code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Any = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = ParquetDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowercase = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): __lowercase = parquet_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): __lowercase = [parquet_path] __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowercase = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_dataset(_lowerCamelCase , _lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=("train",) ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: __lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = ParquetDatasetReader({"""train""": parquet_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if split: __lowercase = {split: parquet_path} else: __lowercase = """train""" __lowercase = {"""train""": parquet_path, """test""": parquet_path} __lowercase = tmp_path / """cache""" __lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} __lowercase = ParquetDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_parquet_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = ParquetDatasetWriter(_lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __lowercase = pq.ParquetFile(tmp_path / """foo.parquet""" ) __lowercase = pf.read() assert dataset.data.table == output_table def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = str(shared_datadir / """test_image_rgb.jpg""" ) __lowercase = {"""image""": [image_path]} __lowercase = Features({"""image""": Image()} ) __lowercase = Dataset.from_dict(_lowerCamelCase , features=_lowerCamelCase ) __lowercase = ParquetDatasetWriter(_lowerCamelCase , tmp_path / """foo.parquet""" ) assert writer.write() > 0 __lowercase = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features __lowercase = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=_lowerCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert get_writer_batch_size(_lowerCamelCase ) == expected
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
from __future__ import annotations class __UpperCamelCase : def __init__( self : str , _lowerCAmelCase : Tuple = 0 ) -> int: """simple docstring""" __lowercase = key def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A__ ) ^ key ) for ch in content] def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(A__ ) ^ key ) for ch in content] def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] = 0 ) -> str: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __lowercase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __lowercase = """""" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Dict = 0 ) -> Optional[int]: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) __lowercase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned __lowercase = """""" for ch in content: ans += chr(ord(A__ ) ^ key ) return ans def _a ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict = 0 ) -> Optional[int]: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(A__ , A__ ) ) except OSError: return False return True def _a ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" assert isinstance(A__ , A__ ) and isinstance(A__ , A__ ) try: with open(A__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(A__ , A__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' try: __lowercase = float(lowerCAmelCase__ ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowercase = decimal - int(lowerCAmelCase__ ) if fractional_part == 0: return int(lowerCAmelCase__ ), 1 else: __lowercase = len(str(lowerCAmelCase__ ).split(""".""" )[1] ) __lowercase = int(decimal * (10**number_of_frac_digits) ) __lowercase = 10**number_of_frac_digits __lowercase , __lowercase = denominator, numerator while True: __lowercase = dividend % divisor if remainder == 0: break __lowercase , __lowercase = divisor, remainder __lowercase , __lowercase = numerator / divisor, denominator / divisor return int(lowerCAmelCase__ ), int(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(8_9.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: __UpperCamelCase : List[str] = None try: import msvcrt except ImportError: __UpperCamelCase : Optional[Any] = None try: import fcntl except ImportError: __UpperCamelCase : List[str] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __UpperCamelCase : Tuple = OSError # Data # ------------------------------------------------ __UpperCamelCase : Optional[int] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] __UpperCamelCase : List[str] = """3.0.12""" __UpperCamelCase : Tuple = None def snake_case ( ): '''simple docstring''' global _logger __lowercase = _logger or logging.getLogger(__name__ ) return _logger class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Dict , _lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = lock_file return None def __str__( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = F'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = lock return None def __enter__( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.lock def __exit__( self : Dict , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> str: """simple docstring""" self.lock.release() return None class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=-1 , _lowerCAmelCase : List[Any]=None ) -> Any: """simple docstring""" __lowercase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __lowercase = self.hash_filename_if_too_long(UpperCamelCase__ , UpperCamelCase__ ) # The path to the lock file. __lowercase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __lowercase = None # The default timeout value. __lowercase = timeout # We use this lock primarily for the lock counter. __lowercase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __lowercase = 0 return None @property def _a ( self : str ) -> Tuple: """simple docstring""" return self._lock_file @property def _a ( self : List[str] ) -> List[Any]: """simple docstring""" return self._timeout @timeout.setter def _a ( self : Tuple , _lowerCAmelCase : Any ) -> Any: """simple docstring""" __lowercase = float(UpperCamelCase__ ) return None def _a ( self : List[str] ) -> Any: """simple docstring""" raise NotImplementedError() def _a ( self : Tuple ) -> List[Any]: """simple docstring""" raise NotImplementedError() @property def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._lock_file_fd is not None def _a ( self : List[Any] , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[str]=0.05 ) -> List[str]: """simple docstring""" if timeout is None: __lowercase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __lowercase = id(self ) __lowercase = self._lock_file __lowercase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(F'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(UpperCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __lowercase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any]=False ) -> Union[str, Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __lowercase = id(self ) __lowercase = self._lock_file logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() __lowercase = 0 logger().debug(F'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self : List[Any] ) -> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" self.release() return None def __del__( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.release(force=UpperCamelCase__ ) return None def _a ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowercase = os.path.basename(UpperCamelCase__ ) if len(UpperCamelCase__ ) > max_length and max_length > 0: __lowercase = os.path.dirname(UpperCamelCase__ ) __lowercase = str(hash(UpperCamelCase__ ) ) __lowercase = filename[: max_length - len(UpperCamelCase__ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(UpperCamelCase__ , UpperCamelCase__ ) else: return path class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : str=-1 , _lowerCAmelCase : Dict=None ) -> Union[str, Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) __lowercase = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __lowercase = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCamelCase__ ) else: __lowercase = fd return None def _a ( self : str ) -> int: """simple docstring""" __lowercase = self._lock_file_fd __lowercase = None msvcrt.locking(UpperCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str]=-1 , _lowerCAmelCase : int=None ) -> Any: """simple docstring""" __lowercase = os.statvfs(os.path.dirname(UpperCamelCase__ ) ).f_namemax super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) def _a ( self : str ) -> str: """simple docstring""" __lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC __lowercase = os.open(self._lock_file , UpperCamelCase__ ) try: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCamelCase__ ) else: __lowercase = fd return None def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self._lock_file_fd __lowercase = None fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) os.close(UpperCamelCase__ ) return None class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __lowercase = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: __lowercase = fd return None def _a ( self : str ) -> List[str]: """simple docstring""" os.close(self._lock_file_fd ) __lowercase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __UpperCamelCase : str = None if msvcrt: __UpperCamelCase : int = WindowsFileLock elif fcntl: __UpperCamelCase : Tuple = UnixFileLock else: __UpperCamelCase : List[str] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCamelCase : List[Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( snake_case_ ): __snake_case :List[str] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : str , **_lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __lowercase = deprecated_arg[3:] __lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) __lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) __lowercase = kwargs.pop("""device_idx""" , self.device_idx ) __lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) __lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __snake_case :str = field( default=snake_case_ , metadata={'help': 'Name of TPU'} , ) __snake_case :int = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) __snake_case :bool = field(default=snake_case_ , metadata={'help': 'Benchmark models in eager model.'} ) __snake_case :bool = field( default=snake_case_ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def _a ( self : List[str] ) -> List[str]: """simple docstring""" requires_backends(self , ["""tf"""] ) __lowercase = None if self.tpu: try: if self.tpu_name: __lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __lowercase = None return tpu @cached_property def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) __lowercase = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU __lowercase = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def _a ( self : Any ) -> int: """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self : int ) -> int: """simple docstring""" return self.n_gpu > 0
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[int] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
