp""","""continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: _A : Dict = name.replace("""patch_embed.proj""","""patch_embed.projection""" ) if name == "norm.weight": _A : int = """layernorm.weight""" if name == "norm.bias": _A : List[Any] = """layernorm.bias""" if "conv_first" in name: _A : List[str] = name.replace("""conv_first""","""first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _A : Tuple = name.replace("""conv_last""","""final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _A : Optional[int] = name.replace("""conv_before_upsample.0""","""conv_before_upsample""" ) if "upsample.0" in name: _A : Tuple = name.replace("""upsample.0""","""upsample.convolution_0""" ) if "upsample.2" in name: _A : List[Any] = name.replace("""upsample.2""","""upsample.convolution_1""" ) _A : List[str] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": _A : Dict = name.replace("""upsample.0.weight""","""upsample.conv.weight""" ) _A : str = name.replace("""upsample.0.bias""","""upsample.conv.bias""" ) else: pass else: _A : Any = """swin2sr.""" + name return name def lowerCAmelCase_ ( snake_case_,snake_case_ ): for key in orig_state_dict.copy().keys(): _A : str = orig_state_dict.pop(snake_case_ ) if "qkv" in key: _A : Dict = key.split(""".""" ) _A : Any = int(key_split[1] ) _A : Any = int(key_split[4] ) _A : Optional[Any] = config.embed_dim if "weight" in key: _A : Tuple = val[:dim, :] _A : Any = val[dim : dim * 2, :] _A : List[str] = val[-dim:, :] else: _A : Any = val[:dim] _A : Tuple = val[dim : dim * 2] _A : Optional[int] = val[-dim:] pass else: _A : Dict = val return orig_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = get_config(snake_case_ ) _A : Optional[int] = SwinaSRForImageSuperResolution(snake_case_ ) model.eval() _A : Optional[int] = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" ) _A : str = convert_state_dict(snake_case_,snake_case_ ) _A , _A : Union[str, Any] = model.load_state_dict(snake_case_,strict=snake_case_ ) if len(snake_case_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(snake_case_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _A : Union[str, Any] = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" _A : str = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ).convert("""RGB""" ) _A : List[str] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _A : str = 126 if """Jpeg""" in checkpoint_url else 256 _A : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06],std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _A : List[str] = transforms(snake_case_ ).unsqueeze(0 ) if config.num_channels == 1: _A : Optional[Any] = pixel_values[:, 0, :, :].unsqueeze(1 ) _A : int = model(snake_case_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _A : int = torch.Size([1, 3, 512, 512] ) _A : Union[str, Any] = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _A : Any = torch.Size([1, 3, 1024, 1024] ) _A : str = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _A : int = torch.Size([1, 3, 1024, 1024] ) _A : List[Any] = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _A : str = torch.Size([1, 3, 512, 512] ) _A : List[Any] = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _A : Union[str, Any] = torch.Size([1, 3, 1024, 1024] ) _A : Optional[int] = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3],snake_case_,atol=1e-3 ) print("""Looks ok!""" ) _A : Union[str, Any] = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } _A : Any = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case_ ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth", type=str, help="URL of the original Swin2SR checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the converted model to the hub.") _snake_case = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , ) -> Dict: _A : List[Any] = size if size is not None else {"""shortest_edge""": 20} _A : List[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _A : List[Any] = parent _A : Optional[int] = batch_size _A : Union[str, Any] = num_channels _A : Tuple = image_size _A : Optional[Any] = min_resolution _A : int = max_resolution _A : List[str] = do_resize _A : Optional[Any] = size _A : List[str] = do_center_crop _A : Tuple = crop_size def a__ ( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = MobileNetVaImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Dict = MobileNetVaImageProcessingTester(self ) @property def a__ ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> str: _A : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """do_center_crop""" ) ) self.assertTrue(hasattr(_a , """crop_size""" ) ) def a__ ( self ) -> Optional[Any]: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def a__ ( self ) -> List[str]: pass def a__ ( self ) -> str: # Initialize image_processing _A : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Union[str, Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> int: # Initialize image_processing _A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Union[str, Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
def lowerCAmelCase_ ( snake_case_ ): if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) _A : Optional[Any] = sum(snake_case_ ) / len(snake_case_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 _a = 42 _a = None class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = 2 @register_to_config def __init__( self , _a = 0.02 , _a = 100 , _a = 1.007 , _a = 80 , _a = 0.05 , _a = 50 , ) -> str: # standard deviation of the initial noise distribution _A : Tuple = sigma_max # setable values _A : int = None _A : np.IntTensor = None _A : torch.FloatTensor = None # sigma(t_i) def a__ ( self , _a , _a = None ) -> torch.FloatTensor: return sample def a__ ( self , _a , _a = None ) -> int: _A : List[Any] = num_inference_steps _A : int = np.arange(0 , self.num_inference_steps )[::-1].copy() _A : Tuple = torch.from_numpy(_a ).to(_a ) _A : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _A : List[str] = torch.tensor(_a , dtype=torch.floataa , device=_a ) def a__ ( self , _a , _a , _a = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: _A : Tuple = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _A : str = 0 # sample eps ~ N(0, S_noise^2 * I) _A : Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=_a ).to(sample.device ) _A : Union[str, Any] = sigma + gamma * sigma _A : str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def a__ ( self , _a , _a , _a , _a , _a = True , ) -> Union[KarrasVeOutput, Tuple]: _A : Any = sample_hat + sigma_hat * model_output _A : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat _A : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_a , derivative=_a , pred_original_sample=_a ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a = True , ) -> Union[KarrasVeOutput, Tuple]: _A : Union[str, Any] = sample_prev + sigma_prev * model_output _A : List[str] = (sample_prev - pred_original_sample) / sigma_prev _A : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_a , derivative=_a , pred_original_sample=_a ) def a__ ( self , _a , _a , _a ) -> Dict: raise NotImplementedError()
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _snake_case = datasets.logging.get_logger(__name__) _snake_case = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n" _snake_case = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n" _snake_case = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n" _snake_case = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", "BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip", "BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip", "BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip", "BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip", } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def a__ ( self , _a ) -> Union[str, Any]: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" ) _A : List[Any] = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: _A : Optional[int] = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _A : List[Any] = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer _A : str = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _A : Any = score.BleurtScorer(os.path.join(_a , _a ) ) def a__ ( self , _a , _a ) -> Tuple: _A : Union[str, Any] = self.scorer.score(references=_a , candidates=_a ) return {"scores": scores}
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
from __future__ import annotations from typing import Any class lowercase : def __init__( self , _a , _a , _a = 0 ) -> None: _A , _A : List[str] = row, column _A : Union[str, Any] = [[default_value for c in range(_a )] for r in range(_a )] def __str__( self ) -> str: _A : Union[str, Any] = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _A : Dict = 0 for row_vector in self.array: for obj in row_vector: _A : List[Any] = max(_a , len(str(_a ) ) ) _A : Optional[Any] = F'''%{max_element_length}s''' # Make string and return def single_line(_a ) -> str: nonlocal string_format_identifier _A : Optional[Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_a ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def a__ ( self , _a ) -> bool: if not (isinstance(_a , (list, tuple) ) and len(_a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _a ) -> Any: assert self.validate_indicies(_a ) return self.array[loc[0]][loc[1]] def __setitem__( self , _a , _a ) -> None: assert self.validate_indicies(_a ) _A : str = value def __add__( self , _a ) -> Matrix: assert isinstance(_a , _a ) assert self.row == another.row and self.column == another.column # Add _A : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A : int = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: _A : List[str] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A : Tuple = -self[r, c] return result def __sub__( self , _a ) -> Matrix: return self + (-another) def __mul__( self , _a ) -> Matrix: if isinstance(_a , (int, float) ): # Scalar multiplication _A : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A : Optional[int] = self[r, c] * another return result elif isinstance(_a , _a ): # Matrix multiplication assert self.column == another.row _A : Optional[int] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _A : Union[str, Any] = F'''Unsupported type given for another ({type(_a )})''' raise TypeError(_a ) def a__ ( self ) -> Matrix: _A : List[Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _A : Optional[int] = self[r, c] return result def a__ ( self , _a , _a ) -> Any: assert isinstance(_a , _a ) and isinstance(_a , _a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _A : str = v.transpose() _A : int = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ): # a^(-1) _A : Tuple = Matrix(3,3,0 ) for i in range(3 ): _A : List[Any] = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _A : Tuple = Matrix(3,1,0 ) _A , _A , _A : List[Any] = 1, 2, -3 _A : Any = Matrix(3,1,0 ) _A , _A , _A : int = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case_,snake_case_ )}''' ) def lowerCAmelCase_ ( ): import doctest doctest.testmod() testa()
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["input_values", "padding_mask"] def __init__( self , _a = 1 , _a = 2_4000 , _a = 0.0 , _a = None , _a = None , **_a , ) -> Optional[int]: super().__init__(feature_size=_a , sampling_rate=_a , padding_value=_a , **_a ) _A : List[Any] = chunk_length_s _A : Union[str, Any] = overlap @property def a__ ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _a , _a = None , _a = False , _a = None , _a = None , _a = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _A : Dict = True _A : Dict = bool( isinstance(_a , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A : Optional[int] = [np.asarray(_a , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_a , np.ndarray ): _A : List[str] = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _A : Union[str, Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _A : int = [np.asarray(_a ).T] # verify inputs are valid for idx, example in enumerate(_a ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _A : Any = None _A : Optional[int] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _A : Optional[int] = min(array.shape[0] for array in raw_audio ) _A : str = int(np.floor(max_length / self.chunk_stride ) ) _A : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _A : Tuple = max(array.shape[0] for array in raw_audio ) _A : Dict = int(np.ceil(max_length / self.chunk_stride ) ) _A : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length _A : Tuple = """max_length""" else: _A : Optional[int] = input_values # normal padding on batch if padded_inputs is None: _A : Tuple = self.pad( _a , max_length=_a , truncation=_a , padding=_a , return_attention_mask=_a , ) if padding: _A : Dict = padded_inputs.pop("""attention_mask""" ) _A : Any = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _A : str = example[..., None] input_values.append(example.T ) _A : List[str] = input_values if return_tensors is not None: _A : List[str] = padded_inputs.convert_to_tensors(_a ) return padded_inputs
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> Optional[Any]: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : List[Any] = vocab_size _A : Union[str, Any] = hidden_size _A : Optional[Any] = num_hidden_layers _A : List[str] = num_attention_heads _A : str = hidden_act _A : Any = intermediate_size _A : Any = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : Any = max_position_embeddings _A : int = type_vocab_size _A : Tuple = initializer_range _A : Dict = layer_norm_eps _A : List[Any] = position_embedding_type _A : Union[str, Any] = use_cache _A : List[Any] = classifier_dropout _A : Union[str, Any] = pre_norm _A : Union[str, Any] = adapter_reduction_factor _A : int = adapter_layer_norm _A : List[Any] = adapter_reuse_layer_norm _A : str = ln_before_adapter _A : Optional[Any] = list(_a ) _A : Optional[int] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( nn.Module ): def __init__( self , _a=3 , _a=3 , _a=("DownEncoderBlock2D",) , _a=(64,) , _a=2 , _a=32 , _a="silu" , _a=True , ) -> Any: super().__init__() _A : Optional[int] = layers_per_block _A : Tuple = torch.nn.Convad( _a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _A : str = None _A : int = nn.ModuleList([] ) # down _A : Tuple = block_out_channels[0] for i, down_block_type in enumerate(_a ): _A : Optional[int] = output_channel _A : List[Any] = block_out_channels[i] _A : List[Any] = i == len(_a ) - 1 _A : Union[str, Any] = get_down_block( _a , num_layers=self.layers_per_block , in_channels=_a , out_channels=_a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , ) self.down_blocks.append(_a ) # mid _A : List[str] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # out _A : Dict = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_a , eps=1e-6 ) _A : Optional[int] = nn.SiLU() _A : List[str] = 2 * out_channels if double_z else out_channels _A : List[str] = nn.Convad(block_out_channels[-1] , _a , 3 , padding=1 ) _A : int = False def a__ ( self , _a ) -> Optional[Any]: _A : Dict = x _A : Tuple = self.conv_in(_a ) if self.training and self.gradient_checkpointing: def create_custom_forward(_a ): def custom_forward(*_a ): return module(*_a ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: _A : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , use_reentrant=_a ) # middle _A : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , use_reentrant=_a ) else: for down_block in self.down_blocks: _A : Optional[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a ) # middle _A : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _a ) else: # down for down_block in self.down_blocks: _A : Optional[int] = down_block(_a ) # middle _A : int = self.mid_block(_a ) # post-process _A : Tuple = self.conv_norm_out(_a ) _A : Optional[int] = self.conv_act(_a ) _A : Optional[int] = self.conv_out(_a ) return sample class lowercase ( nn.Module ): def __init__( self , _a=3 , _a=3 , _a=("UpDecoderBlock2D",) , _a=(64,) , _a=2 , _a=32 , _a="silu" , _a="group" , ) -> Optional[int]: super().__init__() _A : str = layers_per_block _A : str = nn.Convad( _a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _A : Optional[int] = None _A : int = nn.ModuleList([] ) _A : Dict = in_channels if norm_type == """spatial""" else None # mid _A : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_a , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_a , temb_channels=_a , ) # up _A : Union[str, Any] = list(reversed(_a ) ) _A : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(_a ): _A : List[Any] = output_channel _A : Tuple = reversed_block_out_channels[i] _A : Optional[Any] = i == len(_a ) - 1 _A : Optional[int] = get_up_block( _a , num_layers=self.layers_per_block + 1 , in_channels=_a , out_channels=_a , prev_output_channel=_a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_a , resnet_groups=_a , attention_head_dim=_a , temb_channels=_a , resnet_time_scale_shift=_a , ) self.up_blocks.append(_a ) _A : str = output_channel # out if norm_type == "spatial": _A : str = SpatialNorm(block_out_channels[0] , _a ) else: _A : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_a , eps=1e-6 ) _A : Dict = nn.SiLU() _A : str = nn.Convad(block_out_channels[0] , _a , 3 , padding=1 ) _A : int = False def a__ ( self , _a , _a=None ) -> Tuple: _A : Union[str, Any] = z _A : int = self.conv_in(_a ) _A : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_a ): def custom_forward(*_a ): return module(*_a ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle _A : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a , use_reentrant=_a ) _A : List[Any] = sample.to(_a ) # up for up_block in self.up_blocks: _A : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(_a ) , _a , _a , use_reentrant=_a ) else: # middle _A : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _a , _a ) _A : int = sample.to(_a ) # up for up_block in self.up_blocks: _A : int = torch.utils.checkpoint.checkpoint(create_custom_forward(_a ) , _a , _a ) else: # middle _A : Any = self.mid_block(_a , _a ) _A : Union[str, Any] = sample.to(_a ) # up for up_block in self.up_blocks: _A : Union[str, Any] = up_block(_a , _a ) # post-process if latent_embeds is None: _A : Any = self.conv_norm_out(_a ) else: _A : Union[str, Any] = self.conv_norm_out(_a , _a ) _A : str = self.conv_act(_a ) _A : Tuple = self.conv_out(_a ) return sample class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a=None , _a="random" , _a=False , _a=True ) -> Any: super().__init__() _A : Tuple = n_e _A : Optional[Any] = vq_embed_dim _A : Tuple = beta _A : Dict = legacy _A : List[str] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _A : Tuple = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) _A : int = self.used.shape[0] _A : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _A : Optional[int] = self.re_embed _A : Optional[Any] = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _A : Dict = n_e _A : Dict = sane_index_shape def a__ ( self , _a ) -> int: _A : Tuple = inds.shape assert len(_a ) > 1 _A : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _A : Union[str, Any] = self.used.to(_a ) _A : Optional[Any] = (inds[:, :, None] == used[None, None, ...]).long() _A : int = match.argmax(-1 ) _A : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _A : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _A : int = self.unknown_index return new.reshape(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = inds.shape assert len(_a ) > 1 _A : List[Any] = inds.reshape(ishape[0] , -1 ) _A : Union[str, Any] = self.used.to(_a ) if self.re_embed > self.used.shape[0]: # extra token _A : str = 0 # simply set to zero _A : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _a ) return back.reshape(_a ) def a__ ( self , _a ) -> str: # reshape z -> (batch, height, width, channel) and flatten _A : Any = z.permute(0 , 2 , 3 , 1 ).contiguous() _A : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _A : Tuple = torch.argmin(torch.cdist(_a , self.embedding.weight ) , dim=1 ) _A : Any = self.embedding(_a ).view(z.shape ) _A : Optional[Any] = None _A : Any = None # compute loss for embedding if not self.legacy: _A : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _A : Any = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _A : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _A : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _A : str = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _A : int = self.remap_to_used(_a ) _A : List[Any] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _A : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def a__ ( self , _a , _a ) -> List[str]: # shape specifying (batch, height, width, channel) if self.remap is not None: _A : List[str] = indices.reshape(shape[0] , -1 ) # add batch axis _A : Optional[int] = self.unmap_to_all(_a ) _A : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors _A : str = self.embedding(_a ) if shape is not None: _A : int = z_q.view(_a ) # reshape back to match original input shape _A : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a=False ) -> Any: _A : Dict = parameters _A , _A : Tuple = torch.chunk(_a , 2 , dim=1 ) _A : Optional[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) _A : Tuple = deterministic _A : Any = torch.exp(0.5 * self.logvar ) _A : Optional[int] = torch.exp(self.logvar ) if self.deterministic: _A : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def a__ ( self , _a = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _A : Union[str, Any] = randn_tensor( self.mean.shape , generator=_a , device=self.parameters.device , dtype=self.parameters.dtype ) _A : int = self.mean + self.std * sample return x def a__ ( self , _a=None ) -> Tuple: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def a__ ( self , _a , _a=[1, 2, 3] ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) _A : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_a ) def a__ ( self ) -> str: return self.mean
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def a__ ( *_a , **_a ) -> Union[str, Any]: pass def lowerCAmelCase_ ( snake_case_ ): _A : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): _a = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def a__ ( self , _a , _a , _a ) -> Tuple: _A : Any = DepthEstimationPipeline(model=_a , image_processor=_a ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ ( self , _a , _a ) -> str: _A : List[Any] = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , _a ) import datasets _A : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) _A : str = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , _a , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def a__ ( self ) -> str: pass @slow @require_torch def a__ ( self ) -> Optional[Any]: _A : Tuple = """Intel/dpt-large""" _A : Dict = pipeline("""depth-estimation""" , model=_a ) _A : Any = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) _A : Dict = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def a__ ( self ) -> int: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import requests def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Any = {"""Content-Type""": """application/json"""} _A : Dict = requests.post(snake_case_,json={"""text""": message_body},headers=snake_case_ ) if response.status_code != 200: _A : Any = ( """Request to slack returned an error """ f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaControlnetPipeline _a = ["image_embeds", "negative_image_embeds", "hint"] _a = ["image_embeds", "negative_image_embeds", "hint"] _a = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> Any: return 32 @property def a__ ( self ) -> str: return self.time_input_dim @property def a__ ( self ) -> Tuple: return self.time_input_dim * 4 @property def a__ ( self ) -> Dict: return 100 @property def a__ ( self ) -> Optional[Any]: torch.manual_seed(0 ) _A : Dict = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : List[Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ ( self ) -> List[Any]: torch.manual_seed(0 ) _A : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> Union[str, Any]: _A : int = self.dummy_unet _A : Tuple = self.dummy_movq _A : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_a , ) _A : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> int: _A : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create hint _A : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): _A : Optional[Any] = torch.manual_seed(_a ) else: _A : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : Union[str, Any] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a__ ( self ) -> int: _A : Optional[Any] = """cpu""" _A : Union[str, Any] = self.get_dummy_components() _A : str = self.pipeline_class(**_a ) _A : Optional[int] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : List[Any] = output.images _A : Optional[Any] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Optional[Any] = image[0, -3:, -3:, -1] _A : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Dict = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> Any: _A : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) _A : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _A : Optional[Any] = torch.from_numpy(np.array(_a ) ).float() / 255.0 _A : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _A : Tuple = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : Optional[Any] = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _A : Optional[int] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : List[str] = """A robot, 4k photo""" _A : Union[str, Any] = torch.Generator(device="""cuda""" ).manual_seed(0 ) _A , _A : Union[str, Any] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : Tuple = torch.Generator(device="""cuda""" ).manual_seed(0 ) _A : str = pipeline( image_embeds=_a , negative_image_embeds=_a , hint=_a , generator=_a , num_inference_steps=100 , output_type="""np""" , ) _A : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a , _a )
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
def lowerCAmelCase_ ( snake_case_ ): return str(snake_case_ ) == str(snake_case_ )[::-1] def lowerCAmelCase_ ( snake_case_ ): return int(snake_case_ ) + int(str(snake_case_ )[::-1] ) def lowerCAmelCase_ ( snake_case_ = 10000 ): _A : Dict = [] for num in range(1,snake_case_ ): _A : Dict = 0 _A : str = num while iterations < 50: _A : Any = sum_reverse(snake_case_ ) iterations += 1 if is_palindrome(snake_case_ ): break else: lychrel_nums.append(snake_case_ ) return len(snake_case_ ) if __name__ == "__main__": print(f"""{solution() = }""")
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = checkpoint _A : Optional[Any] = {} _A : Optional[Any] = vae_state_dict["""encoder.conv_in.weight"""] _A : Any = vae_state_dict["""encoder.conv_in.bias"""] _A : int = vae_state_dict["""encoder.conv_out.weight"""] _A : List[Any] = vae_state_dict["""encoder.conv_out.bias"""] _A : List[str] = vae_state_dict["""encoder.norm_out.weight"""] _A : Any = vae_state_dict["""encoder.norm_out.bias"""] _A : Any = vae_state_dict["""decoder.conv_in.weight"""] _A : List[Any] = vae_state_dict["""decoder.conv_in.bias"""] _A : Union[str, Any] = vae_state_dict["""decoder.conv_out.weight"""] _A : int = vae_state_dict["""decoder.conv_out.bias"""] _A : Any = vae_state_dict["""decoder.norm_out.weight"""] _A : List[str] = vae_state_dict["""decoder.norm_out.bias"""] _A : Any = vae_state_dict["""quant_conv.weight"""] _A : str = vae_state_dict["""quant_conv.bias"""] _A : List[Any] = vae_state_dict["""post_quant_conv.weight"""] _A : Any = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _A : Any = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) _A : Union[str, Any] = { layer_id: [key for key in vae_state_dict if f'''down.{layer_id}''' in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only _A : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) _A : Tuple = { layer_id: [key for key in vae_state_dict if f'''up.{layer_id}''' in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): _A : Optional[int] = [key for key in down_blocks[i] if f'''down.{i}''' in key and f'''down.{i}.downsample''' not in key] if f'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: _A : Dict = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.weight''' ) _A : int = vae_state_dict.pop( f'''encoder.down.{i}.downsample.conv.bias''' ) _A : Dict = renew_vae_resnet_paths(snake_case_ ) _A : Tuple = {"""old""": f'''down.{i}.block''', """new""": f'''down_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) _A : Tuple = [key for key in vae_state_dict if """encoder.mid.block""" in key] _A : List[str] = 2 for i in range(1,num_mid_res_blocks + 1 ): _A : Dict = [key for key in mid_resnets if f'''encoder.mid.block_{i}''' in key] _A : Any = renew_vae_resnet_paths(snake_case_ ) _A : Tuple = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) _A : List[Any] = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _A : List[str] = renew_vae_attention_paths(snake_case_ ) _A : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): _A : Dict = num_up_blocks - 1 - i _A : Any = [ key for key in up_blocks[block_id] if f'''up.{block_id}''' in key and f'''up.{block_id}.upsample''' not in key ] if f'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: _A : Tuple = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.weight''' ] _A : Union[str, Any] = vae_state_dict[ f'''decoder.up.{block_id}.upsample.conv.bias''' ] _A : List[str] = renew_vae_resnet_paths(snake_case_ ) _A : Union[str, Any] = {"""old""": f'''up.{block_id}.block''', """new""": f'''up_blocks.{i}.resnets'''} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) _A : List[str] = [key for key in vae_state_dict if """decoder.mid.block""" in key] _A : str = 2 for i in range(1,num_mid_res_blocks + 1 ): _A : Dict = [key for key in mid_resnets if f'''decoder.mid.block_{i}''' in key] _A : List[Any] = renew_vae_resnet_paths(snake_case_ ) _A : Any = {"""old""": f'''mid.block_{i}''', """new""": f'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) _A : str = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _A : List[str] = renew_vae_attention_paths(snake_case_ ) _A : Union[str, Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(snake_case_,snake_case_,snake_case_,additional_replacements=[meta_path],config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_,snake_case_,): # Only support V1 _A : str = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) _A : Any = io.BytesIO(r.content ) _A : Optional[Any] = OmegaConf.load(snake_case_ ) _A : Tuple = 512 _A : str = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open _A : int = {} with safe_open(snake_case_,framework="""pt""",device="""cpu""" ) as f: for key in f.keys(): _A : Optional[Any] = f.get_tensor(snake_case_ ) else: _A : str = torch.load(snake_case_,map_location=snake_case_ )["""state_dict"""] # Convert the VAE model. _A : int = create_vae_diffusers_config(snake_case_,image_size=snake_case_ ) _A : Optional[int] = custom_convert_ldm_vae_checkpoint(snake_case_,snake_case_ ) _A : List[str] = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") _snake_case = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def a__ ( *_a , **_a ) -> Optional[Any]: pass @is_pipeline_test @require_torch @require_vision class lowercase ( unittest.TestCase ): _a = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : Any = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _A : Optional[int] = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[str] = vqa_pipeline(_a , top_k=1 ) self.assertEqual( _a , [ [{"""score""": ANY(_a ), """answer""": ANY(_a )}], [{"""score""": ANY(_a ), """answer""": ANY(_a )}], ] , ) @require_torch def a__ ( self ) -> Tuple: _A : Optional[int] = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) _A : Dict = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _A : Tuple = """How many cats are there?""" _A : List[str] = vqa_pipeline(image=_a , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( _a , [{"""score""": ANY(_a ), """answer""": ANY(_a )}, {"""score""": ANY(_a ), """answer""": ANY(_a )}] ) _A : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( _a , [{"""score""": ANY(_a ), """answer""": ANY(_a )}, {"""score""": ANY(_a ), """answer""": ANY(_a )}] ) @slow @require_torch def a__ ( self ) -> Dict: _A : Optional[Any] = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) _A : Optional[int] = """./tests/fixtures/tests_samples/COCO/000000039769.png""" _A : List[str] = """How many cats are there?""" _A : List[str] = vqa_pipeline(image=_a , question=_a , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) _A : Optional[Any] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) _A : Union[str, Any] = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def a__ ( self ) -> Optional[int]: pass
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = MgpstrTokenizer _a = False _a = {} _a = False def a__ ( self ) -> str: super().setUp() # fmt: off _A : Optional[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on _A : List[str] = dict(zip(_a , range(len(_a ) ) ) ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) def a__ ( self , **_a ) -> Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: _A : str = """tester""" _A : Union[str, Any] = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def a__ ( self ) -> Optional[Any]: pass def a__ ( self ) -> Tuple: _A : Optional[Any] = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A : int = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) _A : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=_a ) self.assertEqual(len(_a ) , 1 ) _A : Optional[int] = tokenizer.decode(_a , skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def a__ ( self ) -> List[Any]: _A : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A , _A : Any = self.get_input_output_texts(_a ) _A : str = tokenizer.tokenize(_a ) _A : List[Any] = tokenizer.convert_tokens_to_ids(_a ) _A : Union[str, Any] = tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _A : List[Any] = tokenizer.convert_ids_to_tokens(_a ) self.assertNotEqual(len(_a ) , 0 ) _A : Optional[Any] = tokenizer.decode(_a ) self.assertIsInstance(_a , _a ) self.assertEqual(text_a.replace(""" """ , """""" ) , _a ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def a__ ( self ) -> Optional[int]: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def a__ ( self ) -> Any: pass
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowercase ( UpperCamelCase__ ): _a = "mctct" def __init__( self , _a=8065 , _a=1536 , _a=36 , _a=6144 , _a=4 , _a=384 , _a=920 , _a=1e-5 , _a=0.3 , _a="relu" , _a=0.02 , _a=0.3 , _a=0.3 , _a=1 , _a=0 , _a=2 , _a=1 , _a=0.3 , _a=1 , _a=(7,) , _a=(3,) , _a=80 , _a=1 , _a=None , _a="sum" , _a=False , **_a , ) -> List[str]: super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) _A : Dict = vocab_size _A : Tuple = hidden_size _A : Optional[int] = num_hidden_layers _A : List[str] = intermediate_size _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = max_position_embeddings _A : int = layer_norm_eps _A : int = layerdrop _A : Optional[int] = hidden_act _A : List[Any] = initializer_range _A : Optional[int] = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : str = pad_token_id _A : int = bos_token_id _A : int = eos_token_id _A : List[str] = conv_glu_dim _A : Optional[int] = conv_dropout _A : Any = num_conv_layers _A : Optional[Any] = input_feat_per_channel _A : List[Any] = input_channels _A : List[str] = conv_channels _A : int = ctc_loss_reduction _A : Optional[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json _A : str = list(_a ) _A : Union[str, Any] = list(_a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PriorTransformer _a = "hidden_states" @property def a__ ( self ) -> str: _A : Optional[Any] = 4 _A : List[str] = 8 _A : Optional[Any] = 7 _A : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(_a ) _A : Tuple = floats_tensor((batch_size, embedding_dim) ).to(_a ) _A : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def a__ ( self , _a=0 ) -> Optional[Any]: torch.manual_seed(_a ) _A : Dict = 4 _A : str = 8 _A : Optional[Any] = 7 _A : Any = torch.randn((batch_size, embedding_dim) ).to(_a ) _A : Tuple = torch.randn((batch_size, embedding_dim) ).to(_a ) _A : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def a__ ( self ) -> Union[str, Any]: return (4, 8) @property def a__ ( self ) -> int: return (4, 8) def a__ ( self ) -> Union[str, Any]: _A : List[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } _A : Optional[int] = self.dummy_input return init_dict, inputs_dict def a__ ( self ) -> Union[str, Any]: _A , _A : Dict = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_a ) _A : Optional[int] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def a__ ( self ) -> Any: _A , _A : List[Any] = self.prepare_init_args_and_inputs_for_common() _A : Optional[int] = self.model_class(**_a ) _A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : Optional[int] = [*signature.parameters.keys()] _A : List[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , _a ) def a__ ( self ) -> Any: _A : Union[str, Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) _A : Optional[int] = model.to(_a ) if hasattr(_a , """set_default_attn_processor""" ): model.set_default_attn_processor() _A : Tuple = self.get_dummy_seed_input() with torch.no_grad(): _A : Dict = model(**_a )[0] _A : List[str] = output[0, :5].flatten().cpu() print(_a ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. _A : Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) @slow class lowercase ( unittest.TestCase ): def a__ ( self , _a=1 , _a=768 , _a=77 , _a=0 ) -> List[str]: torch.manual_seed(_a ) _A : List[str] = batch_size _A : Optional[int] = embedding_dim _A : List[str] = num_embeddings _A : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(_a ) _A : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(_a ) _A : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_a ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def a__ ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def a__ ( self , _a , _a ) -> Any: _A : List[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(_a ) _A : Optional[Any] = self.get_dummy_seed_input(seed=_a ) with torch.no_grad(): _A : Dict = model(**_a )[0] assert list(sample.shape ) == [1, 768] _A : Optional[Any] = sample[0, :8].flatten().cpu() print(_a ) _A : Tuple = torch.tensor(_a ) assert torch_all_close(_a , _a , atol=1e-3 )
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): _snake_case = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: _snake_case = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCAmelCase_ ( snake_case_ ): _A : int = (images / 2 + 0.5).clamp(0,1 ) _A : List[Any] = images.cpu().permute(0,2,3,1 ).float().numpy() _A : List[str] = numpy_to_pil(snake_case_ ) return images def lowerCAmelCase_ ( snake_case_ ): if images.ndim == 3: _A : List[str] = images[None, ...] _A : int = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images _A : str = [Image.fromarray(image.squeeze(),mode="""L""" ) for image in images] else: _A : Tuple = [Image.fromarray(snake_case_ ) for image in images] return pil_images
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ) -> None: super().__init__(**_a ) _A : Dict = size if size is not None else {"""shortest_edge""": 224} _A : List[str] = get_size_dict(_a , default_to_square=_a ) _A : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _A : Tuple = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" ) _A : List[str] = do_resize _A : Optional[Any] = size _A : int = resample _A : List[Any] = do_center_crop _A : Union[str, Any] = crop_size _A : Optional[Any] = do_rescale _A : int = rescale_factor _A : Dict = do_normalize _A : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _A : Dict = image_std if image_std is not None else OPENAI_CLIP_STD _A : str = do_convert_rgb def a__ ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> np.ndarray: _A : List[str] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _A : List[Any] = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray: _A : Union[str, Any] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None , **_a , ) -> Optional[Any]: return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray: return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image: _A : Tuple = do_resize if do_resize is not None else self.do_resize _A : List[str] = size if size is not None else self.size _A : int = get_size_dict(_a , param_name="""size""" , default_to_square=_a ) _A : Tuple = resample if resample is not None else self.resample _A : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Optional[int] = crop_size if crop_size is not None else self.crop_size _A : Union[str, Any] = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a ) _A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _A : Optional[int] = image_mean if image_mean is not None else self.image_mean _A : Tuple = image_std if image_std is not None else self.image_std _A : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _A : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _A : Union[str, Any] = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. _A : Optional[Any] = [to_numpy_array(_a ) for image in images] if do_resize: _A : Tuple = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: _A : int = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: _A : Optional[Any] = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _A : List[str] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _A : Union[str, Any] = [to_channel_dimension_format(_a , _a ) for image in images] _A : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = "MobileNetV1Config" # Base docstring _snake_case = "google/mobilenet_v1_1.0_224" _snake_case = [1, 1024, 7, 7] # Image classification docstring _snake_case = "google/mobilenet_v1_1.0_224" _snake_case = "tabby, tabby cat" _snake_case = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None ): _A : Optional[int] = {} if isinstance(snake_case_,snake_case_ ): _A : str = model.mobilenet_va else: _A : Any = model _A : List[str] = """MobilenetV1/Conv2d_0/""" _A : Dict = backbone.conv_stem.convolution.weight _A : Tuple = backbone.conv_stem.normalization.bias _A : int = backbone.conv_stem.normalization.weight _A : int = backbone.conv_stem.normalization.running_mean _A : Tuple = backbone.conv_stem.normalization.running_var for i in range(13 ): _A : Union[str, Any] = i + 1 _A : Tuple = i * 2 _A : int = backbone.layer[pt_index] _A : List[str] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' _A : Optional[int] = pointer.convolution.weight _A : int = pointer.normalization.bias _A : int = pointer.normalization.weight _A : Tuple = pointer.normalization.running_mean _A : Any = pointer.normalization.running_var _A : List[str] = backbone.layer[pt_index + 1] _A : Union[str, Any] = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' _A : Optional[int] = pointer.convolution.weight _A : List[str] = pointer.normalization.bias _A : Dict = pointer.normalization.weight _A : List[str] = pointer.normalization.running_mean _A : str = pointer.normalization.running_var if isinstance(snake_case_,snake_case_ ): _A : str = """MobilenetV1/Logits/Conv2d_1c_1x1/""" _A : Dict = model.classifier.weight _A : Optional[Any] = model.classifier.bias return tf_to_pt_map def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model _A : Optional[Any] = tf.train.list_variables(snake_case_ ) _A : List[str] = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) _A : List[Any] = tf.train.load_variable(snake_case_,snake_case_ ) _A : Tuple = array # Build TF to PyTorch weights loading map _A : Any = _build_tf_to_pytorch_map(snake_case_,snake_case_,snake_case_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue _A : Tuple = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) _A : Optional[int] = np.transpose(snake_case_,(2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer _A : Any = array.squeeze().transpose() else: _A : Optional[int] = np.transpose(snake_case_,(3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) _A : Optional[int] = torch.from_numpy(snake_case_ ) tf_weights.pop(snake_case_,snake_case_ ) tf_weights.pop(name + """/RMSProp""",snake_case_ ) tf_weights.pop(name + """/RMSProp_1""",snake_case_ ) tf_weights.pop(name + """/ExponentialMovingAverage""",snake_case_ ) logger.info(f'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A , _A : Tuple = features.shape[-2:] _A , _A : Any = conv_layer.stride _A , _A : Dict = conv_layer.kernel_size if in_height % stride_height == 0: _A : Tuple = max(kernel_height - stride_height,0 ) else: _A : Dict = max(kernel_height - (in_height % stride_height),0 ) if in_width % stride_width == 0: _A : Any = max(kernel_width - stride_width,0 ) else: _A : Tuple = max(kernel_width - (in_width % stride_width),0 ) _A : Dict = pad_along_width // 2 _A : Any = pad_along_width - pad_left _A : Optional[int] = pad_along_height // 2 _A : Tuple = pad_along_height - pad_top _A : List[str] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case_,snake_case_,"""constant""",0.0 ) class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a , _a = 1 , _a = 1 , _a = False , _a = True , _a = True , ) -> None: super().