def snake_case ( lowerCamelCase=28_123 ): '''simple docstring''' __lowercase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowercase = set() __lowercase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE_ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' if length <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(__lowercase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = filter(lambda lowerCamelCase : p.requires_grad , model.parameters() ) __lowercase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Dict = logging.getLogger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if metric == "rouge2": __lowercase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __lowercase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __lowercase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' """ function.""" ) __lowercase = ModelCheckpoint( dirpath=__snake_case , filename=__snake_case , monitor=F'val_{metric}' , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return EarlyStopping( monitor=F'val_{metric}' , mode="""min""" if """loss""" in metric else """max""" , patience=__snake_case , verbose=__snake_case , ) class __UpperCamelCase ( pl.Callback ): def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Any: """simple docstring""" __lowercase = {F'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def _a ( self : Any , _lowerCAmelCase : pl.Trainer , _lowerCAmelCase : pl.LightningModule , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=True ) -> Dict: """simple docstring""" logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __lowercase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __lowercase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowercase = od / """test_results.txt""" __lowercase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowercase = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __lowercase = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , """a+""" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __lowercase = metrics[key] if isinstance(_A , torch.Tensor ): __lowercase = val.item() __lowercase = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __lowercase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_A ) @rank_zero_only def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" try: __lowercase = pl_module.model.model.num_parameters() except AttributeError: __lowercase = pl_module.model.num_parameters() __lowercase = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def _a ( self : str , _lowerCAmelCase : pl.Trainer , _lowerCAmelCase : pl.LightningModule ) -> List[Any]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , """test""" ) @rank_zero_only def _a ( self : Optional[Any] , _lowerCAmelCase : pl.Trainer , _lowerCAmelCase : str ) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __UpperCamelCase : def __init__( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[int]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : int ) -> Any: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ ) __lowercase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , ) -> str: """simple docstring""" __lowercase = True __lowercase = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) __lowercase = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , ) -> Union[str, Any]: """simple docstring""" __lowercase = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" __lowercase = True __lowercase = True __lowercase = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["""hidden_states"""][0] __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["""hidden_states"""][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( __a , __a , __a , unittest.TestCase ): __snake_case :Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __snake_case :Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () __snake_case :Union[str, Any] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case :Union[str, Any] = False __snake_case :Optional[int] = False def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = OpenLlamaModelTester(self ) __lowercase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _a ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*snake_case__ ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """single_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """multi_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] , config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() __lowercase = original_model(snake_case__ ).last_hidden_state __lowercase = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {"""type""": scaling_type, """factor""": 10.0} __lowercase = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() __lowercase = scaled_model(snake_case__ ).last_hidden_state __lowercase = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) )
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import unittest from transformers import DonutProcessor __UpperCamelCase : str = """naver-clova-ix/donut-base""" class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = DonutProcessor.from_pretrained(a_ ) def _a ( self : List[Any] ) -> int: """simple docstring""" __lowercase = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } __lowercase = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) __lowercase = self.processor.tokenajson(a_ ) self.assertDictEqual(a_ , a_ )
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [0 for i in range(len(_snake_case ) )] # initialize interval's left pointer and right pointer __lowercase , __lowercase = 0, 0 for i in range(1 , len(_snake_case ) ): # case when current index is inside the interval if i <= right_pointer: __lowercase = min(right_pointer - i + 1 , z_result[i - left_pointer] ) __lowercase = min_edge while go_next(_snake_case , _snake_case , _snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: __lowercase , __lowercase = i, i + z_result[i] - 1 return z_result def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return i + z_result[i] < len(_snake_case ) and s[z_result[i]] == s[i + z_result[i]] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string __lowercase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
from __future__ import annotations from math import pi def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' from __future__ import annotations from math import gcd def snake_case ( lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 3 , ): '''simple docstring''' if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: return (pow(A_ , 2 ) + step) % modulus for _ in range(A_ ): # These track the position within the cycle detection logic. __lowercase = seed __lowercase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __lowercase = rand_fn(A_ , A_ , A_ ) __lowercase = rand_fn(A_ , A_ , A_ ) __lowercase = rand_fn(A_ , A_ , A_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __lowercase = gcd(hare - tortoise , A_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __lowercase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : List[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: __UpperCamelCase : Tuple = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCamelCase : Optional[Any] = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Any = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : int = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase : Any = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class __UpperCamelCase ( snake_case__ ): __snake_case :Dict = VOCAB_FILES_NAMES __snake_case :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case :List[str] = ['''input_ids''', '''attention_mask'''] __snake_case :Optional[int] = NllbTokenizer __snake_case :List[int] = [] __snake_case :List[int] = [] def __init__( self : Any , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Dict="<s>" , _lowerCAmelCase : List[str]="</s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : Tuple="<mask>" , _lowerCAmelCase : Any=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : List[Any]=False , **_lowerCAmelCase : Optional[int] , ) -> Dict: """simple docstring""" __lowercase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __lowercase = legacy_behaviour super().__init__( vocab_file=_A , tokenizer_file=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , legacy_behaviour=_A , **_A , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True __lowercase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowercase = { lang_code: self.convert_tokens_to_ids(_A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowercase = src_lang if src_lang is not None else 'eng_Latn' __lowercase = self.convert_tokens_to_ids(self._src_lang ) __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._src_lang @src_lang.setter def _a ( self : List[str] , _lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : str = None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any = None ) -> Any: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , **_lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowercase = src_lang __lowercase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __lowercase = self.convert_tokens_to_ids(_A ) __lowercase = tgt_lang_id return inputs def _a ( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int = "eng_Latn" , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : str = "fra_Latn" , **_lowerCAmelCase : Dict , ) -> List[str]: """simple docstring""" __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self : Any , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] else: __lowercase = [self.cur_lang_code] __lowercase = [self.eos_token_id] __lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self : Any , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = self.convert_tokens_to_ids(_A ) if self.legacy_behaviour: __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] else: __lowercase = [self.cur_lang_code] __lowercase = [self.eos_token_id] __lowercase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict = None ) -> Union[str, Any]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return __lowercase = os.path.join( _A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __UpperCamelCase : int = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __UpperCamelCase : Tuple = """main""" # Default branch name __UpperCamelCase : Tuple = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) __UpperCamelCase : Tuple = """aaaaaaa""" # This commit does not exist, so we should 404. __UpperCamelCase : List[Any] = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes __UpperCamelCase : str = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def snake_case ( ): '''simple docstring''' print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def snake_case ( ): '''simple docstring''' print("""Bonjour!""" ) yield print("""Au revoir!""" ) class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class __UpperCamelCase ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _a ( self : Any , _lowerCAmelCase : int ) -> Dict: """simple docstring""" with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _a ( self : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _a ( self : str , _lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _a ( self : Any ) -> Optional[int]: """simple docstring""" self.assertEqual(find_labels(__a ) , ["""labels"""] ) self.assertEqual(find_labels(__a ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(__a ) , ["""start_positions""", """end_positions"""] ) class __UpperCamelCase ( _lowerCAmelCase ): pass self.assertEqual(find_labels(__a ) , ["""labels"""] ) @require_tf def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertEqual(find_labels(__a ) , ["""labels"""] ) self.assertEqual(find_labels(__a ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(__a ) , ["""start_positions""", """end_positions"""] ) class __UpperCamelCase ( _lowerCAmelCase ): pass self.assertEqual(find_labels(__a ) , ["""labels"""] ) @require_flax def _a ( self : str ) -> str: """simple docstring""" self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) self.assertEqual(find_labels(__a ) , [] ) class __UpperCamelCase ( _lowerCAmelCase ): pass self.assertEqual(find_labels(__a ) , [] )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