__init__() _A : List[Any] = config if in_channels % groups != 0: raise ValueError(F'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(F'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) _A : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) _A : List[str] = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , stride=_a , padding=_a , groups=_a , bias=_a , padding_mode="""zeros""" , ) if use_normalization: _A : Union[str, Any] = nn.BatchNormad( num_features=_a , eps=config.layer_norm_eps , momentum=0.9997 , affine=_a , track_running_stats=_a , ) else: _A : Optional[int] = None if use_activation: if isinstance(_a , _a ): _A : List[str] = ACTaFN[use_activation] elif isinstance(config.hidden_act , _a ): _A : List[str] = ACTaFN[config.hidden_act] else: _A : Optional[int] = config.hidden_act else: _A : Tuple = None def a__ ( self , _a ) -> torch.Tensor: if self.config.tf_padding: _A : Tuple = apply_tf_padding(_a , self.convolution ) _A : Tuple = self.convolution(_a ) if self.normalization is not None: _A : Dict = self.normalization(_a ) if self.activation is not None: _A : str = self.activation(_a ) return features class lowercase ( UpperCamelCase__ ): _a = MobileNetVaConfig _a = load_tf_weights_in_mobilenet_va _a = "mobilenet_v1" _a = "pixel_values" _a = False def a__ ( self , _a ) -> None: if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _snake_case = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): def __init__( self , _a , _a = True ) -> Union[str, Any]: super().__init__(_a ) _A : Any = config _A : Optional[int] = 32 _A : str = max(int(depth * config.depth_multiplier ) , config.min_depth ) _A : List[Any] = MobileNetVaConvLayer( _a , in_channels=config.num_channels , out_channels=_a , kernel_size=3 , stride=2 , ) _A : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] _A : Union[str, Any] = nn.ModuleList() for i in range(13 ): _A : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 _A : int = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=3 , stride=strides[i] , groups=_a , ) ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=1 , ) ) _A : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a__ ( self , _a ) -> List[Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self , _a = None , _a = None , _a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: _A : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _A : str = self.conv_stem(_a ) _A : int = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): _A : str = layer_module(_a ) if output_hidden_states: _A : Optional[Any] = all_hidden_states + (hidden_states,) _A : Optional[int] = hidden_states if self.pooler is not None: _A : int = torch.flatten(self.pooler(_a ) , start_dim=1 ) else: _A : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=_a , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> None: super().__init__(_a ) _A : Optional[Any] = config.num_labels _A : Union[str, Any] = MobileNetVaModel(_a ) _A : List[str] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head _A : List[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=_a ) _A : Optional[Any] = nn.Linear(_a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self , _a = None , _a = None , _a = None , _a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: _A : Tuple = return_dict if return_dict is not None else self.config.use_return_dict _A : Tuple = self.mobilenet_va(_a , output_hidden_states=_a , return_dict=_a ) _A : List[Any] = outputs.pooler_output if return_dict else outputs[1] _A : Any = self.classifier(self.dropout(_a ) ) _A : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A : Tuple = """single_label_classification""" else: _A : Optional[Any] = """multi_label_classification""" if self.config.problem_type == "regression": _A : Any = MSELoss() if self.num_labels == 1: _A : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A : str = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": _A : str = CrossEntropyLoss() _A : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A : Tuple = BCEWithLogitsLoss() _A : Optional[Any] = loss_fct(_a , _a ) if not return_dict: _A : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_a , logits=_a , hidden_states=outputs.hidden_states , )
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
_snake_case = "Alexander Joslin" import operator as op from .stack import Stack def lowerCAmelCase_ ( snake_case_ ): _A : int = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} _A : Stack[int] = Stack() _A : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(snake_case_ ) ) elif i in operators: # RULE 2 operator_stack.push(snake_case_ ) elif i == ")": # RULE 4 _A : Any = operator_stack.peek() operator_stack.pop() _A : int = operand_stack.peek() operand_stack.pop() _A : Optional[Any] = operand_stack.peek() operand_stack.pop() _A : Optional[Any] = operators[opr](snake_case_,snake_case_ ) operand_stack.push(snake_case_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _snake_case = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowerCAmelCase_ ( snake_case_ ): _A : str = {} _A : Tuple = job["""started_at"""] _A : Dict = job["""completed_at"""] _A : List[str] = date_parser.parse(snake_case_ ) _A : Union[str, Any] = date_parser.parse(snake_case_ ) _A : List[str] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _A : str = start _A : List[str] = end _A : Any = duration_in_min return job_info def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = None if token is not None: _A : Optional[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Optional[int] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : int = requests.get(snake_case_,headers=snake_case_ ).json() _A : Optional[int] = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(snake_case_ ) for job in result["""jobs"""]} ) _A : List[str] = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(snake_case_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") _snake_case = parser.parse_args() _snake_case = get_job_time(args.workflow_run_id) _snake_case = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase ( UpperCamelCase__ ): _a = DistilBertTokenizer _a = DistilBertTokenizerFast _a = True @slow def a__ ( self ) -> Optional[Any]: _A : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) _A : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=_a ) _A : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_a ) _A : Any = tokenizer.build_inputs_with_special_tokens(_a ) _A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
54
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
1
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> List[Any]: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Union[str, Any]: _A : List[Any] = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : Tuple = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Union[str, Any] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[Any]: _A : str = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : List[str] = 3 _A : List[str] = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Union[str, Any] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Union[str, Any] = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : str = generator.model.config.eos_token_id _A : str = """<pad>""" _A : int = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Dict = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : Any = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
54
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
1
import numpy as np def lowerCAmelCase_ ( snake_case_ ): return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( snake_case_ ): return vector * sigmoid(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
54
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class lowercase ( UpperCamelCase__ ): _a = "openai-gpt" _a = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , _a=4_0478 , _a=512 , _a=768 , _a=12 , _a=12 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1e-5 , _a=0.02 , _a="cls_index" , _a=True , _a=None , _a=True , _a=0.1 , **_a , ) -> Optional[Any]: _A : Optional[Any] = vocab_size _A : Optional[int] = n_positions _A : Tuple = n_embd _A : Optional[Any] = n_layer _A : Any = n_head _A : Optional[int] = afn _A : int = resid_pdrop _A : List[Any] = embd_pdrop _A : List[Any] = attn_pdrop _A : int = layer_norm_epsilon _A : Tuple = initializer_range _A : Tuple = summary_type _A : List[Any] = summary_use_proj _A : int = summary_activation _A : int = summary_first_dropout _A : Union[str, Any] = summary_proj_to_labels super().__init__(**_a )
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
class lowercase : # Public class to implement a graph def __init__( self , _a , _a , _a ) -> None: _A : Optional[int] = row _A : Optional[Any] = col _A : Any = graph def a__ ( self , _a , _a , _a ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a__ ( self , _a , _a , _a ) -> None: # Checking all 8 elements surrounding nth element _A : Dict = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A : int = [-1, 0, 1, -1, 1, -1, 0, 1] _A : Optional[int] = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _a ) def a__ ( self ) -> int: # And finally, count all islands. _A : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] _A : Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_a , _a , _a ) count += 1 return count
54
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
1
from math import loga def lowerCAmelCase_ ( snake_case_ ): if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(snake_case_,snake_case_ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
54
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _A : List[Any] = 128 elif "12-12" in model_name: _A : str = 12 _A : Tuple = 12 elif "14-14" in model_name: _A : Any = 14 _A : Tuple = 14 elif "16-16" in model_name: _A : Any = 16 _A : Optional[Any] = 16 else: raise ValueError("""Model not supported""" ) _A : Tuple = """huggingface/label-files""" if "speech-commands" in model_name: _A : Optional[Any] = 35 _A : Optional[Any] = """speech-commands-v2-id2label.json""" else: _A : Optional[int] = 527 _A : int = """audioset-id2label.json""" _A : str = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : Tuple = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_ ): if "module.v" in name: _A : Union[str, Any] = name.replace("""module.v""","""audio_spectrogram_transformer""" ) if "cls_token" in name: _A : Dict = name.replace("""cls_token""","""embeddings.cls_token""" ) if "dist_token" in name: _A : List[str] = name.replace("""dist_token""","""embeddings.distillation_token""" ) if "pos_embed" in name: _A : List[str] = name.replace("""pos_embed""","""embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _A : Tuple = name.replace("""patch_embed.proj""","""embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: _A : Tuple = name.replace("""blocks""","""encoder.layer""" ) if "attn.proj" in name: _A : List[Any] = name.replace("""attn.proj""","""attention.output.dense""" ) if "attn" in name: _A : Union[str, Any] = name.replace("""attn""","""attention.self""" ) if "norm1" in name: _A : List[str] = name.replace("""norm1""","""layernorm_before""" ) if "norm2" in name: _A : Optional[Any] = name.replace("""norm2""","""layernorm_after""" ) if "mlp.fc1" in name: _A : str = name.replace("""mlp.fc1""","""intermediate.dense""" ) if "mlp.fc2" in name: _A : Dict = name.replace("""mlp.fc2""","""output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _A : Tuple = name.replace("""audio_spectrogram_transformer.norm""","""audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: _A : Optional[int] = name.replace("""module.mlp_head.0""","""classifier.layernorm""" ) if "module.mlp_head.1" in name: _A : str = name.replace("""module.mlp_head.1""","""classifier.dense""" ) return name def lowerCAmelCase_ ( snake_case_,snake_case_ ): for key in orig_state_dict.copy().keys(): _A : int = orig_state_dict.pop(snake_case_ ) if "qkv" in key: _A : Any = key.split(""".""" ) _A : List[Any] = int(key_split[3] ) _A : str = config.hidden_size if "weight" in key: _A : int = val[:dim, :] _A : List[str] = val[dim : dim * 2, :] _A : Union[str, Any] = val[-dim:, :] else: _A : Optional[Any] = val[:dim] _A : int = val[dim : dim * 2] _A : Any = val[-dim:] else: _A : str = val return orig_state_dict def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(snake_case_,snake_case_ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False ): _A : Any = get_audio_spectrogram_transformer_config(snake_case_ ) _A : str = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict _A : Optional[Any] = model_name_to_url[model_name] _A : Dict = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" ) # remove some keys remove_keys(snake_case_ ) # rename some keys _A : Tuple = convert_state_dict(snake_case_,snake_case_ ) # load 🤗 model _A : str = ASTForAudioClassification(snake_case_ ) model.eval() model.load_state_dict(snake_case_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _A : Any = -4.2_67_73_93 if """speech-commands""" not in model_name else -6.84_59_78 _A : Tuple = 4.5_68_99_74 if """speech-commands""" not in model_name else 5.5_65_45_26 _A : Any = 1024 if """speech-commands""" not in model_name else 128 _A : Union[str, Any] = ASTFeatureExtractor(mean=snake_case_,std=snake_case_,max_length=snake_case_ ) if "speech-commands" in model_name: _A : int = load_dataset("""speech_commands""","""v0.02""",split="""validation""" ) _A : Optional[int] = dataset[0]["""audio"""]["""array"""] else: _A : List[str] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""",filename="""sample_audio.flac""",repo_type="""dataset""",) _A , _A : List[Any] = torchaudio.load(snake_case_ ) _A : Union[str, Any] = waveform.squeeze().numpy() _A : List[str] = feature_extractor(snake_case_,sampling_rate=16000,return_tensors="""pt""" ) # forward pass _A : str = model(**snake_case_ ) _A : Optional[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _A : Optional[int] = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _A : Any = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _A : Any = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _A : Any = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _A : str = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _A : int = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _A : Union[str, Any] = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": _A : int = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(snake_case_ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
54
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
1
import fire from utils import calculate_rouge, save_json def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None,**snake_case_ ): _A : Dict = [x.strip() for x in open(snake_case_ ).readlines()] _A : Optional[int] = [x.strip() for x in open(snake_case_ ).readlines()][: len(snake_case_ )] _A : List[Any] = calculate_rouge(snake_case_,snake_case_,**snake_case_ ) if save_path is not None: save_json(snake_case_,snake_case_,indent=snake_case_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
54
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) == 0: return array _A , _A : Tuple = min(snake_case_ ), max(snake_case_ ) # Compute the variables _A : Tuple = _max - _min + 1 _A , _A : str = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _A : Union[str, Any] = i - _min _A : List[str] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _A : Tuple = 0 for i in range(snake_case_ ): while holes_repeat[i] > 0: _A : Union[str, Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input("Enter numbers separated by comma:\n") _snake_case = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
54
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCAmelCase_ ( snake_case_=None ): _A : List[str] = argparse.ArgumentParser(add_help=snake_case_,allow_abbrev=snake_case_ ) # The main config parser _A : Union[str, Any] = config_command_parser(snake_case_ ) # The subparser to add commands to _A : str = config_parser.add_subparsers(title="""subcommands""",dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(snake_case_,parents=[parent_parser] ) update_command_parser(snake_case_,parents=[parent_parser] ) return config_parser def lowerCAmelCase_ ( ): _A : Optional[int] = get_config_parser() _A : Union[str, Any] = config_parser.parse_args() if not hasattr(snake_case_,"""func""" ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
54
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = FunnelTokenizer _a = FunnelTokenizerFast _a = True _a = True def a__ ( self ) -> List[Any]: super().setUp() _A : Union[str, Any] = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self , **_a ) -> Dict: return FunnelTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Optional[Any]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> Any: _A : int = """UNwant\u00E9d,running""" _A : Union[str, Any] = """unwanted, running""" return input_text, output_text def a__ ( self ) -> Optional[Any]: _A : List[str] = self.tokenizer_class(self.vocab_file ) _A : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def a__ ( self ) -> Union[str, Any]: _A : Any = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: _A : str = tokenizer("""UNwant\u00E9d,running""" ) _A : List[Any] = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) _A : Tuple = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
54
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A , _A : Union[str, Any] = position _A : Dict = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A : int = [] for position in positions: _A , _A : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(snake_case_ ) return permissible_positions def lowerCAmelCase_ ( snake_case_ ): return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if is_complete(snake_case_ ): return True for position in get_valid_pos(snake_case_,len(snake_case_ ) ): _A , _A : List[Any] = position if board[y][x] == 0: _A : Tuple = curr + 1 if open_knight_tour_helper(snake_case_,snake_case_,curr + 1 ): return True _A : int = 0 return False def lowerCAmelCase_ ( snake_case_ ): _A : int = [[0 for i in range(snake_case_ )] for j in range(snake_case_ )] for i in range(snake_case_ ): for j in range(snake_case_ ): _A : int = 1 if open_knight_tour_helper(snake_case_,(i, j),1 ): return board _A : List[str] = 0 _A : List[str] = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