from itertools import permutations def snake_case ( lowerCamelCase ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase = [7, 11, 13, 17] for i, test in enumerate(lowerCamelCase_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case ( lowerCamelCase = 10 ): '''simple docstring''' return sum( int("""""".join(map(lowerCamelCase_ , lowerCamelCase_ ) ) ) for num in permutations(range(lowerCamelCase_ ) ) if is_substring_divisible(lowerCamelCase_ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } __UpperCamelCase : Dict = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} with open(A__ , """r""" ) as file: for line_number, line in enumerate(A__ ): __lowercase = line.strip() if line: __lowercase = line.split() __lowercase = line_number __lowercase = words[0] __lowercase = value return result def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for attribute in key.split(""".""" ): __lowercase = getattr(A__ , A__ ) __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = """param""" if weight_type is not None and weight_type != "param": __lowercase = getattr(A__ , A__ ).shape elif weight_type is not None and weight_type == "param": __lowercase = hf_pointer for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(A__ , A__ ) __lowercase = shape_pointer.shape # let's reduce dimension __lowercase = value[0] else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(A__ , A__ ) __lowercase = value else: __lowercase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(A__ ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = """param""" if weight_type is not None and weight_type != "param": __lowercase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowercase = """.""".join([key, hf_param_name] ) else: __lowercase = key __lowercase = value if """lm_head""" in full_key else value[0] __UpperCamelCase : Dict = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' __lowercase = False for key, mapped_key in MAPPING.items(): __lowercase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(A__ )[0].split(""".""" )[-2] __lowercase = mapped_key.replace("""*""" , A__ ) if "weight_g" in name: __lowercase = """weight_g""" elif "weight_v" in name: __lowercase = """weight_v""" elif "bias" in name: __lowercase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = """weight""" else: __lowercase = None if hf_dict is not None: rename_dict(A__ , A__ , A__ , A__ , A__ ) else: set_recursively(A__ , A__ , A__ , A__ , A__ ) return is_used return is_used def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase = True else: __lowercase = load_wavaveca_layer(A__ , A__ , A__ ) if not is_used: unused_weights.append(A__ ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = full_name.split("""conv_layers.""" )[-1] __lowercase = name.split(""".""" ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A__ ) @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=False ): '''simple docstring''' if config_path is not None: __lowercase = WavaVecaConfig.from_pretrained(A__ ) else: __lowercase = WavaVecaConfig() if is_seq_class: __lowercase = read_txt_into_dict(A__ ) __lowercase = idalabel __lowercase = WavaVecaForSequenceClassification(A__ ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) feature_extractor.save_pretrained(A__ ) elif is_finetuned: if dict_path: __lowercase = Dictionary.load(A__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.eos_index __lowercase = len(target_dict.symbols ) __lowercase = os.path.join(A__ , """vocab.json""" ) if not os.path.isdir(A__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(A__ ) ) return os.makedirs(A__ , exist_ok=A__ ) __lowercase = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase = 0 __lowercase = 1 with open(A__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(A__ , A__ ) __lowercase = WavaVecaCTCTokenizer( A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=A__ , ) __lowercase = True if config.feat_extract_norm == """layer""" else False __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) __lowercase = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) processor.save_pretrained(A__ ) __lowercase = WavaVecaForCTC(A__ ) else: __lowercase = WavaVecaForPreTraining(A__ ) if is_finetuned or is_seq_class: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase = argparse.Namespace(task="""audio_pretraining""" ) __lowercase = fairseq.tasks.setup_task(A__ ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A__ ) __lowercase = model[0].eval() recursively_load_weights(A__ , A__ , not is_finetuned ) hf_wavavec.save_pretrained(A__ ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : Union[str, Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class __UpperCamelCase ( _UpperCamelCase ): __snake_case :Optional[Any] = 'falcon' __snake_case :Tuple = ['past_key_values'] def __init__( self : List[Any] , _lowerCAmelCase : int=6_5024 , _lowerCAmelCase : int=4544 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : str=71 , _lowerCAmelCase : Optional[Any]=1e-5 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : str=False , _lowerCAmelCase : Union[str, Any]=11 , _lowerCAmelCase : Optional[Any]=11 , **_lowerCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size # Backward compatibility with n_embed kwarg __lowercase = kwargs.pop("""n_embed""" , _lowerCAmelCase ) __lowercase = hidden_size if n_embed is None else n_embed __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = num_attention_heads if num_kv_heads is None else num_kv_heads __lowercase = alibi __lowercase = new_decoder_architecture __lowercase = multi_query # Ignored when new_decoder_architecture is True __lowercase = parallel_attn __lowercase = bias super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def _a ( self : Any ) -> List[str]: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return not self.alibi
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __UpperCamelCase : __snake_case :CommonSchedulerState # setable values __snake_case :jnp.ndarray __snake_case :jnp.ndarray __snake_case :Optional[int] = None @classmethod def _a ( cls : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] ) -> Any: """simple docstring""" return cls(common=lowerCAmelCase_ , init_noise_sigma=lowerCAmelCase_ , timesteps=lowerCAmelCase_ ) @dataclass class __UpperCamelCase ( __lowerCAmelCase ): __snake_case :DDPMSchedulerState class __UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): __snake_case :List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] __snake_case :jnp.dtype @property def _a ( self : List[Any] ) -> Any: """simple docstring""" return True @register_to_config def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] = 1000 , _lowerCAmelCase : List[Any] = 0.0_001 , _lowerCAmelCase : List[str] = 0.02 , _lowerCAmelCase : List[str] = "linear" , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : List[str] = "fixed_small" , _lowerCAmelCase : Optional[Any] = True , _lowerCAmelCase : Any = "epsilon" , _lowerCAmelCase : int = jnp.floataa , ) -> Tuple: """simple docstring""" __lowercase = dtype def _a ( self : Dict , _lowerCAmelCase : List[Any] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: __lowercase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase = jnp.array(1.0 , dtype=self.dtype ) __lowercase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase_ , init_noise_sigma=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , ) def _a ( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[str] = None ) -> jnp.ndarray: """simple docstring""" return sample def _a ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str = () ) -> DDPMSchedulerState: """simple docstring""" __lowercase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase = (jnp.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=None , _lowerCAmelCase : str=None ) -> Any: """simple docstring""" __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase = jnp.clip(lowerCAmelCase_ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase = jnp.log(jnp.clip(lowerCAmelCase_ , a_min=1e-20 ) ) elif variance_type == "fixed_large": __lowercase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase = variance __lowercase = state.common.betas[t] __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def _a ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Dict = None , _lowerCAmelCase : List[Any] = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __lowercase = timestep if key is None: __lowercase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = jnp.split(lowerCAmelCase_ , sample.shape[1] , axis=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output elif self.config.prediction_type == "v_prediction": __lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = jnp.clip(lowerCAmelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase = jax.random.split(lowerCAmelCase_ , num=1 ) __lowercase = jax.random.normal(lowerCAmelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise __lowercase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , state=lowerCAmelCase_ ) def _a ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __len__( self : Optional[Any] ) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {'vocab_file': 'vocab.txt'} __UpperCamelCase : int = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } __UpperCamelCase : List[str] = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" ) as f: __lowercase = f.read().splitlines() return [l.strip() for l in lines] class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = VOCAB_FILES_NAMES __snake_case :str = PRETRAINED_VOCAB_FILES_MAP __snake_case :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Dict="<cls>" , _lowerCAmelCase : Dict="<pad>" , _lowerCAmelCase : Optional[Any]="<mask>" , _lowerCAmelCase : int="<eos>" , **_lowerCAmelCase : Optional[Any] , ) -> str: """simple docstring""" super().__init__(**UpperCAmelCase__ ) __lowercase = load_vocab_file(UpperCAmelCase__ ) __lowercase = dict(enumerate(self.all_tokens ) ) __lowercase = {tok: ind for ind, tok in enumerate(self.all_tokens )} __lowercase = unk_token __lowercase = cls_token __lowercase = pad_token __lowercase = mask_token __lowercase = eos_token __lowercase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _a ( self : int , _lowerCAmelCase : int ) -> Optional[int]: """simple docstring""" return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def _a ( self : Optional[Any] , _lowerCAmelCase : str ) -> Dict: """simple docstring""" return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def _a ( self : Optional[int] , _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" return text.split() def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=False ) -> Dict: """simple docstring""" return len(self._id_to_token ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _a ( self : List[Any] , _lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self._token_to_id.get(UpperCAmelCase__ , self._token_to_id.get(self.unk_token ) ) def _a ( self : str , _lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" return self._id_to_token.get(UpperCAmelCase__ , self.unk_token ) def _a ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[Any]: """simple docstring""" __lowercase = [self.cls_token_id] __lowercase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _a ( self : List[str] , _lowerCAmelCase : List , _lowerCAmelCase : Optional[List] = None , _lowerCAmelCase : bool = False ) -> Optional[Any]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __lowercase = [1] + ([0] * len(UpperCAmelCase__ )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase__ ) + [1] return mask def _a ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = os.path.join(UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(UpperCAmelCase__ , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def _a ( self : Tuple ) -> str: """simple docstring""" return self.get_vocab_size(with_added_tokens=UpperCAmelCase__ ) def _a ( self : List[Any] , _lowerCAmelCase : Union[List[str], List[AddedToken]] , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" return super()._add_tokens(UpperCAmelCase__ , special_tokens=UpperCAmelCase__ )