54
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase ( unittest.TestCase ): @require_torch def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) _A : str = load_dataset("""ashraq/esc50""" ) _A : Optional[Any] = dataset["""train"""]["""audio"""][-1]["""array"""] _A : List[Any] = audio_classifier(_a , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_a ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def a__ ( self ) -> int: pass @slow @require_torch def a__ ( self ) -> int: _A : Any = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog _A : Tuple = load_dataset("""ashraq/esc50""" ) _A : Union[str, Any] = dataset["""train"""]["""audio"""][-1]["""array"""] _A : str = audio_classifier(_a , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_a ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) _A : Optional[int] = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) _A : str = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_a ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def a__ ( self ) -> List[str]: pass
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): if b == 0: return (1, 0) ((_A) , (_A)) : Optional[Any] = extended_euclid(snake_case_,a % b ) _A : Optional[Any] = a // b return (y, x - k * y) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): ((_A) , (_A)) : Tuple = extended_euclid(snake_case_,snake_case_ ) _A : str = na * na _A : Tuple = ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( snake_case_,snake_case_ ): ((_A) , (_A)) : Tuple = extended_euclid(snake_case_,snake_case_ ) if b < 0: _A : List[str] = (b % n + n) % n return b def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A , _A : List[str] = invert_modulo(snake_case_,snake_case_ ), invert_modulo(snake_case_,snake_case_ ) _A : Union[str, Any] = na * na _A : Optional[int] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
54
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
1
def lowerCAmelCase_ ( snake_case_ = 10,snake_case_ = 22 ): _A : List[str] = range(1,snake_case_ ) _A : str = range(1,snake_case_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
54
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowercase ( UpperCamelCase__ ): _a = "microsoft/speecht5_tts" _a = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) _a = "text_reader" _a = SpeechTaProcessor _a = SpeechTaForTextToSpeech _a = SpeechTaHifiGan _a = ["text"] _a = ["audio"] def a__ ( self ) -> str: if self.post_processor is None: _A : List[str] = """microsoft/speecht5_hifigan""" super().setup() def a__ ( self , _a , _a=None ) -> Optional[Any]: _A : Union[str, Any] = self.pre_processor(text=_a , return_tensors="""pt""" , truncation=_a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _A : Optional[int] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _A : Union[str, Any] = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def a__ ( self , _a ) -> List[Any]: with torch.no_grad(): return self.model.generate_speech(**_a ) def a__ ( self , _a ) -> List[str]: with torch.no_grad(): return self.post_processor(_a ).cpu().detach()
54
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
1
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = "PoolFormerConfig" # Base docstring _snake_case = "sail/poolformer_s12" _snake_case = [1, 512, 7, 7] # Image classification docstring _snake_case = "sail/poolformer_s12" _snake_case = "tabby, tabby cat" _snake_case = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = False ): if drop_prob == 0.0 or not training: return input _A : List[str] = 1 - drop_prob _A : Optional[int] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _A : str = keep_prob + torch.rand(snake_case_,dtype=input.dtype,device=input.device ) random_tensor.floor_() # binarize _A : List[str] = input.div(snake_case_ ) * random_tensor return output class lowercase ( nn.Module ): def __init__( self , _a = None ) -> None: super().__init__() _A : List[str] = drop_prob def a__ ( self , _a ) -> torch.Tensor: return drop_path(_a , self.drop_prob , self.training ) def a__ ( self ) -> str: return "p={}".format(self.drop_prob ) class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a , _a , _a=None ) -> List[str]: super().__init__() _A : int = patch_size if isinstance(_a , collections.abc.Iterable ) else (patch_size, patch_size) _A : Optional[Any] = stride if isinstance(_a , collections.abc.Iterable ) else (stride, stride) _A : Dict = padding if isinstance(_a , collections.abc.Iterable ) else (padding, padding) _A : Optional[Any] = nn.Convad(_a , _a , kernel_size=_a , stride=_a , padding=_a ) _A : str = norm_layer(_a ) if norm_layer else nn.Identity() def a__ ( self , _a ) -> List[Any]: _A : Any = self.projection(_a ) _A : List[Any] = self.norm(_a ) return embeddings class lowercase ( nn.GroupNorm ): def __init__( self , _a , **_a ) -> List[Any]: super().__init__(1 , _a , **_a ) class lowercase ( nn.Module ): def __init__( self , _a ) -> int: super().__init__() _A : Union[str, Any] = nn.AvgPoolad(_a , stride=1 , padding=pool_size // 2 , count_include_pad=_a ) def a__ ( self , _a ) -> Tuple: return self.pool(_a ) - hidden_states class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a ) -> int: super().__init__() _A : Tuple = nn.Convad(_a , _a , 1 ) _A : Tuple = nn.Convad(_a , _a , 1 ) _A : Any = PoolFormerDropPath(_a ) if isinstance(config.hidden_act , _a ): _A : Optional[int] = ACTaFN[config.hidden_act] else: _A : Optional[Any] = config.hidden_act def a__ ( self , _a ) -> Any: _A : Tuple = self.conva(_a ) _A : int = self.act_fn(_a ) _A : List[str] = self.drop(_a ) _A : Union[str, Any] = self.conva(_a ) _A : Optional[int] = self.drop(_a ) return hidden_states class lowercase ( nn.Module ): def __init__( self , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: super().__init__() _A : List[str] = PoolFormerPooling(_a ) _A : int = PoolFormerOutput(_a , _a , _a , _a ) _A : Optional[Any] = PoolFormerGroupNorm(_a ) _A : Optional[Any] = PoolFormerGroupNorm(_a ) # Useful for training neural nets _A : List[Any] = PoolFormerDropPath(_a ) if drop_path > 0.0 else nn.Identity() _A : List[str] = config.use_layer_scale if config.use_layer_scale: _A : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) _A : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((_a) ) , requires_grad=_a ) def a__ ( self , _a ) -> Union[str, Any]: if self.use_layer_scale: _A : Optional[Any] = self.pooling(self.before_norm(_a ) ) _A : Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _A : Union[str, Any] = hidden_states + self.drop_path(_a ) _A : List[Any] = () _A : List[str] = self.output(self.after_norm(_a ) ) _A : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _A : List[Any] = hidden_states + self.drop_path(_a ) _A : Union[str, Any] = (output,) + outputs return outputs else: _A : int = self.drop_path(self.pooling(self.before_norm(_a ) ) ) # First residual connection _A : int = pooling_output + hidden_states _A : Dict = () # Second residual connection inside the PoolFormerOutput block _A : int = self.drop_path(self.output(self.after_norm(_a ) ) ) _A : Union[str, Any] = hidden_states + layer_output _A : Dict = (output,) + outputs return outputs class lowercase ( nn.Module ): def __init__( self , _a ) -> Optional[int]: super().__init__() _A : Union[str, Any] = config # stochastic depth decay rule _A : Union[str, Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _A : Optional[Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _A : Optional[int] = nn.ModuleList(_a ) # Transformer blocks _A : Optional[Any] = [] _A : Tuple = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _A : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_a ) ) _A : List[Any] = nn.ModuleList(_a ) def a__ ( self , _a , _a=False , _a=True ) -> Tuple: _A : Tuple = () if output_hidden_states else None _A : List[str] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _A , _A : Union[str, Any] = layers # Get patch embeddings from hidden_states _A : str = embedding_layer(_a ) # Send the embeddings through the blocks for _, blk in enumerate(_a ): _A : Optional[Any] = blk(_a ) _A : List[str] = layer_outputs[0] if output_hidden_states: _A : Any = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) class lowercase ( UpperCamelCase__ ): _a = PoolFormerConfig _a = "poolformer" _a = "pixel_values" _a = True def a__ ( self , _a ) -> Tuple: if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a__ ( self , _a , _a=False ) -> Union[str, Any]: if isinstance(_a , _a ): _A : List[str] = value _snake_case = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> List[str]: super().__init__(_a ) _A : Any = config _A : Union[str, Any] = PoolFormerEncoder(_a ) # Initialize weights and apply final processing self.post_init() def a__ ( self ) -> str: return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self , _a = None , _a = None , _a = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: _A : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A : List[str] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _A : Any = self.encoder( _a , output_hidden_states=_a , return_dict=_a , ) _A : Optional[int] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_a , hidden_states=encoder_outputs.hidden_states , ) class lowercase ( nn.Module ): def __init__( self , _a ) -> Tuple: super().__init__() _A : List[str] = nn.Linear(config.hidden_size , config.hidden_size ) def a__ ( self , _a ) -> Tuple: _A : str = self.dense(_a ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n ",UpperCamelCase__,) class lowercase ( UpperCamelCase__ ): def __init__( self , _a ) -> List[Any]: super().__init__(_a ) _A : Tuple = config.num_labels _A : Optional[Any] = PoolFormerModel(_a ) # Final norm _A : Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _A : str = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self , _a = None , _a = None , _a = None , _a = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: _A : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _A : Optional[Any] = self.poolformer( _a , output_hidden_states=_a , return_dict=_a , ) _A : Tuple = outputs[0] _A : Any = self.classifier(self.norm(_a ).mean([-2, -1] ) ) _A : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A : Union[str, Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A : Optional[int] = """single_label_classification""" else: _A : List[Any] = """multi_label_classification""" if self.config.problem_type == "regression": _A : Union[str, Any] = MSELoss() if self.num_labels == 1: _A : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A : Optional[Any] = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": _A : List[str] = CrossEntropyLoss() _A : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A : List[Any] = BCEWithLogitsLoss() _A : Dict = loss_fct(_a , _a ) if not return_dict: _A : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
54
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
1
import collections import os import re from pathlib import Path _snake_case = "src/transformers" # Matches is_xxx_available() _snake_case = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _snake_case = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _snake_case = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _snake_case = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _snake_case = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _snake_case = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _snake_case = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _snake_case = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _snake_case = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _snake_case = re.compile(r"^\s*try:") # Catches a line with else: _snake_case = re.compile(r"^\s*else:") def lowerCAmelCase_ ( snake_case_ ): if _re_test_backend.search(snake_case_ ) is None: return None _A : Union[str, Any] = [b[0] for b in _re_backend.findall(snake_case_ )] backends.sort() return "_and_".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): with open(snake_case_,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : str = f.readlines() _A : Any = 0 while line_index < len(snake_case_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case_ ): return None # First grab the objects without a specific backend in _import_structure _A : Optional[int] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: _A : int = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case_ ): _A : Optional[int] = _re_one_line_import_struct.search(snake_case_ ).groups()[0] _A : Optional[Any] = re.findall(r"""\[([^\]]+)\]""",snake_case_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue _A : Union[str, Any] = _re_import_struct_key_value.search(snake_case_ ) if single_line_import_search is not None: _A : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 _A : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. _A : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): _A : Dict = lines[line_index] if _re_import_struct_add_one.search(snake_case_ ) is not None: objects.append(_re_import_struct_add_one.search(snake_case_ ).groups()[0] ) elif _re_import_struct_add_many.search(snake_case_ ) is not None: _A : int = _re_import_struct_add_many.search(snake_case_ ).groups()[0].split(""", """ ) _A : Any = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_between_brackets.search(snake_case_ ) is not None: _A : List[str] = _re_between_brackets.search(snake_case_ ).groups()[0].split(""", """ ) _A : Union[str, Any] = [obj[1:-1] for obj in imports if len(snake_case_ ) > 0] objects.extend(snake_case_ ) elif _re_quote_object.search(snake_case_ ) is not None: objects.append(_re_quote_object.search(snake_case_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 _A : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A : Dict = [] while ( line_index < len(snake_case_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): _A : Dict = lines[line_index] _A : Tuple = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 _A : Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case_ ): # If the line is an if is_backend_available, we grab all objects associated. _A : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _A : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _A : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): _A : Dict = lines[line_index] _A : Any = _re_import.search(snake_case_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 _A : Optional[int] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCAmelCase_ ( snake_case_,snake_case_ ): def find_duplicates(snake_case_ ): return [k for k, v in collections.Counter(snake_case_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _A : Any = [] for key in import_dict_objects.keys(): _A : Union[str, Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) _A : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _A : str = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def lowerCAmelCase_ ( ): _A : str = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: _A : List[str] = os.path.join(snake_case_,"""__init__.py""" ) _A : Optional[int] = parse_init(snake_case_ ) if objects is not None: _A : List[Any] = analyze_results(*snake_case_ ) if len(snake_case_ ) > 0: _A : str = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case_ ) ) if len(snake_case_ ) > 0: raise ValueError("""\n\n""".join(snake_case_ ) ) def lowerCAmelCase_ ( ): _A : Any = [] for path, directories, files in os.walk(snake_case_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(snake_case_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case_ ) / folder).glob("""*.py""" ) ) ) == 0: continue _A : Union[str, Any] = str((Path(snake_case_ ) / folder).relative_to(snake_case_ ) ) _A : List[Any] = short_path.replace(os.path.sep,""".""" ) submodules.append(snake_case_ ) for fname in files: if fname == "__init__.py": continue _A : Optional[int] = str((Path(snake_case_ ) / fname).relative_to(snake_case_ ) ) _A : str = short_path.replace(""".py""","""""" ).replace(os.path.sep,""".""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(snake_case_ ) return submodules _snake_case = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def lowerCAmelCase_ ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import _A : List[Any] = direct_transformers_import(snake_case_ ) _A : Tuple = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(snake_case_,"""__init__.py""" ),"""r""" ) as f: _A : Optional[int] = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""",snake_case_ ) ) ) _A : Dict = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(snake_case_ ) > 0: _A : Dict = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
54
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _snake_case = Lock() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0,10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _A : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _A : int = min(snake_case_,snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _A : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _A : List[Any] = max(snake_case_,snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = [] _A : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _A : List[Any] = Pipe() _A : Any = Pipe() process_array_.append( Process( target=snake_case_,args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]),) ) _A : Tuple = temp_rs _A : str = temp_rr for i in range(1,len(snake_case_ ) - 1 ): _A : Union[str, Any] = Pipe() _A : Union[str, Any] = Pipe() process_array_.append( Process( target=snake_case_,args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]),) ) _A : int = temp_rs _A : Union[str, Any] = temp_rr process_array_.append( Process( target=snake_case_,args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ),) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0,len(snake_case_ ) ): _A : Optional[int] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCAmelCase_ ( ): _A : int = list(range(10,0,-1 ) ) print("""Initial List""" ) print(*snake_case_ ) _A : Tuple = odd_even_transposition(snake_case_ ) print("""Sorted List\n""" ) print(*snake_case_ ) if __name__ == "__main__": main()
54
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_a , """num_heads""" ) ) class lowercase : def __init__( self , _a , _a=13 , _a=64 , _a=3 , _a=[16, 48, 96] , _a=[1, 3, 6] , _a=[1, 2, 10] , _a=[7, 3, 3] , _a=[4, 2, 2] , _a=[2, 1, 1] , _a=[2, 2, 2] , _a=[False, False, True] , _a=[0.0, 0.0, 0.0] , _a=0.02 , _a=1e-12 , _a=True , _a=True , _a=2 , ) -> Optional[int]: _A : str = parent _A : Union[str, Any] = batch_size _A : int = image_size _A : Optional[int] = patch_sizes _A : List[str] = patch_stride _A : Any = patch_padding _A : int = is_training _A : List[str] = use_labels _A : Tuple = num_labels _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : List[str] = num_heads _A : Union[str, Any] = stride_kv _A : Union[str, Any] = depth _A : Dict = cls_token _A : Dict = attention_drop_rate _A : List[Any] = initializer_range _A : Any = layer_norm_eps def a__ ( self ) -> Dict: _A : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : Union[str, Any] = None if self.use_labels: # create a random int32 tensor of given shape _A : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _A : List[str] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Optional[Any]: _A : Dict = TFCvtModel(config=_a ) _A : int = model(_a , training=_a ) _A : Union[str, Any] = (self.image_size, self.image_size) _A , _A : Union[str, Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): _A : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _A : Dict = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Any = self.num_labels _A : str = TFCvtForImageClassification(_a ) _A : List[Any] = model(_a , labels=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self ) -> Tuple: _A : List[Any] = self.prepare_config_and_inputs() _A , _A , _A : Tuple = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _a = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> List[Any]: _A : Union[str, Any] = TFCvtModelTester(self ) _A : str = TFCvtConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> str: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def a__ ( self ) -> List[str]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def a__ ( self ) -> List[Any]: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def a__ ( self ) -> str: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def a__ ( self ) -> Union[str, Any]: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def a__ ( self ) -> List[str]: super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def a__ ( self ) -> int: _A : Any = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_a ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def a__ ( self ) -> Union[str, Any]: _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = model_class(_a ) _A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Optional[Any]: def check_hidden_states_output(_a , _a , _a ): _A : Union[str, Any] = model_class(_a ) _A : Union[str, Any] = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[int] = outputs.hidden_states _A : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(_a ) , _a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Any = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> Dict: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Any: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = TFCvtModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def a__ ( self ) -> Tuple: _A : Dict = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _A : Optional[Any] = self.default_image_processor _A : Tuple = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""tf""" ) # forward pass _A : int = model(**_a ) # verify the logits _A : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Union[str, Any] = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _a , atol=1e-4 ) )