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } __UpperCamelCase : Optional[int] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} with open(lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(lowerCamelCase ): __lowercase = line.strip() if line: __lowercase = line.split() __lowercase = line_number __lowercase = words[0] __lowercase = value return result def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for attribute in key.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = "param" if weight_type is not None and weight_type != "param": __lowercase = getattr(lowerCamelCase , lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": __lowercase = hf_pointer for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = shape_pointer.shape # let's reduce dimension __lowercase = value[0] else: __lowercase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) __lowercase = value else: __lowercase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCamelCase ): __lowercase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __lowercase = "param" if weight_type is not None and weight_type != "param": __lowercase = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __lowercase = ".".join([key, hf_param_name] ) else: __lowercase = key __lowercase = value if "lm_head" in full_key else value[0] __UpperCamelCase : int = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' __lowercase = False for key, mapped_key in MAPPING.items(): __lowercase = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase )[0].split(""".""" )[-2] __lowercase = mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: __lowercase = "weight_g" elif "weight_v" in name: __lowercase = "weight_v" elif "bias" in name: __lowercase = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase = "weight" else: __lowercase = None if hf_dict is not None: rename_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return is_used return is_used def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowercase = True else: __lowercase = load_wavaveca_layer(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = full_name.split("""conv_layers.""" )[-1] __lowercase = name.split(""".""" ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase ) @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=False ): '''simple docstring''' if config_path is not None: __lowercase = WavaVecaConfig.from_pretrained(lowerCamelCase ) else: __lowercase = WavaVecaConfig() if is_seq_class: __lowercase = read_txt_into_dict(lowerCamelCase ) __lowercase = idalabel __lowercase = WavaVecaForSequenceClassification(lowerCamelCase ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) feature_extractor.save_pretrained(lowerCamelCase ) elif is_finetuned: if dict_path: __lowercase = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.eos_index __lowercase = len(target_dict.symbols ) __lowercase = os.path.join(lowerCamelCase , """vocab.json""" ) if not os.path.isdir(lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __lowercase = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase = 0 __lowercase = 1 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCamelCase , lowerCamelCase ) __lowercase = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , ) __lowercase = True if config.feat_extract_norm == "layer" else False __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) __lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) __lowercase = WavaVecaForCTC(lowerCamelCase ) else: __lowercase = WavaVecaForPreTraining(lowerCamelCase ) if is_finetuned or is_seq_class: __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase = argparse.Namespace(task="""audio_pretraining""" ) __lowercase = fairseq.tasks.setup_task(lowerCamelCase ) __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCamelCase ) __lowercase = model[0].eval() recursively_load_weights(lowerCamelCase , lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(__a , tokenizer_name + """Fast""" )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(__a , force_download=__a ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split("""/""" ) __lowercase = os.path.join(__a , __a ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(__a )[-1][0] if next_char == "/": __lowercase = os.path.join(__a , __a ) __lowercase = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) __lowercase = tokenizer.save_pretrained( __a , legacy_format=__a , filename_prefix=__a ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__a ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) __UpperCamelCase : Tuple = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
from __future__ import annotations class __UpperCamelCase : def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = text, pattern __lowercase = len(snake_case_ ), len(snake_case_ ) def _a ( self : List[str] , _lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _a ( self : Any , _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = [] for i in range(self.textLen - self.patLen + 1 ): __lowercase = self.mismatch_in_text(snake_case_ ) if mismatch_index == -1: positions.append(snake_case_ ) else: __lowercase = self.match_in_pattern(self.text[mismatch_index] ) __lowercase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCamelCase : List[Any] = """ABAABA""" __UpperCamelCase : str = """AB""" __UpperCamelCase : List[Any] = BoyerMooreSearch(text, pattern) __UpperCamelCase : Any = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=None ) -> Tuple: """simple docstring""" __lowercase = list(poly_a or [0] )[:] __lowercase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __lowercase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __lowercase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __lowercase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __lowercase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __lowercase = self.__multiply() def _a ( self : Union[str, Any] , _lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" __lowercase = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase__ ) <= 1: return dft[0] # __lowercase = self.c_max_length // 2 while next_ncol > 0: __lowercase = [[] for i in range(UpperCAmelCase__ )] __lowercase = self.root**next_ncol # First half of next step __lowercase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __lowercase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __lowercase = new_dft __lowercase = next_ncol // 2 return dft[0] def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.__dft("""A""" ) __lowercase = self.__dft("""B""" ) __lowercase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __lowercase = 2 while next_ncol <= self.c_max_length: __lowercase = [[] for i in range(UpperCAmelCase__ )] __lowercase = self.root ** (next_ncol // 2) __lowercase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __lowercase = new_inverse_c next_ncol *= 2 # Unpack __lowercase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Any ) -> List[str]: """simple docstring""" __lowercase = '''A = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __lowercase = '''B = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __lowercase = '''A*B = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate __lowercase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowercase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __UpperCamelCase : def __init__( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Any=13 , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : str=99 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : int=32 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : Dict=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Any=None , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = embedding_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[str] ) -> List[str]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = MegatronBertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) __lowercase = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) __lowercase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = MegatronBertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = MegatronBertForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = MegatronBertForNextSentencePrediction(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowercase = MegatronBertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , next_sentence_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = MegatronBertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = MegatronBertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __snake_case :int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __snake_case :Optional[Any] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case :Union[str, Any] = True # test_resize_embeddings = False __snake_case :Optional[int] = False def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=False ) -> Optional[Any]: """simple docstring""" __lowercase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = MegatronBertModelTester(self ) __lowercase = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _a ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCamelCase ) def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCamelCase ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCamelCase ) def _a ( self : List[str] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCamelCase ) def _a ( self : str ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCamelCase ) def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCamelCase ) def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCamelCase ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' return torch.tensor( lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ , ) __UpperCamelCase : str = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __lowercase = os.path.join(os.environ["""MYDIR"""] , __lowerCamelCase ) __lowercase = MegatronBertModel.from_pretrained(__lowerCamelCase ) model.to(__lowerCamelCase ) model.half() __lowercase = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): __lowercase = model(__lowerCamelCase )[0] __lowercase = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __lowerCamelCase ) __lowercase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): __lowercase = output[0, ii, jj] __lowercase = expected[3 * ii + jj] __lowercase = '''ii={} jj={} a={} b={}'''.format(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertTrue(math.isclose(__lowerCamelCase , __lowerCamelCase , rel_tol=__lowerCamelCase , abs_tol=__lowerCamelCase ) , msg=__lowerCamelCase )
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int=7 , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Tuple=18 , _lowerCAmelCase : Optional[int]=30 , _lowerCAmelCase : Union[str, Any]=400 , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : List[str]=True , ) -> Optional[int]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def _a ( self : List[str] ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __UpperCamelCase ( UpperCAmelCase_ , unittest.TestCase ): __snake_case :Optional[Any] = GLPNImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = GLPNImageProcessingTester(self ) @property def _a ( self : str ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size_divisor""" ) ) self.assertTrue(hasattr(_lowercase , """resample""" ) ) self.assertTrue(hasattr(_lowercase , """do_rescale""" ) ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