54
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) set_seed(770) _snake_case = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } _snake_case = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } _snake_case = os.path.dirname(os.path.abspath(__file__)) _snake_case = os.path.join(os.path.expanduser("~"), ".cache") _snake_case = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def lowerCAmelCase_ ( snake_case_,snake_case_=False ): _A : Tuple = model_type if use_small: key += "_small" return os.path.join(snake_case_,REMOTE_MODEL_PATHS[key]["""file_name"""] ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): os.makedirs(snake_case_,exist_ok=snake_case_ ) hf_hub_download(repo_id=snake_case_,filename=snake_case_,local_dir=snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_="text" ): if model_type == "text": _A : List[Any] = BarkSemanticModel _A : List[str] = BarkSemanticConfig _A : List[str] = BarkSemanticGenerationConfig elif model_type == "coarse": _A : Any = BarkCoarseModel _A : str = BarkCoarseConfig _A : Dict = BarkCoarseGenerationConfig elif model_type == "fine": _A : List[Any] = BarkFineModel _A : Union[str, Any] = BarkFineConfig _A : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() _A : int = f'''{model_type}_small''' if use_small else model_type _A : Tuple = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(snake_case_ ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""],model_info["""file_name"""] ) _A : Union[str, Any] = torch.load(snake_case_,map_location=snake_case_ ) # this is a hack _A : Dict = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: _A : Optional[Any] = model_args["""vocab_size"""] _A : List[str] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _A : Dict = model_args.pop("""n_head""" ) _A : Optional[Any] = model_args.pop("""n_embd""" ) _A : Union[str, Any] = model_args.pop("""n_layer""" ) _A : List[Any] = ConfigClass(**checkpoint["""model_args"""] ) _A : Optional[Any] = ModelClass(config=snake_case_ ) _A : Optional[Any] = GenerationConfigClass() _A : Dict = model_generation_config _A : Tuple = checkpoint["""model"""] # fixup checkpoint _A : str = """_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(snake_case_ ): # replace part of the key with corresponding layer name in HF implementation _A : Union[str, Any] = k[len(snake_case_ ) :] for old_layer_name in new_layer_name_dict: _A : Optional[Any] = new_k.replace(snake_case_,new_layer_name_dict[old_layer_name] ) _A : Tuple = state_dict.pop(snake_case_ ) _A : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) _A : str = {k for k in extra_keys if not k.endswith(""".attn.bias""" )} _A : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) _A : Any = {k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(snake_case_ ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(snake_case_ ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(snake_case_,strict=snake_case_ ) _A : int = model.num_parameters(exclude_embeddings=snake_case_ ) _A : Optional[Any] = checkpoint["""best_val_loss"""].item() logger.info(f'''model loaded: {round(n_params/1e6,1 )}M params, {round(snake_case_,3 )} loss''' ) model.eval() model.to(snake_case_ ) del checkpoint, state_dict return model def lowerCAmelCase_ ( snake_case_,snake_case_=False,snake_case_="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _A : Tuple = """cpu""" # do conversion on cpu _A : Tuple = _get_ckpt_path(snake_case_,use_small=snake_case_ ) _A : List[str] = _load_model(snake_case_,snake_case_,model_type=snake_case_,use_small=snake_case_ ) # load bark initial model _A : int = _bark_load_model(snake_case_,"""cpu""",model_type=snake_case_,use_small=snake_case_ ) if model_type == "text": _A : List[Any] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model _A : List[Any] = 5 _A : List[Any] = 10 if model_type in ["text", "coarse"]: _A : Any = torch.randint(256,(batch_size, sequence_length),dtype=torch.int ) _A : Optional[Any] = bark_model(snake_case_ )[0] _A : Union[str, Any] = model(snake_case_ ) # take last logits _A : Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: _A : Tuple = 3 _A : Union[str, Any] = 8 _A : int = torch.randint(256,(batch_size, sequence_length, n_codes_total),dtype=torch.int ) _A : Union[str, Any] = model(snake_case_,snake_case_ ) _A : Dict = bark_model(snake_case_,snake_case_ ) _A : List[str] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,): _A : List[str] = os.path.join(snake_case_,snake_case_ ) _A : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : Union[str, Any] = BarkCoarseConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : str = BarkFineConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) ) _A : Dict = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) _A : Optional[Any] = BarkSemanticModel.from_pretrained(snake_case_ ) _A : List[str] = BarkCoarseModel.from_pretrained(snake_case_ ) _A : Optional[Any] = BarkFineModel.from_pretrained(snake_case_ ) _A : Union[str, Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) _A : List[Any] = BarkConfig.from_sub_model_configs( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Union[str, Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config,coarseAcoustic.generation_config,fineAcoustic.generation_config ) _A : List[str] = BarkModel(snake_case_ ) _A : Tuple = semantic _A : Optional[int] = coarseAcoustic _A : List[str] = fineAcoustic _A : Optional[int] = codec _A : List[str] = bark_generation_config Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) bark.save_pretrained(snake_case_,repo_id=snake_case_,push_to_hub=snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") _snake_case = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
54
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None ): _A : Tuple = word_bank or [] # create a table _A : int = len(snake_case_ ) + 1 _A : list[list[list[str]]] = [] for _ in range(snake_case_ ): table.append([] ) # seed value _A : Dict = [[]] # because empty string has empty combination # iterate through the indices for i in range(snake_case_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(snake_case_ )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(snake_case_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(snake_case_ )]: combination.reverse() return table[len(snake_case_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
54
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> int: _A : Optional[Any] = parent _A : List[Any] = 13 _A : Union[str, Any] = 7 _A : List[str] = True _A : Optional[Any] = True _A : Optional[int] = True _A : Optional[Any] = True _A : List[str] = 99 _A : str = 32 _A : Dict = 2 _A : Dict = 4 _A : Union[str, Any] = 37 _A : Dict = """gelu""" _A : Union[str, Any] = 0.1 _A : str = 0.1 _A : Tuple = 512 _A : Union[str, Any] = 16 _A : int = 2 _A : Dict = 0.02 _A : Tuple = 3 _A : List[Any] = 4 _A : Union[str, Any] = None def a__ ( self ) -> Tuple: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = None if self.use_input_mask: _A : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _A : int = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Union[str, Any] = None _A : Dict = None _A : int = None if self.use_labels: _A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _A : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: _A : str = TFRoFormerModel(config=A__ ) _A : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _A : Optional[Any] = [input_ids, input_mask] _A : Optional[Any] = model(A__ ) _A : Dict = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _A : Tuple = True _A : str = TFRoFormerForCausalLM(config=A__ ) _A : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _A : Optional[int] = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: _A : Any = TFRoFormerForMaskedLM(config=A__ ) _A : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _A : List[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: _A : Optional[Any] = self.num_labels _A : Tuple = TFRoFormerForSequenceClassification(config=A__ ) _A : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _A : Tuple = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any: _A : Dict = self.num_choices _A : Any = TFRoFormerForMultipleChoice(config=A__ ) _A : List[Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _A : List[Any] = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _A : Tuple = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _A : List[Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _A : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: _A : str = self.num_labels _A : int = TFRoFormerForTokenClassification(config=A__ ) _A : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _A : List[Any] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: _A : Optional[Any] = TFRoFormerForQuestionAnswering(config=A__ ) _A : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _A : Tuple = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self ) -> List[str]: _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : Optional[Any] = config_and_inputs _A : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase,_lowerCamelCase,unittest.TestCase ): _a = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _a = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _a = False _a = False def a__ ( self , _a , _a , _a , _a , _a ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a__ ( self ) -> Union[str, Any]: _A : Dict = TFRoFormerModelTester(self ) _A : Any = ConfigTester(self , config_class=A__ , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> List[Any]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def a__ ( self ) -> str: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def a__ ( self ) -> int: _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def a__ ( self ) -> Dict: _A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def a__ ( self ) -> Union[str, Any]: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def a__ ( self ) -> Tuple: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def a__ ( self ) -> List[Any]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def a__ ( self ) -> str: _A : List[Any] = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Optional[Any]: _A : Any = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _A : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A : Optional[Any] = model(A__ )[0] # TODO Replace vocab size _A : Any = 5_0000 _A : Dict = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _A : Dict = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1e-4 ) @require_tf class lowercase ( unittest.TestCase ): _a = 1e-4 def a__ ( self ) -> List[Any]: _A : Union[str, Any] = tf.constant([[4, 10]] ) _A : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _A : Any = emba(input_ids.shape ) _A : Union[str, Any] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def a__ ( self ) -> List[Any]: _A : int = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _A : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _A : Optional[Any] = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class lowercase ( unittest.TestCase ): _a = 1e-4 def a__ ( self ) -> int: # 2,12,16,64 _A : int = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _A : int = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _A : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _A : int = embed_positions([2, 16, 768] )[None, None, :, :] _A , _A : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _A : List[Any] = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _A : Any = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
700
import operator def lowerCAmelCase_ ( snake_case_,snake_case_ = False,snake_case_ = None ): _A : str = operator.lt if reverse else operator.gt _A : Optional[Any] = solution or [] if not arr: return solution _A : Dict = [arr.pop(0 )] for i, item in enumerate(snake_case_ ): if _operator(snake_case_,sublist[-1] ): sublist.append(snake_case_ ) arr.pop(snake_case_ ) # merging sublist into solution list if not solution: solution.extend(snake_case_ ) else: while sublist: _A : Union[str, Any] = sublist.pop(0 ) for i, xx in enumerate(snake_case_ ): if not _operator(snake_case_,snake_case_ ): solution.insert(snake_case_,snake_case_ ) break else: solution.append(snake_case_ ) strand_sort(snake_case_,snake_case_,snake_case_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
54
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } _snake_case = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } _snake_case = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowercase ( _snake_case ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_INIT_CONFIGURATION _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = SqueezeBertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> List[str]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) _A : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__ ) != tokenize_chinese_chars ): _A : Any = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""" ) ) _A : Optional[int] = do_lower_case _A : Dict = strip_accents _A : Any = tokenize_chinese_chars _A : str = normalizer_class(**lowerCAmelCase__ ) _A : Tuple = do_lower_case def a__ ( self , _a , _a=None ) -> List[Any]: _A : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self , _a , _a = None ) -> List[int]: _A : Optional[int] = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , _a , _a = None ) -> Tuple[str]: _A : str = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
701
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_MASKED_LM_MAPPING _a = TF_MODEL_FOR_MASKED_LM_MAPPING def a__ ( self ) -> Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a__ ( self ) -> Any: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser"""}, ] , ) _A : Tuple = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-05, """token""": 3_8015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-05, """token""": 2_5506, """token_str""": """ accuser""", }, ] , ) _A : List[str] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> str: _A : Any = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) _A : List[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS"""}, ] , ) _A : Optional[int] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-05, """token""": 1_3606, """token_str""": """ Clara"""}, ] , ) _A : str = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(_a , decimals=6 ) , [ [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-05, """token""": 3_5676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-05, """token""": 1_6416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def a__ ( self ) -> Union[str, Any]: _A : int = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() _A : Optional[Any] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_a , _a ) @slow @require_torch def a__ ( self ) -> Optional[int]: _A : Optional[Any] = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(_a ) @slow @require_tf def a__ ( self ) -> Tuple: _A : str = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(_a ) def a__ ( self , _a ) -> Tuple: _A : Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) _A : int = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(_a ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 1_2790, """token_str""": """ Lyon""", }, ] , ) _A : Optional[Any] = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(_a ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 1_3606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def a__ ( self ) -> Tuple: _A : List[str] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) _A : str = None _A : Union[str, Any] = None self.run_pipeline_test(_a , [] ) @require_tf def a__ ( self ) -> Union[str, Any]: _A : Tuple = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) _A : Any = None _A : Dict = None self.run_pipeline_test(_a , [] ) def a__ ( self , _a , _a , _a ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) _A : Optional[Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Tuple = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a__ ( self , _a , _a ) -> Dict: _A : Dict = fill_masker.tokenizer _A : List[str] = fill_masker.model _A : List[str] = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Optional[Any] = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , ) with self.assertRaises(_a ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_a ): fill_masker("""This is""" ) self.run_test_top_k(_a , _a ) self.run_test_targets(_a , _a ) self.run_test_top_k_targets(_a , _a ) self.fill_mask_with_duplicate_targets_and_top_k(_a , _a ) self.fill_mask_with_multiple_masks(_a , _a ) def a__ ( self , _a , _a ) -> List[str]: _A : int = tokenizer.get_vocab() _A : str = sorted(vocab.keys() )[:2] # Pipeline argument _A : Tuple = FillMaskPipeline(model=_a , tokenizer=_a , targets=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Call argument _A : str = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[int] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : int = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , _a ) _A : Any = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(_a ) ) # Score equivalence _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Optional[int] = [top_mask["""token_str"""] for top_mask in outputs] _A : Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ) == set(_a ): _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_a ) _A : Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) # Raises with invalid with self.assertRaises(_a ): _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_a ): _A : Optional[Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(_a ): _A : int = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets="""""" ) def a__ ( self , _a , _a ) -> Optional[Any]: _A : str = FillMaskPipeline(model=_a , tokenizer=_a , top_k=2 ) _A : str = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) _A : Union[str, Any] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Union[str, Any] = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ] , ) self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> List[Any]: _A : Union[str, Any] = tokenizer.get_vocab() _A : int = FillMaskPipeline(model=_a , tokenizer=_a ) # top_k=2, ntargets=3 _A : List[str] = sorted(vocab.keys() )[:3] _A : Tuple = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_a ) # If we use the most probably targets, and filter differently, we should still # have the same results _A : Any = [el["""token_str"""] for el in sorted(_a , key=lambda _a : x["score"] , reverse=_a )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_a ).issubset(_a ): _A : Any = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_a ) # They should yield exactly the same result self.assertEqual(nested_simplify(_a ) , nested_simplify(_a ) ) def a__ ( self , _a , _a ) -> str: _A : Optional[int] = FillMaskPipeline(model=_a , tokenizer=_a ) _A : List[Any] = tokenizer.get_vocab() # String duplicates + id duplicates _A : Optional[Any] = sorted(vocab.keys() )[:3] _A : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A : Union[str, Any] = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_a , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_a ) , 3 ) def a__ ( self , _a , _a ) -> Tuple: _A : Any = FillMaskPipeline(model=_a , tokenizer=_a ) _A : Optional[Any] = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _a , [ [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], [ {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, {"""sequence""": ANY(_a ), """score""": ANY(_a ), """token""": ANY(_a ), """token_str""": ANY(_a )}, ], ] , )
54
0
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( snake_case__ ): def __init__( self ) -> Tuple: self.test() def a__ ( self ) -> str: _A : Any = 0 _A : Dict = False while not completed: if counter == 1: self.reset() _A : Optional[int] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _A , _A , _A : str = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_0000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def a__ ( self ) -> Optional[Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a__ ( self , _a ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a__ ( self , _a ) -> List[str]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a__ ( self ) -> int: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a__ ( self ) -> List[str]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def a__ ( self , _a=False ) -> List[Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( snake_case__ ): def __init__( self , _a ) -> str: super(UpperCAmelCase_ , self ).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _A : Dict = token_ids _A : Optional[int] = len(self.token_ids ) _A : List[str] = -1 # the index of the currently fulfilled step _A : Tuple = False def a__ ( self ) -> Dict: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def a__ ( self , _a ) -> Optional[int]: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def a__ ( self , _a ) -> List[Any]: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}''' ) _A : Any = False _A : List[str] = False _A : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 _A : Dict = True if self.fulfilled_idx == (self.seqlen - 1): _A : Any = True _A : Any = completed else: # failed to make progress. _A : str = True self.reset() return stepped, completed, reset def a__ ( self ) -> Optional[Any]: _A : Dict = False _A : Optional[Any] = 0 def a__ ( self ) -> Dict: return self.seqlen - (self.fulfilled_idx + 1) def a__ ( self , _a=False ) -> List[str]: _A : Optional[Any] = PhrasalConstraint(self.token_ids ) if stateful: _A : List[Any] = self.seqlen _A : int = self.fulfilled_idx _A : Any = self.completed return new_constraint class lowercase : def __init__( self , _a , _a=True ) -> Union[str, Any]: _A : Any = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) _A : Optional[Any] = {} for token_ids in nested_token_ids: _A : List[str] = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: _A : Optional[int] = {} _A : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" F''' {nested_token_ids}.''' ) _A : Any = root def a__ ( self , _a ) -> Optional[Any]: _A : int = self.trie for current_token in current_seq: _A : Dict = start[current_token] _A : str = list(start.keys() ) return next_tokens def a__ ( self , _a ) -> Optional[int]: _A : Optional[Any] = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def a__ ( self , _a ) -> List[str]: _A : List[Any] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def a__ ( self , _a , _a ) -> List[Any]: _A : List[str] = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class lowercase ( snake_case__ ): def __init__( self , _a ) -> List[str]: super(UpperCAmelCase_ , self ).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _A : List[Any] = DisjunctiveTrie(UpperCAmelCase_ ) _A : Union[str, Any] = nested_token_ids _A : int = self.trie.max_height _A : List[Any] = [] _A : Optional[int] = False def a__ ( self ) -> List[Any]: _A : Dict = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def a__ ( self , _a ) -> int: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}''' ) _A : Tuple = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def a__ ( self , _a ) -> Dict: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}''' ) _A : str = False _A : str = False _A : Optional[int] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) _A : List[str] = True else: _A : Optional[int] = True self.reset() _A : Optional[Any] = self.trie.reached_leaf(self.current_seq ) _A : Any = completed return stepped, completed, reset def a__ ( self ) -> Dict: _A : Optional[int] = False _A : List[Any] = [] def a__ ( self ) -> int: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def a__ ( self , _a=False ) -> List[Any]: _A : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: _A : Optional[int] = self.seqlen _A : List[Any] = self.current_seq _A : List[str] = self.completed return new_constraint class lowercase : def __init__( self , _a ) -> Any: _A : int = constraints # max # of steps required to fulfill a given constraint _A : Optional[Any] = max([c.seqlen for c in constraints] ) _A : Optional[int] = len(UpperCAmelCase_ ) _A : List[str] = False self.init_state() def a__ ( self ) -> Dict: _A : int = [] _A : List[str] = None _A : Tuple = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def a__ ( self ) -> List[Any]: _A : Dict = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def a__ ( self ) -> List[Any]: _A : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _A : str = constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: _A : str = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def a__ ( self , _a ) -> Dict: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _A , _A : Any = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def a__ ( self , _a ) -> List[Any]: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) _A , _A : Any = False, False if self.completed: _A : int = True _A : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _A , _A , _A : Union[str, Any] = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) _A : Any = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _A : str = None if len(self.pending_constraints ) == 0: # we're done! _A : List[str] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): _A , _A , _A : Dict = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) _A : Optional[Any] = None if not complete and stepped: _A : int = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _A : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _A : Optional[int] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def a__ ( self , _a=True ) -> Optional[int]: _A : Union[str, Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _A : Optional[Any] = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _A : Any = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) _A : Any = [constraint.copy() for constraint in self.pending_constraints] return new_state
702
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def a__ ( self ) -> Optional[Any]: super().setUp() # fmt: off _A : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _A : str = dict(zip(_a , range(len(_a ) ) ) ) _A : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] _A : str = {"""unk_token""": """<unk>"""} _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , **_a ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> str: _A : Tuple = """lower newer""" _A : Optional[Any] = """lower newer""" return input_text, output_text def a__ ( self ) -> List[Any]: _A : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : str = """lower newer""" _A : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] _A : int = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _A : str = tokens + [tokenizer.unk_token] _A : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @require_ftfy def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : Dict = self.tokenizer_class.from_pretrained(_a , **_a ) _A : str = self.rust_tokenizer_class.from_pretrained(_a , **_a ) _A : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _A : Tuple = """xa\u0303y""" + """ """ + """x\xe3y""" _A : Dict = tokenizer_s.tokenize(_a ) _A : Dict = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of space type _A : Any = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _A : Optional[int] = tokenizer_s.tokenize(_a ) _A : List[Any] = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) # Test that the tokenization is identical on unicode of line break type _A : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _A : Optional[Any] = tokenizer_s.tokenize(_a ) _A : Tuple = tokenizer_r.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A : List[Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A : str = F'''{text_of_1_token} {text_of_1_token}''' _A : str = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Dict = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_a ) + 1, len(_a ) + 1 + len(_a )) , ) _A : Any = F''' {text}''' _A : List[Any] = self.rust_tokenizer_class.from_pretrained( _a , use_fast=_a , ) _A : Optional[int] = tokenizer_r(_a , return_offsets_mapping=_a , add_special_tokens=_a ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_a )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_a ) + 1, 1 + len(_a ) + 1 + len(_a )) , ) def a__ ( self ) -> List[Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_a ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def a__ ( self ) -> str: super().test_tokenization_python_rust_equals() def a__ ( self ) -> Union[str, Any]: # CLIP always lower cases letters pass
54
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _snake_case = re.compile(r"^(?P<major>\d+)" r"\.(?P<minor>\d+)" r"\.(?P<patch>\d+)$") @total_ordering @dataclass class lowercase : _a = 42 _a = None _a = None _a = None _a = None def a__ ( self ) -> List[Any]: _A , _A , _A : Tuple = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Optional[Any]: return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def a__ ( self ) -> str: return self.major, self.minor, self.patch def a__ ( self , _a ) -> Optional[Any]: if isinstance(A_ , A_ ): return Version(A_ ) elif isinstance(A_ , A_ ): return other raise TypeError(F'''{other} (type {type(A_ )}) cannot be compared to version.''' ) def __eq__( self , _a ) -> int: try: _A : List[str] = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , _a ) -> Any: _A : Any = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self ) -> List[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def a__ ( cls , _a ) -> Optional[Any]: _A : Dict = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def a__ ( self ) -> str: return self.version_str def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = _VERSION_REG.match(snake_case_ ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(snake_case_ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def lowerCAmelCase_ ( snake_case_ ): return ".".join(str(snake_case_ ) for v in version_tuple )
703
from datetime import datetime as dt import os from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def lowerCAmelCase_ ( ): _A : int = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Tuple = g.get_repo("""huggingface/transformers""" ) _A : Dict = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Optional[Any] = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
54
0
import math def lowerCAmelCase_ ( snake_case_,snake_case_ ): if ( not isinstance(_lowercase,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * power_factor def lowerCAmelCase_ ( snake_case_,snake_case_ ): if ( not isinstance(_lowercase,(int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("""power_factor must be a valid float value between -1 and 1.""" ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
704
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
0
import argparse import os import re import packaging.version _snake_case = "examples/" _snake_case = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } _snake_case = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } _snake_case = "README.md" def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): with open(_A,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Tuple = f.read() _A : Optional[Any] = REPLACE_PATTERNS[pattern] _A : Optional[Any] = replace.replace("""VERSION""",_A ) _A : Optional[int] = re_pattern.sub(_A,_A ) with open(_A,"""w""",encoding="""utf-8""",newline="""\n""" ) as f: f.write(_A ) def lowerCAmelCase_ ( snake_case_ ): for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_A,_A ),_A,pattern="""examples""" ) def lowerCAmelCase_ ( snake_case_,snake_case_=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A,_A,_A ) if not patch: update_version_in_examples(_A ) def lowerCAmelCase_ ( ): _A : List[Any] = "🤗 Transformers currently provides the following architectures" _A : Optional[int] = "1. Want to contribute a new model?" with open(_A,"""r""",encoding="""utf-8""",newline="""\n""" ) as f: _A : Any = f.readlines() # Find the start of the list. _A : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _A : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _A : int = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""","""https://huggingface.co/docs/diffusers/model_doc""",) index += 1 with open(_A,"""w""",encoding="""utf-8""",newline="""\n""" ) as f: f.writelines(_A ) def lowerCAmelCase_ ( ): with open(REPLACE_FILES["""init"""],"""r""" ) as f: _A : List[str] = f.read() _A : List[Any] = REPLACE_PATTERNS["init"][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowerCAmelCase_ ( snake_case_=False ): _A : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _A : List[str] = default_version.base_version elif patch: _A : Any = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _A : Any = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _A : str = input(f'''Which version are you releasing? [{default_version}]''' ) if len(_A ) == 0: _A : str = default_version print(f'''Updating version to {version}.''' ) global_version_update(_A,patch=_A ) def lowerCAmelCase_ ( ): _A : Union[str, Any] = get_version() _A : Tuple = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _A : List[str] = current_version.base_version # Check with the user we got that right. _A : Tuple = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(_A ) == 0: _A : int = dev_version print(f'''Updating version to {version}.''' ) global_version_update(_A ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") _snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
705
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _snake_case = logging.getLogger(__name__) if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30522, type=int) _snake_case = parser.parse_args() logger.info(f"""Loading data from {args.data_file}""") with open(args.data_file, "rb") as fp: _snake_case = pickle.load(fp) logger.info("Counting occurrences for MLM.") _snake_case = Counter() for tk_ids in data: counter.update(tk_ids) _snake_case = [0] * args.vocab_size for k, v in counter.items(): _snake_case = v logger.info(f"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
706
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( snake_case_ ): return data[1:] + data[0] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Dict = """""" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = int("""0b""" + data[0] + data[-1],2 ) _A : Any = int("""0b""" + data[1:3],2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[str] = message[:4] _A : List[Any] = message[4:] _A : Union[str, Any] = apply_table(snake_case_,snake_case_ ) _A : List[Any] = xor(snake_case_,snake_case_ ) _A : Optional[Any] = apply_sbox(snake_case_,temp[:4] ) # noqa: E741 _A : List[Any] = apply_sbox(snake_case_,temp[4:] ) _A : int = """0""" * (2 - len(snake_case_ )) + l # noqa: E741 _A : Union[str, Any] = """0""" * (2 - len(snake_case_ )) + r _A : List[Any] = apply_table(l + r,snake_case_ ) _A : Any = xor(snake_case_,snake_case_ ) return temp + right if __name__ == "__main__": _snake_case = input("Enter 10 bit key: ") _snake_case = input("Enter 8 bit message: ") _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
54
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = get_failure_array(snake_case_ ) # 2) Step through text searching for pattern _A : Dict = 0, 0 # index into text, pattern while i < len(snake_case_ ): if pattern[j] == text[i]: if j == (len(snake_case_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _A : Optional[Any] = failure[j - 1] continue i += 1 return False def lowerCAmelCase_ ( snake_case_ ): _A : int = [0] _A : List[Any] = 0 _A : Union[str, Any] = 1 while j < len(snake_case_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _A : Dict = failure[i - 1] continue j += 1 failure.append(snake_case_ ) return failure if __name__ == "__main__": # Test 1) _snake_case = "abc1abc12" _snake_case = "alskfjaldsabc1abc1abc12k23adsfabcabc" _snake_case = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _snake_case = "ABABX" _snake_case = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) _snake_case = "AAAB" _snake_case = "ABAAAAAB" assert kmp(pattern, text) # Test 4) _snake_case = "abcdabcy" _snake_case = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) _snake_case = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
707
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , ) -> Tuple: _A : Any = size if size is not None else {"""height""": 18, """width""": 18} _A : Optional[Any] = parent _A : Union[str, Any] = batch_size _A : List[Any] = num_channels _A : List[str] = image_size _A : Optional[Any] = min_resolution _A : List[Any] = max_resolution _A : Optional[Any] = do_resize _A : str = size _A : List[str] = do_normalize _A : Dict = image_mean _A : int = image_std def a__ ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = DPTImageProcessor if is_vision_available() else None def a__ ( self ) -> Optional[int]: _A : Optional[Any] = DPTImageProcessingTester(self ) @property def a__ ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """do_resize""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) def a__ ( self ) -> Any: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def a__ ( self ) -> List[Any]: # Initialize image_processing _A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _A : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def a__ ( self ) -> List[str]: # Initialize image_processing _A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _A : int = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
54
0
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _snake_case = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def lowerCAmelCase_ ( snake_case_ ): for pegasus_name, hf_name in PATTERNS: _A : Optional[int] = k.replace(__A,__A ) return k def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = DEFAULTS.copy() cfg_kwargs.update(__A ) _A : Dict = PegasusConfig(**__A ) _A : Optional[int] = PegasusForConditionalGeneration(__A ) _A : Union[str, Any] = torch_model.model.state_dict() _A : Union[str, Any] = {} for k, v in tf_weights.items(): _A : Dict = rename_state_dict_key(__A ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: _A : Union[str, Any] = v.T _A : Any = torch.tensor(__A,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected _A : int = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) _A : Dict = mapping['''shared.weight'''] _A : List[str] = mapping['''shared.weight'''] _A : Optional[int] = {k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__A ) _A : List[str] = torch_model.model.load_state_dict(__A,strict=__A ) _A : Optional[int] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCAmelCase_ ( snake_case_="./ckpt/aeslc/model.ckpt-32000" ): _A : Dict = tf.train.list_variables(__A ) _A : str = {} _A : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__A,desc="""converting tf checkpoint to dict""" ): _A : int = any(pat in name for pat in ignore_name ) if skip_key: continue _A : List[Any] = tf.train.load_variable(__A,__A ) _A : Tuple = array return tf_weights def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Any = Path(__A ).parent.name _A : List[Any] = task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] _A : List[str] = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""",model_max_length=__A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__A ) # convert model _A : str = get_tf_weights_as_numpy(__A ) _A : List[Any] = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": _A : Tuple = task_specific_params _A : Optional[Any] = convert_pegasus(__A,__A ) torch_model.save_pretrained(__A ) _A : int = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__A,Path(__A ) / """pytorch_model.bin""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") _snake_case = parser.parse_args() if args.save_dir is None: _snake_case = Path(args.tf_ckpt_path).parent.name _snake_case = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
708
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _snake_case = logging.get_logger(__name__) _snake_case = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class lowercase ( UpperCamelCase__ ): def __init__( self , _a=None , _a=None , *_a , **_a ) -> Optional[int]: super().__init__(*_a , **_a ) if config is None: assert isinstance(self.model , _a ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) _A : Optional[Any] = self.model.config else: _A : int = config _A : Optional[Any] = data_args _A : int = self.config.tgt_vocab_size if isinstance(self.config , _a ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: _A : Optional[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _A : Union[str, Any] = label_smoothed_nll_loss def a__ ( self , _a ) -> int: if self.optimizer is None: _A : List[str] = ["""bias""", """LayerNorm.weight"""] _A : str = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] _A : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _A : Dict = Adafactor _A : int = {"""scale_parameter""": False, """relative_step""": False} else: _A : int = AdamW _A : Any = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } _A : List[str] = self.args.learning_rate if self.sharded_ddp: _A : List[str] = OSS( params=_a , optim=_a , **_a , ) else: _A : Tuple = optimizer_cls(_a , **_a ) if self.lr_scheduler is None: _A : Union[str, Any] = self._get_lr_scheduler(_a ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def a__ ( self , _a ) -> Dict: _A : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _A : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _A : Optional[int] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _A : List[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_a ) return scheduler def a__ ( self ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def a__ ( self , _a , _a , _a ) -> List[str]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _A : List[str] = model(**_a , use_cache=_a )[0] _A : Dict = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _A , _A : str = model(**_a , labels=_a , use_cache=_a )[:2] else: # compute label smoothed loss _A : Any = model(**_a , use_cache=_a )[0] _A : Union[str, Any] = torch.nn.functional.log_softmax(_a , dim=-1 ) _A , _A : List[str] = self.loss_fn(_a , _a , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def a__ ( self , _a , _a ) -> List[Any]: _A : Optional[int] = inputs.pop("""labels""" ) _A , _A : Dict = self._compute_loss(_a , _a , _a ) return loss def a__ ( self , _a , _a , _a , _a = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: _A : int = self._prepare_inputs(_a ) _A : Dict = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _A : List[str] = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_a , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _A : str = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) _A : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data _A , _A : Tuple = self._compute_loss(_a , _a , _a ) _A : Any = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _A : List[Any] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _A : Any = self._pad_tensors_to_max_len(_a , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def a__ ( self , _a , _a ) -> Union[str, Any]: # If PAD token is not defined at least EOS token has to be defined _A : Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) _A : Dict = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _A : Dict = tensor return padded_tensor