import math import flax.linen as nn import jax.numpy as jnp def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = 1 , lowerCamelCase = 1.0e4 , lowerCamelCase = False , lowerCamelCase = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'Embedding dimension {embedding_dim} should be even' __lowercase = float(embedding_dim // 2 ) __lowercase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __lowercase = min_timescale * jnp.exp(jnp.arange(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) * -log_timescale_increment ) __lowercase = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) * jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) # scale embeddings __lowercase = scale * emb if flip_sin_to_cos: __lowercase = jnp.concatenate([jnp.cos(__SCREAMING_SNAKE_CASE ), jnp.sin(__SCREAMING_SNAKE_CASE )] , axis=1 ) else: __lowercase = jnp.concatenate([jnp.sin(__SCREAMING_SNAKE_CASE ), jnp.cos(__SCREAMING_SNAKE_CASE )] , axis=1 ) __lowercase = jnp.reshape(__SCREAMING_SNAKE_CASE , [jnp.shape(__SCREAMING_SNAKE_CASE )[0], embedding_dim] ) return signal class __UpperCamelCase ( nn.Module ): __snake_case :List[str] = 3_2 __snake_case :str = jnp.floataa @nn.compact def __call__( self : List[Any] , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(lowercase_ ) __lowercase = nn.silu(lowercase_ ) __lowercase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(lowercase_ ) return temb class __UpperCamelCase ( nn.Module ): __snake_case :str = 3_2 __snake_case :Optional[Any] = False __snake_case :List[str] = 1 @nn.compact def __call__( self : Any , _lowerCAmelCase : Dict ) -> Dict: """simple docstring""" return get_sinusoidal_embeddings( lowercase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowercase = 192 __lowercase = 768 __lowercase = 12 __lowercase = 3 __lowercase = [800, 1_333] __lowercase = False elif yolos_name == "yolos_s_dWr": __lowercase = 330 __lowercase = 14 __lowercase = 6 __lowercase = 1_320 elif "yolos_s" in yolos_name: __lowercase = 384 __lowercase = 1_536 __lowercase = 12 __lowercase = 6 elif "yolos_b" in yolos_name: __lowercase = [800, 1_344] __lowercase = 91 __lowercase = """huggingface/label-files""" __lowercase = """coco-detection-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[-config.hidden_size :, :] __lowercase = in_proj_bias[-config.hidden_size :] def snake_case ( lowerCamelCase ): '''simple docstring''' if "backbone" in name: __lowercase = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: __lowercase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: __lowercase = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: __lowercase = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: __lowercase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowercase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowercase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowercase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowercase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowercase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: __lowercase = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: __lowercase = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: __lowercase = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: __lowercase = key.split(""".""" ) __lowercase = int(key_split[2] ) __lowercase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[ dim : dim * 2, : ] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[dim : dim * 2] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_yolos_config(lowerCamelCase ) # load original state_dict __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] # load 🤗 model __lowercase = YolosForObjectDetection(lowerCamelCase ) model.eval() __lowercase = convert_state_dict(lowerCamelCase , lowerCamelCase ) model.load_state_dict(lowerCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor __lowercase = 800 if yolos_name != """yolos_ti""" else 512 __lowercase = YolosImageProcessor(format="""coco_detection""" , size=lowerCamelCase ) __lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) __lowercase , __lowercase = outputs.logits, outputs.pred_boxes __lowercase , __lowercase = None, None if yolos_name == "yolos_ti": __lowercase = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) __lowercase = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": __lowercase = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) __lowercase = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": __lowercase = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) __lowercase = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": __lowercase = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) __lowercase = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": __lowercase = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) __lowercase = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase , atol=1e-4 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: __lowercase = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) __lowercase = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase , organization="""hustvl""" ) model.push_to_hub(lowerCamelCase , organization="""hustvl""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : Any = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
from statistics import mean import numpy as np def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = 0 # Number of processes finished __lowercase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowercase = [0] * no_of_process # List to include calculation results __lowercase = [0] * no_of_process # Sort by arrival time. __lowercase = [burst_time[i] for i in np.argsort(_lowerCamelCase )] __lowercase = [process_name[i] for i in np.argsort(_lowerCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: __lowercase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowercase = arrival_time[i] __lowercase = 0 # Index showing the location of the process being performed __lowercase = 0 # Saves the current response ratio. __lowercase = 0 for i in range(0 , _lowerCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowercase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowercase = temp __lowercase = i # Calculate the turn around time __lowercase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowercase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [0] * no_of_process for i in range(0 , _lowerCamelCase ): __lowercase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __UpperCamelCase : Any = 5 __UpperCamelCase : List[str] = ['A', 'B', 'C', 'D', 'E'] __UpperCamelCase : str = [1, 2, 3, 4, 5] __UpperCamelCase : Optional[int] = [1, 2, 3, 4, 5] __UpperCamelCase : Dict = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __UpperCamelCase : str = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCamelCase : List[str] = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCamelCase : List[str] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def snake_case ( lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase , __lowercase = create_model( """HTSAT-tiny""" , """roberta""" , _SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} __lowercase = r""".*sequential.(\d+).*""" __lowercase = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # replace sequential layers with list __lowercase = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) __lowercase = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(_SCREAMING_SNAKE_CASE )//3}.linear.' ) elif re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __lowercase = 1 if projecton_layer == 0 else 2 __lowercase = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __lowercase = value __lowercase = mixed_qkv.size(0 ) // 3 __lowercase = mixed_qkv[:qkv_dim] __lowercase = mixed_qkv[qkv_dim : qkv_dim * 2] __lowercase = mixed_qkv[qkv_dim * 2 :] __lowercase = query_layer __lowercase = key_layer __lowercase = value_layer else: __lowercase = value return model_state_dict def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase , __lowercase = init_clap(_SCREAMING_SNAKE_CASE , enable_fusion=_SCREAMING_SNAKE_CASE ) clap_model.eval() __lowercase = clap_model.state_dict() __lowercase = rename_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = ClapConfig() __lowercase = enable_fusion __lowercase = ClapModel(_SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __UpperCamelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCamelCase ( A_ ): __snake_case :Tuple = '''umt5''' __snake_case :List[Any] = ['''past_key_values'''] def __init__( self : Any , _lowerCAmelCase : Optional[Any]=25_0112 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : int=64 , _lowerCAmelCase : str=1024 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : Dict=32 , _lowerCAmelCase : Union[str, Any]=128 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Optional[Any]=1e-6 , _lowerCAmelCase : Tuple=1.0 , _lowerCAmelCase : Optional[int]="gated-gelu" , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int="T5Tokenizer" , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Tuple=0 , **_lowerCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split("""-""" ) __lowercase = act_info[-1] __lowercase = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": __lowercase = """gelu_new""" @property def _a ( self : Tuple ) -> Tuple: """simple docstring""" return self.d_model @property def _a ( self : int ) -> List[Any]: """simple docstring""" return self.num_heads @property def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.num_layers class __UpperCamelCase ( A_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __lowercase = """past_encoder_sequence + sequence""" __lowercase = {0: """batch"""} __lowercase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __lowercase = {0: """batch""", 1: """decoder_sequence"""} __lowercase = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return 13 @property def _a ( self : Tuple ) -> str: """simple docstring""" return 5e-4