54
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif stress < 0: raise ValueError("""Stress cannot be negative""" ) elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""" ) elif area < 0: raise ValueError("""Area cannot be negative""" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
709
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCAmelCase_ ( snake_case_ ): # A local function to see if a dot lands in the circle. def is_in_circle(snake_case_,snake_case_ ) -> bool: _A : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A : Optional[int] = mean( int(is_in_circle(uniform(-1.0,1.0 ),uniform(-1.0,1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _A : List[str] = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = 0.0,snake_case_ = 1.0,): return mean( function_to_integrate(uniform(snake_case_,snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ): def identity_function(snake_case_ ) -> float: return x _A : Any = area_under_curve_estimator( snake_case_,snake_case_,snake_case_,snake_case_ ) _A : Tuple = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def lowerCAmelCase_ ( snake_case_ ): def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _A : Optional[int] = area_under_curve_estimator( snake_case_,snake_case_,0.0,2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
54
0
import math class lowercase : def a__ ( self , _a , _a ) -> Optional[int]: _A : Dict = 0.0 _A : List[str] = 0.0 for i in range(len(UpperCamelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a__ ( self , _a , _a , _a , _a ) -> Tuple: for i in range(len(UpperCamelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase_ ( ): _A : Any = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _A : Union[str, Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _A : str = SelfOrganizingMap() _A : Any = 3 _A : Union[str, Any] = 0.5 for _ in range(lowerCamelCase__ ): for j in range(len(lowerCamelCase__ ) ): # training sample _A : Optional[Any] = training_samples[j] # Compute the winning vector _A : Tuple = self_organizing_map.get_winner(lowerCamelCase__,lowerCamelCase__ ) # Update the winning vector _A : Dict = self_organizing_map.update(lowerCamelCase__,lowerCamelCase__,lowerCamelCase__,lowerCamelCase__ ) # classify test sample _A : Any = [0, 0, 0, 1] _A : Any = self_organizing_map.get_winner(lowerCamelCase__,lowerCamelCase__ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
710
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> int: _A : int = tempfile.mkdtemp() _A : Union[str, Any] = 8 # DPR tok _A : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A : Dict = {"""unk_token""": """<unk>"""} _A : Optional[Any] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) _A : str = os.path.join(_a , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _A : List[Any] = os.path.join(_a , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def a__ ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def a__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def a__ ( self ) -> str: _A : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) _A : int = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _A : Any = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_a ) rag_tokenizer.save_pretrained(_a ) _A : Optional[Any] = RagTokenizer.from_pretrained(_a , config=_a ) self.assertIsInstance(new_rag_tokenizer.question_encoder , _a ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , _a ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def a__ ( self ) -> str: _A : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) _A : Tuple = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Tuple = tokenizer(_a ) self.assertIsNotNone(_a ) @slow def a__ ( self ) -> Dict: _A : Dict = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) _A : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] _A : Optional[Any] = tokenizer(_a ) self.assertIsNotNone(_a )
54
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _snake_case = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _snake_case = [0, 25, 50] _snake_case = [25, 50, 75] _snake_case = fuzz.membership.trimf(X, abca) _snake_case = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _snake_case = np.ones(75) _snake_case = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _snake_case = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _snake_case = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _snake_case = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _snake_case = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _snake_case = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _snake_case = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _snake_case = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("Young") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("Middle aged") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("union") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("intersection") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("complement_a") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("difference a/b") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("alg_sum") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("alg_product") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("bdd_sum") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("bdd_difference") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
711
import os import re import shutil import sys import tempfile import unittest import black _snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _snake_case = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): def a__ ( self ) -> Union[str, Any]: _A : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _A : str = self.transformer_dir shutil.copy( os.path.join(_a , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def a__ ( self ) -> Optional[int]: _A : List[str] = """src/transformers""" shutil.rmtree(self.transformer_dir ) def a__ ( self , _a , _a , _a , _a=None ) -> Optional[Any]: _A : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _A : List[str] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _A : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _A : Optional[int] = black.format_str(_a , mode=_a ) _A : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_a , """w""" , newline="""\n""" ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , """r""" ) as f: self.assertTrue(f.read() , _a ) def a__ ( self ) -> str: _A : Union[str, Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _a , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _a ) , ) # Copy consistency with a really long name _A : List[str] = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _a , overwrite_result=re.sub("""Bert""" , """TestModel""" , _a ) , ) def a__ ( self ) -> Tuple: _A : Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _A : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _A , _A : Tuple = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) _A , _A : List[str] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) _A : Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _A : Dict = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _A , _A : Optional[int] = check_copies.convert_to_localized_md( _a , _a , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
54
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase ( UpperCamelCase_ ): _a = (EulerDiscreteScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Any: _A : List[str] = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a ) return config def a__ ( self ) -> Optional[int]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> List[Any]: _A : int = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config() _A : str = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : str = torch.manual_seed(0 ) _A : int = self.dummy_model() _A : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Optional[Any] = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : List[str] = scheduler.scale_model_input(_a , _a ) _A : int = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a , generator=_a ) _A : str = output.prev_sample _A : List[str] = torch.sum(torch.abs(_a ) ) _A : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def a__ ( self ) -> int: _A : Any = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : int = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : int = torch.manual_seed(0 ) _A : List[str] = self.dummy_model() _A : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Tuple = scheduler.scale_model_input(_a , _a ) _A : int = model(_a , _a ) _A : Optional[Any] = scheduler.step(_a , _a , _a , generator=_a ) _A : List[Any] = output.prev_sample _A : Optional[int] = torch.sum(torch.abs(_a ) ) _A : Optional[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def a__ ( self ) -> Dict: _A : str = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Dict = torch.manual_seed(0 ) _A : Dict = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _A : Dict = sample.to(_a ) for t in scheduler.timesteps: _A : str = scheduler.scale_model_input(_a , _a ) _A : Optional[Any] = model(_a , _a ) _A : List[str] = scheduler.step(_a , _a , _a , generator=_a ) _A : Union[str, Any] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def a__ ( self ) -> List[Any]: _A : Optional[Any] = self.scheduler_classes[0] _A : int = self.get_scheduler_config() _A : List[Any] = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : str = torch.manual_seed(0 ) _A : Optional[int] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _A : Optional[int] = sample.to(_a ) for t in scheduler.timesteps: _A : List[Any] = scheduler.scale_model_input(_a , _a ) _A : int = model(_a , _a ) _A : int = scheduler.step(_a , _a , _a , generator=_a ) _A : List[str] = output.prev_sample _A : Optional[int] = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
712
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=2048 , _a=128 , _a=1 , _a=512 , _a=30 , _a=4_4100 , ) -> Tuple: _A : Any = parent _A : str = batch_size _A : Union[str, Any] = min_seq_length _A : int = max_seq_length _A : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = spectrogram_length _A : int = feature_size _A : str = num_audio_channels _A : Tuple = hop_length _A : List[str] = chunk_length _A : Union[str, Any] = sampling_rate def a__ ( self ) -> Tuple: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self , _a=False , _a=False ) -> Optional[int]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : List[Any] = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = TvltFeatureExtractor def a__ ( self ) -> Any: _A : int = TvltFeatureExtractionTester(self ) def a__ ( self ) -> List[Any]: _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """spectrogram_length""" ) ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """num_audio_channels""" ) ) self.assertTrue(hasattr(_a , """hop_length""" ) ) self.assertTrue(hasattr(_a , """chunk_length""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) def a__ ( self ) -> Optional[int]: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : int = feat_extract_second.to_dict() _A : int = dict_first.pop("""mel_filters""" ) _A : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> int: _A : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Union[str, Any] = self.feature_extraction_class.from_json_file(_a ) _A : Optional[Any] = feat_extract_first.to_dict() _A : Union[str, Any] = feat_extract_second.to_dict() _A : List[Any] = dict_first.pop("""mel_filters""" ) _A : Optional[Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Optional[Any]: # Initialize feature_extractor _A : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : List[str] = [np.asarray(_a ) for speech_input in speech_inputs] # Test not batched input _A : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A : str = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A : Optional[Any] = feature_extractor( _a , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=_a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Optional[int] = np.asarray(_a ) _A : Optional[Any] = feature_extractor(_a , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self , _a ) -> str: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Dict = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: _A : List[str] = self._load_datasamples(1 ) _A : List[str] = TvltFeatureExtractor() _A : List[Any] = feature_extractor(_a , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _a , atol=1e-4 ) )
54
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowercase ( _snake_case ): _a = 'poolformer' def __init__( self , _a=3 , _a=16 , _a=16 , _a=3 , _a=4.0 , _a=[2, 2, 6, 2] , _a=[64, 128, 320, 512] , _a=[7, 3, 3, 3] , _a=[4, 2, 2, 2] , _a=[2, 1, 1, 1] , _a=4 , _a=0.0 , _a="gelu" , _a=True , _a=1e-5 , _a=0.02 , **_a , ) -> Optional[int]: _A : Optional[Any] = num_channels _A : Dict = patch_size _A : Tuple = stride _A : Dict = padding _A : List[str] = pool_size _A : List[Any] = hidden_sizes _A : Optional[int] = mlp_ratio _A : Tuple = depths _A : int = patch_sizes _A : List[str] = strides _A : Dict = num_encoder_blocks _A : Tuple = drop_path_rate _A : Any = hidden_act _A : Tuple = use_layer_scale _A : Optional[Any] = layer_scale_init_value _A : Tuple = initializer_range super().__init__(**_a ) class lowercase ( _snake_case ): _a = version.parse("1.11" ) @property def a__ ( self ) -> int: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> List[str]: return 2e-3
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "owlvit_text_model" def __init__( self , _a=4_9408 , _a=512 , _a=2048 , _a=12 , _a=8 , _a=16 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , _a=0 , _a=4_9406 , _a=4_9407 , **_a , ) -> List[str]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A : int = vocab_size _A : Dict = hidden_size _A : Tuple = intermediate_size _A : str = num_hidden_layers _A : Dict = num_attention_heads _A : Any = max_position_embeddings _A : List[Any] = hidden_act _A : Union[str, Any] = layer_norm_eps _A : int = attention_dropout _A : Tuple = initializer_range _A : Union[str, Any] = initializer_factor @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A : Dict = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": _A : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase ( UpperCamelCase__ ): _a = "owlvit_vision_model" def __init__( self , _a=768 , _a=3072 , _a=12 , _a=12 , _a=3 , _a=768 , _a=32 , _a="quick_gelu" , _a=1e-5 , _a=0.0 , _a=0.02 , _a=1.0 , **_a , ) -> Dict: super().__init__(**_UpperCAmelCase ) _A : Union[str, Any] = hidden_size _A : List[str] = intermediate_size _A : Optional[int] = num_hidden_layers _A : List[str] = num_attention_heads _A : str = num_channels _A : Optional[Any] = image_size _A : Any = patch_size _A : List[Any] = hidden_act _A : List[str] = layer_norm_eps _A : int = attention_dropout _A : Any = initializer_range _A : str = initializer_factor @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A : Union[str, Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("""model_type""" ) == "owlvit": _A : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowercase ( UpperCamelCase__ ): _a = "owlvit" _a = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=True , **_a , ) -> Tuple: super().__init__(**_UpperCAmelCase ) if text_config is None: _A : Union[str, Any] = {} logger.info("""text_config is None. Initializing the OwlViTTextConfig with default values.""" ) if vision_config is None: _A : str = {} logger.info("""vision_config is None. initializing the OwlViTVisionConfig with default values.""" ) _A : Optional[int] = OwlViTTextConfig(**_UpperCAmelCase ) _A : Tuple = OwlViTVisionConfig(**_UpperCAmelCase ) _A : Dict = projection_dim _A : Optional[Any] = logit_scale_init_value _A : List[Any] = return_dict _A : List[Any] = 1.0 @classmethod def a__ ( cls , _a , **_a ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) _A , _A : List[Any] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def a__ ( cls , _a , _a , **_a ) -> Union[str, Any]: _A : Any = {} _A : Optional[Any] = text_config _A : Any = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self ) -> List[str]: _A : Optional[int] = copy.deepcopy(self.__dict__ ) _A : Optional[Any] = self.text_config.to_dict() _A : List[Any] = self.vision_config.to_dict() _A : Union[str, Any] = self.__class__.model_type return output class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ] ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""logits_per_image""", {0: """batch"""}), ("""logits_per_text""", {0: """batch"""}), ("""text_embeds""", {0: """batch"""}), ("""image_embeds""", {0: """batch"""}), ] ) @property def a__ ( self ) -> float: return 1e-4 def a__ ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]: _A : Dict = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase ) _A : str = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase ) return {**text_input_dict, **image_input_dict} @property def a__ ( self ) -> int: return 14
714
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = KandinskyVaaImgaImgPipeline _a = ["image_embeds", "negative_image_embeds", "image"] _a = [ "image_embeds", "negative_image_embeds", "image", ] _a = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _a = False @property def a__ ( self ) -> int: return 32 @property def a__ ( self ) -> Union[str, Any]: return 32 @property def a__ ( self ) -> List[str]: return self.time_input_dim @property def a__ ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def a__ ( self ) -> str: return 100 @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _A : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def a__ ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a__ ( self ) -> int: _A : Any = self.dummy_unet _A : List[Any] = self.dummy_movq _A : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _A : int = DDIMScheduler(**_a ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a__ ( self , _a , _a=0 ) -> str: _A : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _A : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _A : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((256, 256) ) if str(_a ).startswith("""mps""" ): _A : Tuple = torch.manual_seed(_a ) else: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def a__ ( self ) -> Union[str, Any]: _A : Dict = """cpu""" _A : int = self.get_dummy_components() _A : Optional[int] = self.pipeline_class(**_a ) _A : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _A : Dict = output.images _A : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _A : Dict = image[0, -3:, -3:, -1] _A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Optional[int] = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _A : Dict = """A red cartoon frog, 4k""" _A : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _A : int = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _A : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _A : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) _A , _A : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _A : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
54
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
def lowerCAmelCase_ ( snake_case_ = 1000000 ): _A : Any = limit + 1 _A : Tuple = [0] * limit for first_term in range(1,snake_case_ ): for n in range(snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _A : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
54
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _snake_case : Optional[int] = logging.get_logger(__name__) @dataclass class lowercase ( a__ ): _a = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **_a ) -> List[Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _A : str = deprecated_arg[3:] _A : List[Any] = not kwargs.pop(_A ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) _A : Tuple = kwargs.pop("""tpu_name""" , self.tpu_name ) _A : Any = kwargs.pop("""device_idx""" , self.device_idx ) _A : List[Any] = kwargs.pop("""eager_mode""" , self.eager_mode ) _A : List[str] = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_A ) _a = field( default=a__,metadata={"help": "Name of TPU"},) _a = field( default=0,metadata={"help": "CPU / GPU device index. Defaults to 0."},) _a = field(default=a__,metadata={"help": "Benchmark models in eager model."} ) _a = field( default=a__,metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." },) @cached_property def a__ ( self ) -> Dict: requires_backends(self , ["""tf"""] ) _A : Optional[Any] = None if self.tpu: try: if self.tpu_name: _A : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: _A : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: _A : Union[str, Any] = None return tpu @cached_property def a__ ( self ) -> Dict: requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) _A : Any = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) _A : str = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU _A : List[str] = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def a__ ( self ) -> List[Any]: requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def a__ ( self ) -> Union[str, Any]: requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def a__ ( self ) -> Optional[Any]: requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def a__ ( self ) -> str: requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def a__ ( self ) -> Optional[Any]: return self.n_gpu > 0
716
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowercase ( tf.keras.layers.Layer ): def __init__( self , _a , _a , _a = None , _a = None ) -> Any: super().__init__() _A : Dict = pad_token_id _A : List[Any] = max_length _A : Optional[int] = vocab _A : Optional[int] = merges _A : Optional[int] = BytePairTokenizer(_a , _a , sequence_length=_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> str: _A : Any = [""" """.join(_a ) for m in tokenizer.bpe_ranks.keys()] _A : str = tokenizer.get_vocab() return cls(_a , _a , *_a , **_a ) @classmethod def a__ ( cls , _a , *_a , **_a ) -> List[Any]: _A : Union[str, Any] = GPTaTokenizer.from_pretrained(_a , *_a , **_a ) return cls.from_tokenizer(_a , *_a , **_a ) @classmethod def a__ ( cls , _a ) -> Union[str, Any]: return cls(**_a ) def a__ ( self ) -> Union[str, Any]: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a__ ( self , _a , _a = None ) -> int: _A : Optional[int] = self.tf_tokenizer(_a ) _A : Tuple = tf.ones_like(_a ) if self.pad_token_id is not None: # pad the tokens up to max length _A : Dict = max_length if max_length is not None else self.max_length if max_length is not None: _A , _A : Dict = pad_model_inputs( _a , max_seq_length=_a , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
54
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = {"vocab_file": "spiece.model"} _snake_case = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } _snake_case = { "google/reformer-crime-and-punishment": 524288, } class lowercase ( _A ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a , _a="</s>" , _a="<unk>" , _a=[] , _a = None , **_a , ) -> None: _A : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) _A : Union[str, Any] = vocab_file _A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def a__ ( self ) -> Optional[Any]: return self.sp_model.get_piece_size() def a__ ( self ) -> Dict[str, int]: _A : int = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _A : Union[str, Any] = self.__dict__.copy() _A : int = None return state def __setstate__( self , _a ) -> Optional[Any]: _A : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : Optional[int] = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , _a ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def a__ ( self , _a ) -> Dict: return self.sp_model.piece_to_id(__lowerCamelCase ) def a__ ( self , _a ) -> Dict: if index < self.sp_model.get_piece_size(): _A : Optional[Any] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def a__ ( self , _a ) -> str: _A : Dict = [] _A : int = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token _A : Tuple = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: _A : Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
717
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing _A : List[Any] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[Any]: return ("This is a test", "This is a test") def a__ ( self ) -> int: _A : Dict = """</s>""" _A : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def a__ ( self ) -> Dict: _A : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 1103 ) def a__ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def a__ ( self ) -> Tuple: _A : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : int = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _A : Optional[int] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> Any: _A : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _A : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _A : Union[str, Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _A : Any = """To ensure a smooth flow of bank resolutions.""" _A : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def a__ ( self ) -> List[str]: _A : Union[str, Any] = ["""This is going to be way too long.""" * 150, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Union[str, Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : Tuple = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def a__ ( self ) -> Optional[Any]: # fmt: off _A : List[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PegasusTokenizer _a = PegasusTokenizerFast _a = True _a = True def a__ ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _A : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def a__ ( self , **_a ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> List[str]: return ("This is a test", "This is a test") def a__ ( self ) -> List[Any]: _A : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) _A : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] _A : int = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def a__ ( self ) -> Optional[int]: _A : Tuple = ["""This is going to be way too long.""" * 1000, """short example"""] _A : Optional[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _A : Tuple = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) _A : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def a__ ( self ) -> Dict: _A : Optional[int] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _A : Any = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
54
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowercase : def __init__( self , _a , ) -> int: _A : Dict = parent _A : Tuple = 13 _A : Union[str, Any] = 7 _A : Optional[Any] = True _A : int = True _A : Optional[int] = True _A : int = 99 _A : Optional[Any] = 32 _A : Optional[Any] = 2 _A : Optional[int] = 4 _A : Dict = 37 _A : Union[str, Any] = '''gelu''' _A : Optional[Any] = 0.1 _A : Union[str, Any] = 0.1 _A : Optional[int] = 512 _A : Union[str, Any] = 16 _A : List[Any] = 2 _A : Dict = 0.02 _A : List[str] = 3 _A : Optional[int] = 4 _A : Dict = None def a__ ( self ) -> str: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = None if self.use_input_mask: _A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Tuple = None _A : Union[str, Any] = None _A : List[str] = None if self.use_labels: _A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : int = ids_tensor([self.batch_size] , self.num_choices ) _A : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> Optional[int]: ( _A ) : List[str] = self.prepare_config_and_inputs() _A : str = True _A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Dict: _A : List[Any] = TFEsmModel(config=lowerCamelCase_ ) _A : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A : int = model(lowerCamelCase_ ) _A : Optional[Any] = [input_ids, input_mask] _A : int = model(lowerCamelCase_ ) _A : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a , ) -> str: _A : Dict = True _A : Tuple = TFEsmModel(config=lowerCamelCase_ ) _A : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _A : Any = model(lowerCamelCase_ ) _A : List[str] = [input_ids, input_mask] _A : Any = model(lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ) # Also check the case where encoder outputs are not passed _A : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Any: _A : int = TFEsmForMaskedLM(config=lowerCamelCase_ ) _A : Optional[int] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a ) -> int: _A : List[Any] = self.num_labels _A : List[Any] = TFEsmForTokenClassification(config=lowerCamelCase_ ) _A : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _A : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ) -> Union[str, Any]: _A : Any = self.prepare_config_and_inputs() ( _A ) : List[Any] = config_and_inputs _A : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase,_UpperCAmelCase,unittest.TestCase ): _a = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _a = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) _a = False _a = False def a__ ( self ) -> Dict: _A : List[str] = TFEsmModelTester(self ) _A : Any = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def a__ ( self ) -> str: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[int]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ ( self ) -> List[str]: _A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def a__ ( self ) -> Optional[Any]: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def a__ ( self ) -> str: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : List[Any] = TFEsmModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def a__ ( self ) -> Dict: pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def a__ ( self ) -> Dict: pass def a__ ( self ) -> List[Any]: _A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(lowerCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _A : Dict = model.get_bias() assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for k, v in name.items(): assert isinstance(lowerCamelCase_ , tf.Variable ) else: _A : List[Any] = model.get_output_embeddings() assert x is None _A : str = model.get_bias() assert name is None @require_tf class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Optional[Any]: _A : int = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _A : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A : Tuple = model(lowerCamelCase_ )[0] _A : Any = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase_ ) # compare the actual values for a slice. _A : Optional[Any] = tf.constant( [ [ [8.921518, -10.58_9814, -6.4671307], [-6.3967156, -13.91_1377, -1.1211915], [-7.781247, -13.95_1557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def a__ ( self ) -> List[str]: _A : Tuple = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _A : List[str] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A : Union[str, Any] = model(lowerCamelCase_ )[0] # compare the actual values for a slice. _A : Any = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
718
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _snake_case = parser.parse_args() if args.model_type == "bert": _snake_case = BertForMaskedLM.from_pretrained(args.model_name) _snake_case = '''bert''' else: raise ValueError("args.model_type should be \"bert\".") _snake_case = model.state_dict() _snake_case = {} for w in ["word_embeddings", "position_embeddings"]: _snake_case = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _snake_case = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _snake_case = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _snake_case = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _snake_case = state_dict['''cls.predictions.decoder.weight'''] _snake_case = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: _snake_case = state_dict[f"""cls.predictions.transform.dense.{w}"""] _snake_case = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
719
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> Optional[int]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(_a ) def a__ ( self ) -> Any: _A : str = self._create_example_records() _A : List[Any] = Dataset.from_list(_a ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(_a ): self.assertDictEqual(_a , example_records[i] ) def a__ ( self ) -> List[str]: _A : Dict = self._create_example_records() _A : List[str] = Dataset.from_list(_a ) _A : str = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def a__ ( self ) -> str: # checks what happens with missing columns _A : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}] _A : List[str] = Dataset.from_list(_a ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def a__ ( self ) -> Dict: # checks if the type can be inferred from the second record _A : List[Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] _A : str = Dataset.from_list(_a ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def a__ ( self ) -> Dict: _A : List[str] = Dataset.from_list([] ) self.assertEqual(len(_a ) , 0 ) self.assertListEqual(dset.column_names , [] )
54
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _a ): _a = (PNDMScheduler,) _a = (("""num_inference_steps""", 5_0),) def a__ ( self , **_a ) -> Optional[int]: _A : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**snake_case_ ) return config def a__ ( self , _a=0 , **_a ) -> int: _A : int = dict(self.forward_default_kwargs ) _A : Dict = kwargs.pop("""num_inference_steps""" , snake_case_ ) _A : Optional[Any] = self.dummy_sample _A : str = 0.1 * sample _A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A : Optional[int] = self.get_scheduler_config(**snake_case_ ) _A : List[Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _A : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _A : List[Any] = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _A : str = dummy_past_residuals[:] _A : Dict = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _A : Optional[Any] = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _A : Tuple = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _A : Tuple = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ) -> Optional[Any]: pass def a__ ( self , _a=0 , **_a ) -> List[str]: _A : List[Any] = dict(self.forward_default_kwargs ) _A : List[str] = kwargs.pop("""num_inference_steps""" , snake_case_ ) _A : Optional[int] = self.dummy_sample _A : Optional[int] = 0.1 * sample _A : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A : Any = self.get_scheduler_config() _A : Optional[int] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) _A : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _A : Optional[int] = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) _A : Optional[Any] = dummy_past_residuals[:] _A : str = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _A : List[str] = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _A : Optional[Any] = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _A : int = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self , **_a ) -> Union[str, Any]: _A : str = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(**snake_case_ ) _A : int = scheduler_class(**snake_case_ ) _A : Optional[Any] = 10 _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.prk_timesteps ): _A : Dict = model(snake_case_ , snake_case_ ) _A : str = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _A : int = model(snake_case_ , snake_case_ ) _A : Dict = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = dict(self.forward_default_kwargs ) _A : Any = kwargs.pop("""num_inference_steps""" , snake_case_ ) for scheduler_class in self.scheduler_classes: _A : Tuple = self.get_scheduler_config() _A : Optional[int] = scheduler_class(**snake_case_ ) _A : int = self.dummy_sample _A : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , """set_timesteps""" ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , """set_timesteps""" ): _A : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A : int = dummy_past_residuals[:] _A : Union[str, Any] = scheduler.step_prk(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample _A : Union[str, Any] = scheduler.step_prk(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A : List[str] = scheduler.step_plms(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample _A : Optional[int] = scheduler.step_plms(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a__ ( self ) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=snake_case_ ) def a__ ( self ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case_ ) _A : Optional[Any] = self.scheduler_classes[0] _A : Tuple = self.get_scheduler_config(steps_offset=1 ) _A : List[Any] = scheduler_class(**snake_case_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def a__ ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def a__ ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def a__ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def a__ ( self ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=snake_case_ ) def a__ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=snake_case_ ) def a__ ( self ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _A : List[str] = 27 for scheduler_class in self.scheduler_classes: _A : Any = self.dummy_sample _A : List[str] = 0.1 * sample _A : Any = self.get_scheduler_config() _A : Tuple = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _A : str = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample def a__ ( self ) -> List[str]: with self.assertRaises(snake_case_ ): _A : List[Any] = self.scheduler_classes[0] _A : Dict = self.get_scheduler_config() _A : Optional[int] = scheduler_class(**snake_case_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def a__ ( self ) -> Dict: _A : Optional[int] = self.full_loop() _A : Any = torch.sum(torch.abs(snake_case_ ) ) _A : Union[str, Any] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : int = self.full_loop(prediction_type="""v_prediction""" ) _A : Tuple = torch.sum(torch.abs(snake_case_ ) ) _A : Any = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def a__ ( self ) -> List[str]: # We specify different beta, so that the first alpha is 0.99 _A : Any = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) _A : Tuple = torch.sum(torch.abs(snake_case_ ) ) _A : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 _A : List[Any] = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) _A : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _A : List[str] = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
720
from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = list(snake_case_ ) _A : List[Any] = list(snake_case_ ) _A : Tuple = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 _A : Optional[Any] = """_""" if count > 1: return False else: return "".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : Optional[Any] = [] while True: _A : int = ["""$"""] * len(snake_case_ ) _A : Any = [] for i in range(len(snake_case_ ) ): for j in range(i + 1,len(snake_case_ ) ): _A : Tuple = compare_string(binary[i],binary[j] ) if k is False: _A : str = """*""" _A : str = """*""" temp.append("""X""" ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi _A : Dict = list(set(snake_case_ ) ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = [] for minterm in minterms: _A : Tuple = """""" for _ in range(snake_case_ ): _A : Optional[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Dict = list(snake_case_ ) _A : Tuple = list(snake_case_ ) _A : Dict = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [] _A : str = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): _A : Union[str, Any] = 0 _A : Optional[Any] = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 _A : Dict = j if count == 1: _A : int = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): _A : int = 0 temp.append(prime_implicants[i] ) while True: _A : Optional[Any] = 0 _A : Tuple = -1 _A : List[Any] = 0 for i in range(len(snake_case_ ) ): _A : List[str] = chart[i].count(1 ) if count_n > max_n: _A : Optional[int] = count_n _A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): _A : Optional[int] = 0 def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[int] = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): _A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i],binary[j],snake_case_ ): _A : Union[str, Any] = 1 return chart def lowerCAmelCase_ ( ): _A : Dict = int(input("""Enter the no. of variables\n""" ) ) _A : Dict = [ float(snake_case_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] _A : int = decimal_to_binary(snake_case_,snake_case_ ) _A : Optional[Any] = check(snake_case_ ) print("""Prime Implicants are:""" ) print(snake_case_ ) _A : int = prime_implicant_chart(snake_case_,snake_case_ ) _A : int = selection(snake_case_,snake_case_ ) print("""Essential Prime Implicants are:""" ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
54
0