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def snake_case ( lowerCamelCase ): '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def snake_case ( lowerCamelCase ): '''simple docstring''' for char in word: __lowercase = ord(lowerCAmelCase__ ) if not _is_chinese_char(lowerCAmelCase__ ): return 0 return 1 def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = set() for token in tokens: __lowercase = len(lowerCAmelCase__ ) > 1 and is_chinese(lowerCAmelCase__ ) if chinese_word: word_set.add(lowerCAmelCase__ ) __lowercase = list(lowerCAmelCase__ ) return word_list def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens __lowercase = max([len(lowerCAmelCase__ ) for w in chinese_word_set] ) __lowercase = bert_tokens __lowercase = 0, len(lowerCAmelCase__ ) while start < end: __lowercase = True if is_chinese(bert_word[start] ): __lowercase = min(end - start , lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , 1 , -1 ): __lowercase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __lowercase = '##' + bert_word[j] __lowercase = start + i __lowercase = False break if single_word: start += 1 return bert_word def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): __lowercase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws __lowercase = [get_chinese_word(lowerCAmelCase__ ) for r in res] ltp_res.extend(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __lowercase = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): __lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) __lowercase = [] for input_ids, chinese_word in zip(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = [] for id in input_ids: __lowercase = bert_tokenizer._convert_id_to_token(lowerCAmelCase__ ) input_tokens.append(lowerCAmelCase__ ) __lowercase = add_sub_symbol(lowerCAmelCase__ , lowerCAmelCase__ ) __lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase__ ): if token[:2] == "##": __lowercase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase__ ) == 1 and _is_chinese_char(ord(lowerCAmelCase__ ) ): ref_id.append(lowerCAmelCase__ ) ref_ids.append(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) return ref_ids def snake_case ( lowerCamelCase ): '''simple docstring''' with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: __lowercase = f.readlines() __lowercase = [line.strip() for line in data if len(lowerCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowercase = LTP(args.ltp ) # faster in GPU device __lowercase = BertTokenizer.from_pretrained(args.bert ) __lowercase = prepare_ref(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: __lowercase = [json.dumps(lowerCAmelCase__ ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) __UpperCamelCase : Dict = parser.parse_args() main(args)
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' import functools def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ) or not all(isinstance(lowerCamelCase , lowerCamelCase ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(lowerCamelCase ) != 3 or not all(isinstance(lowerCamelCase , lowerCamelCase ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(lowerCamelCase ) == 0: return 0 if min(lowerCamelCase ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(lowerCamelCase ) >= 366: raise ValueError("""All days elements should be less than 366""" ) __lowercase = set(lowerCamelCase ) @functools.cache def dynamic_programming(lowerCamelCase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""CLIPFeatureExtractor"""] __UpperCamelCase : Tuple = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : Any = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : Optional[int] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : List[str] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __UpperCamelCase : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __UpperCamelCase : Tuple = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __UpperCamelCase : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __UpperCamelCase : Union[str, Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __UpperCamelCase : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __UpperCamelCase ( __UpperCAmelCase ): __snake_case :Optional[Any] = VOCAB_FILES_NAMES __snake_case :int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Tuple = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( __UpperCAmelCase ): __snake_case :Optional[int] = VOCAB_FILES_NAMES __snake_case :int = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :List[str] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :int = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Union[str, Any] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCamelCase : Optional[int] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCamelCase : Any = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__UpperCAmelCase ) class __UpperCamelCase : def __call__( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : List[str] , ) -> Any: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] __lowercase = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] __lowercase = len(lowerCAmelCase_ ) __lowercase = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( F'There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.' ) __lowercase = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )["""input_ids"""] __lowercase = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )["""input_ids"""] __lowercase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def _a ( self : Optional[int] , _lowerCAmelCase : BatchEncoding , _lowerCAmelCase : DPRReaderOutput , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 4 , ) -> Tuple: """simple docstring""" __lowercase = reader_input["""input_ids"""] __lowercase , __lowercase , __lowercase = reader_output[:3] __lowercase = len(lowerCAmelCase_ ) __lowercase = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(lowerCAmelCase_ ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ) -> Dict: """simple docstring""" __lowercase = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(lowerCAmelCase_ , key=lambda _lowerCAmelCase : x[1] , reverse=lowerCAmelCase_ ) __lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) __lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__UpperCAmelCase ) class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase ): __snake_case :Tuple = VOCAB_FILES_NAMES __snake_case :Tuple = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Dict = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION __snake_case :Dict = ['input_ids', 'attention_mask']
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
from math import ceil def snake_case ( lowerCamelCase = 1_001 ): '''simple docstring''' __lowercase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __lowercase = 2 * i + 1 __lowercase = 2 * i __lowercase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : str = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __UpperCamelCase : int = re.compile(r"""\s+""") def snake_case ( lowerCamelCase ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(UpperCAmelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [len(UpperCAmelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(UpperCAmelCase__ ), "line_max": max(UpperCAmelCase__ )} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def snake_case ( lowerCamelCase , lowerCamelCase=5 ): '''simple docstring''' __lowercase = ["""auto-generated""", """autogenerated""", """automatically generated"""] __lowercase = example["""content"""].splitlines() for _, line in zip(range(UpperCAmelCase__ ) , UpperCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def snake_case ( lowerCamelCase , lowerCamelCase=5 , lowerCamelCase=0.05 ): '''simple docstring''' __lowercase = ["""unit tests""", """test file""", """configuration file"""] __lowercase = example["""content"""].splitlines() __lowercase = 0 __lowercase = 0 # first test for _, line in zip(range(UpperCAmelCase__ ) , UpperCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __lowercase = example["""content"""].count("""\n""" ) __lowercase = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""def """, """class """, """for """, """while """] __lowercase = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def snake_case ( lowerCamelCase , lowerCamelCase=4 ): '''simple docstring''' __lowercase = example["""content"""].splitlines() __lowercase = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tokenizer(example["""content"""] , truncation=UpperCAmelCase__ )["""input_ids"""] __lowercase = len(example["""content"""] ) / len(UpperCAmelCase__ ) return {"ratio": ratio} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} results.update(get_hash(UpperCAmelCase__ ) ) results.update(line_stats(UpperCAmelCase__ ) ) results.update(alpha_stats(UpperCAmelCase__ ) ) results.update(char_token_ratio(UpperCAmelCase__ ) ) results.update(is_autogenerated(UpperCAmelCase__ ) ) results.update(is_config_or_test(UpperCAmelCase__ ) ) results.update(has_no_keywords(UpperCAmelCase__ ) ) results.update(has_few_assignments(UpperCAmelCase__ ) ) return results def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not check_uniques(UpperCAmelCase__ , UpperCAmelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def snake_case ( lowerCamelCase ): '''simple docstring''' with open(UpperCAmelCase__ , """rb""" ) as f_in: with gzip.open(str(UpperCAmelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(UpperCAmelCase__ , UpperCAmelCase__ ) os.unlink(UpperCAmelCase__ ) # Settings __UpperCamelCase : Optional[Any] = HfArgumentParser(PreprocessingArguments) __UpperCamelCase : Tuple = parser.parse_args() if args.num_workers is None: __UpperCamelCase : Union[str, Any] = multiprocessing.cpu_count() __UpperCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __UpperCamelCase : List[str] = time.time() __UpperCamelCase : Optional[Any] = load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __UpperCamelCase : List[str] = time.time() __UpperCamelCase : Optional[Any] = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __UpperCamelCase : Optional[Any] = set(ds.unique("""hash""")) __UpperCamelCase : Optional[int] = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __UpperCamelCase : List[str] = time.time() __UpperCamelCase : Tuple = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __UpperCamelCase : Optional[int] = time.time() __UpperCamelCase , __UpperCamelCase : Optional[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __UpperCamelCase : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __UpperCamelCase : List[Any] = output_dir / """data""" data_dir.mkdir(exist_ok=True) __UpperCamelCase : List[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __UpperCamelCase : List[Any] = str(data_dir / F'''file-{file_number+1:012}.json''') __UpperCamelCase : str = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case ( lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("""test""" ) else: __lowercase = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=UpperCAmelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: __lowercase = script_name else: __lowercase = F'--config_file={args.config_file} {script_name}' __lowercase = ["""accelerate-launch"""] + test_args.split() __lowercase = execute_subprocess_async(UpperCAmelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def snake_case ( ): '''simple docstring''' __lowercase = test_command_parser() __lowercase = parser.parse_args() test_command(UpperCAmelCase__ ) if __name__ == "__main__": main()
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
def snake_case ( lowerCamelCase = 1_000_000 ): '''simple docstring''' __lowercase = set(range(3 , _UpperCamelCase , 2 ) ) primes.add(2 ) for p in range(3 , _UpperCamelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _UpperCamelCase , _UpperCamelCase ) ) ) __lowercase = [float(_UpperCamelCase ) for n in range(limit + 1 )] for p in primes: for n in range(_UpperCamelCase , limit + 1 , _UpperCamelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Optional[Any]=56 , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Any=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Tuple="gelu_new" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : int=16 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[str]="block_sparse" , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Optional[int]=3 , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices __lowercase = rescale_embeddings __lowercase = attention_type __lowercase = use_bias __lowercase = block_size __lowercase = num_random_blocks def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): __snake_case :int = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __snake_case :str = False __snake_case :Union[str, Any] = False def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _a ( self : int ) -> Any: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _a ( self : str ) -> int: """simple docstring""" super().test_hidden_states_output() @slow def _a ( self : Tuple ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _a ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model_class(_lowerCAmelCase ) @jax.jit def model_jitted(_lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : List[Any] ): return model(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase , **_lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any]=1e-5 , _lowerCAmelCase : Tuple="outputs" , _lowerCAmelCase : Any=None ) -> int: """simple docstring""" if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : int = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : List[Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : int = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : str = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __UpperCamelCase : Dict = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __UpperCamelCase : Optional[Any] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __UpperCamelCase : int = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __UpperCamelCase : int = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __UpperCamelCase : Union[str, Any] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __UpperCamelCase ( __lowerCAmelCase ): __snake_case :Optional[int] = VOCAB_FILES_NAMES __snake_case :Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :List[str] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Tuple = DPRContextEncoderTokenizer class __UpperCamelCase ( __lowerCAmelCase ): __snake_case :List[str] = VOCAB_FILES_NAMES __snake_case :Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Union[str, Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Tuple = DPRQuestionEncoderTokenizer __UpperCamelCase : Any = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCamelCase : Dict = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCamelCase : Union[str, Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__lowerCAmelCase ) class __UpperCamelCase : def __call__( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : Optional[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowercase = titles if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [titles] __lowercase = texts if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [texts] __lowercase = len(lowerCamelCase__ ) __lowercase = questions if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [questions] * n_passages assert len(lowerCamelCase__ ) == len( lowerCamelCase__ ), F'There should be as many titles than texts but got {len(lowerCamelCase__ )} titles and {len(lowerCamelCase__ )} texts.' __lowercase = super().__call__(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] __lowercase = super().__call__(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] __lowercase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase__ , lowerCamelCase__ ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) def _a ( self : List[str] , _lowerCAmelCase : BatchEncoding , _lowerCAmelCase : DPRReaderOutput , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = reader_input['''input_ids'''] __lowercase = reader_output[:3] __lowercase = len(lowerCamelCase__ ) __lowercase = sorted(range(lowerCamelCase__ ) , reverse=lowerCamelCase__ , key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(lowerCamelCase__ ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase__ , top_spans=lowerCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase__ , start_index=lowerCamelCase__ , end_index=lowerCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = [] for start_index, start_score in enumerate(lowerCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(lowerCamelCase__ , key=lambda _lowerCAmelCase : x[1] , reverse=lowerCamelCase__ ) __lowercase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __lowercase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowerCAmelCase ) class __UpperCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): __snake_case :Tuple = VOCAB_FILES_NAMES __snake_case :Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case :List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[Any] = READER_PRETRAINED_INIT_CONFIGURATION __snake_case :List[str] = ["input_ids", "attention_mask"] __snake_case :Optional[Any] = DPRReaderTokenizer
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['PerceiverFeatureExtractor'] __UpperCamelCase : Dict = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
from __future__ import annotations import math class __UpperCamelCase : def __init__( self : Tuple , _lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase = size # approximate the overall size of segment tree with given value __lowercase = [0 for i in range(0 , 4 * size )] # create array to store lazy update __lowercase = [0 for i in range(0 , 4 * size )] __lowercase = [0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self : Tuple , _lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" return idx * 2 def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" return idx * 2 + 1 def _a ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> int: """simple docstring""" if left_element == right_element: __lowercase = a[left_element - 1] else: __lowercase = (left_element + right_element) // 2 self.build(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.build(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) def _a ( self : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" if self.flag[idx] is True: __lowercase = self.lazy[idx] __lowercase = False if left_element != right_element: __lowercase = self.lazy[idx] __lowercase = self.lazy[idx] __lowercase = True __lowercase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __lowercase = val if left_element != right_element: __lowercase = val __lowercase = val __lowercase = True __lowercase = True return True __lowercase = (left_element + right_element) // 2 self.update(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.update(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = max( self.segment_tree[self.left(_lowerCAmelCase )] , self.segment_tree[self.right(_lowerCAmelCase )] ) return True def _a ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" if self.flag[idx] is True: __lowercase = self.lazy[idx] __lowercase = False if left_element != right_element: __lowercase = self.lazy[idx] __lowercase = self.lazy[idx] __lowercase = True __lowercase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __lowercase = (left_element + right_element) // 2 __lowercase = self.query(self.left(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.query(self.right(_lowerCAmelCase ) , mid + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return max(_lowerCAmelCase , _lowerCAmelCase ) def __str__( self : Any ) -> List[str]: """simple docstring""" return str([self.query(1 , 1 , self.size , _lowerCAmelCase , _lowerCAmelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __UpperCamelCase : Any = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __UpperCamelCase : int = 15 __UpperCamelCase : Any = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = ["""image_processor""", """tokenizer"""] __snake_case :str = """ViltImageProcessor""" __snake_case :List[str] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : str=None , **_lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowerCAmelCase , ) __lowercase = kwargs.pop("""feature_extractor""" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.image_processor def __call__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : int , ) -> BatchEncoding: """simple docstring""" __lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) encoding.update(_lowerCAmelCase ) return encoding def _a ( self : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : int ) -> str: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCAmelCase , ) return self.image_processor_class @property def _a ( self : Dict ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCAmelCase , ) return self.image_processor
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def snake_case ( ): '''simple docstring''' __lowercase , __lowercase = 9, 14 # noqa: F841 __lowercase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowercase = defaultdict(lowerCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __lowercase = mst(lowerCamelCase ) __lowercase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __lowercase = tuple(answer[:2] ) __lowercase = tuple(edge[::-1] ) assert edge in result or reverse in result
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' # Algorithm for the pigeonhole sorting def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = min(lowerCamelCase ) # min() finds the minimum value __lowercase = max(lowerCamelCase ) # max() finds the maximum value __lowercase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowercase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCamelCase , lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowercase = 0 for count in range(lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 __lowercase = count + min_val i += 1 def snake_case ( ): '''simple docstring''' __lowercase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCamelCase ) print("""Sorted order is:""" , """ """.join(lowerCamelCase ) ) if __name__ == "__main__": main()
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'status' must been from type bool" return status def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase ) ): for j in range(i + 1 , len(lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase ): ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase ): while quotient != 1: if is_prime(lowerCamelCase ) and (quotient % factor == 0): ans.append(lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = max(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = min(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def snake_case ( lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (number > 2) and is_even(lowerCamelCase ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(lowerCamelCase ) __lowercase = len(lowerCamelCase ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (len(lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = prime_factorization(lowerCamelCase ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(lowerCamelCase , lowerCamelCase ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(lowerCamelCase ) __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(max(lowerCamelCase , lowerCamelCase ) ): ans *= n else: __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase ): ans += 1 # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and is_prime( lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( is_prime(lowerCamelCase ) and is_prime(lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 while number < p_number_a: ans.append(lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and ans[0] != p_number_a and ans[len(lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(lowerCamelCase ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(lowerCamelCase ) , abs(lowerCamelCase ) ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCamelCase ( unittest.TestCase ): @require_torch def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __lowercase = load_dataset("""ashraq/esc50""" ) __lowercase = dataset["""train"""]["""audio"""][-1]["""array"""] __lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def _a ( self : Any ) -> int: """simple docstring""" pass @slow @require_torch def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog __lowercase = load_dataset("""ashraq/esc50""" ) __lowercase = dataset["""train"""]["""audio"""][-1]["""array"""] __lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) __lowercase = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) __lowercase = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" pass
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=3 , _lowerCAmelCase : int=32 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=10 , _lowerCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _lowerCAmelCase : List[str]=[1, 1, 2, 1] , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]="relu" , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=None , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(_lowerCAmelCase ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = self.get_config() return config, pixel_values def _a ( self : Optional[Any] ) -> int: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = FlaxRegNetModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = FlaxRegNetForImageClassification(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case :Tuple = False __snake_case :List[Any] = False __snake_case :Dict = False def _a ( self : Any ) -> None: """simple docstring""" __lowercase = FlaxRegNetModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[int] ) -> str: """simple docstring""" return def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _a ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _a ( self : Tuple ) -> Dict: """simple docstring""" pass def _a ( self : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model_class(_lowerCAmelCase ) @jax.jit def model_jitted(_lowerCAmelCase : Any , **_lowerCAmelCase : Optional[int] ): return model(pixel_values=_lowerCAmelCase , **_lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Dict ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = (1, 1000) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ["""MaskFormerFeatureExtractor"""] __UpperCamelCase : Union[str, Any] = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] __UpperCamelCase : Any = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : Optional[Any] = 16 __UpperCamelCase : Tuple = 32 def snake_case ( lowerCamelCase , lowerCamelCase = 16 ): '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 16 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : Optional[int] = mocked_dataloaders # noqa: F811 def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase ) == "1": __lowercase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["""lr"""] __lowercase = int(config["""num_epochs"""] ) __lowercase = int(config["""seed"""] ) __lowercase = int(config["""batch_size"""] ) set_seed(lowerCamelCase ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase , lowerCamelCase ) __lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowercase = os.path.split(lowerCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowercase = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**lowerCamelCase ) __lowercase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(lowerCamelCase ), """epoch""": epoch, } , step=lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) __lowercase = parser.parse_args() __lowercase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = 'timm_backbone' def __init__( self : str , _lowerCAmelCase : int=None , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[str] , ) -> int: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = backbone __lowercase = num_channels __lowercase = features_only __lowercase = use_pretrained_backbone __lowercase = True __lowercase = out_indices if out_indices is not None else (-1,)
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __UpperCamelCase : Tuple = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __UpperCamelCase : Dict = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __UpperCamelCase : Optional[int] = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]="auto" , _lowerCAmelCase : Tuple=-1 , _lowerCAmelCase : Optional[int]=0.9 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=500 , _lowerCAmelCase : List[Any]="gpt2-large" , _lowerCAmelCase : List[str]=-1 , _lowerCAmelCase : List[Any]=1024 , _lowerCAmelCase : Any=25 , _lowerCAmelCase : List[Any]=5 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=25 , ) -> Optional[int]: """simple docstring""" __lowercase = compute_mauve( p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , ) return out
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
def snake_case ( lowerCamelCase = 1_000_000 ): '''simple docstring''' __lowercase = limit + 1 __lowercase = [0] * limit for first_term in range(1 , lowerCamelCase ): for n in range(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __lowercase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __lowercase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
from functools import lru_cache def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 2 __lowercase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCamelCase ) if n > 1: factors.add(lowerCamelCase ) return factors @lru_cache def snake_case ( lowerCamelCase ): '''simple docstring''' return len(unique_prime_factors(lowerCamelCase ) ) def snake_case ( lowerCamelCase ): '''simple docstring''' return len(set(lowerCamelCase ) ) in (0, 1) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 2 while True: # Increment each value of a generated range __lowercase = [base + i for i in range(lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase = [upf_len(lowerCamelCase ) for x in group] checker.append(lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case ( lowerCamelCase = 4 ): '''simple docstring''' __lowercase = run(lowerCamelCase ) return results[0] if len(lowerCamelCase ) else None if __name__ == "__main__": print(solution())
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
# Function to print upper half of diamond (pyramid) def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(0 , lowerCamelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(lowerCamelCase , 0 , -1 ): for _ in range(lowerCamelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(lowerCamelCase ) # upper half reverse_floyd(lowerCamelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") __UpperCamelCase : str = 1 while K: __UpperCamelCase : Optional[int] = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) __UpperCamelCase : str = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import os import time import numpy as np import onnxruntime as ort __UpperCamelCase : List[str] = """1""" __UpperCamelCase : Any = """0""" __UpperCamelCase : Dict = """1""" __UpperCamelCase : int = ort.SessionOptions() __UpperCamelCase : Optional[int] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") __UpperCamelCase : Dict = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] __UpperCamelCase : str = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) __UpperCamelCase : str = ort.RunOptions() __UpperCamelCase : List[str] = 128 __UpperCamelCase : Any = 1 __UpperCamelCase : int = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Any = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Tuple = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") __UpperCamelCase : Dict = time.time() __UpperCamelCase : Optional[Any] = 2000 __UpperCamelCase : List[Any] = {} for iter in range(max_iters): __UpperCamelCase : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = checkpoint __lowercase = {} __lowercase = vae_state_dict["""encoder.conv_in.weight"""] __lowercase = vae_state_dict["""encoder.conv_in.bias"""] __lowercase = vae_state_dict["""encoder.conv_out.weight"""] __lowercase = vae_state_dict["""encoder.conv_out.bias"""] __lowercase = vae_state_dict["""encoder.norm_out.weight"""] __lowercase = vae_state_dict["""encoder.norm_out.bias"""] __lowercase = vae_state_dict["""decoder.conv_in.weight"""] __lowercase = vae_state_dict["""decoder.conv_in.bias"""] __lowercase = vae_state_dict["""decoder.conv_out.weight"""] __lowercase = vae_state_dict["""decoder.conv_out.bias"""] __lowercase = vae_state_dict["""decoder.norm_out.weight"""] __lowercase = vae_state_dict["""decoder.norm_out.bias"""] __lowercase = vae_state_dict["""quant_conv.weight"""] __lowercase = vae_state_dict["""quant_conv.bias"""] __lowercase = vae_state_dict["""post_quant_conv.weight"""] __lowercase = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only __lowercase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) __lowercase = { layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(lowerCamelCase ) } # Retrieves the keys for the decoder up blocks only __lowercase = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) __lowercase = { layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(lowerCamelCase ) } for i in range(lowerCamelCase ): __lowercase = [key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key] if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict: __lowercase = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.weight' ) __lowercase = vae_state_dict.pop( F'encoder.down.{i}.downsample.conv.bias' ) __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'down.{i}.block', """new""": F'down_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """encoder.mid.block""" in key] __lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowercase = [key for key in mid_resnets if F'encoder.mid.block_{i}' in key] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'mid.block_{i}', """new""": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """encoder.mid.attn""" in key] __lowercase = renew_vae_attention_paths(lowerCamelCase ) __lowercase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) conv_attn_to_linear(lowerCamelCase ) for i in range(lowerCamelCase ): __lowercase = num_up_blocks - 1 - i __lowercase = [ key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key ] if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict: __lowercase = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.weight' ] __lowercase = vae_state_dict[ F'decoder.up.{block_id}.upsample.conv.bias' ] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'up.{block_id}.block', """new""": F'up_blocks.{i}.resnets'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """decoder.mid.block""" in key] __lowercase = 2 for i in range(1 , num_mid_res_blocks + 1 ): __lowercase = [key for key in mid_resnets if F'decoder.mid.block_{i}' in key] __lowercase = renew_vae_resnet_paths(lowerCamelCase ) __lowercase = {"""old""": F'mid.block_{i}', """new""": F'mid_block.resnets.{i - 1}'} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) __lowercase = [key for key in vae_state_dict if """decoder.mid.attn""" in key] __lowercase = renew_vae_attention_paths(lowerCamelCase ) __lowercase = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCamelCase , lowerCamelCase , lowerCamelCase , additional_replacements=[meta_path] , config=lowerCamelCase ) conv_attn_to_linear(lowerCamelCase ) return new_checkpoint def snake_case ( lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __lowercase = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) __lowercase = io.BytesIO(r.content ) __lowercase = OmegaConf.load(lowerCamelCase ) __lowercase = 512 __lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open __lowercase = {} with safe_open(lowerCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): __lowercase = f.get_tensor(lowerCamelCase ) else: __lowercase = torch.load(lowerCamelCase , map_location=lowerCamelCase )["""state_dict"""] # Convert the VAE model. __lowercase = create_vae_diffusers_config(lowerCamelCase , image_size=lowerCamelCase ) __lowercase = custom_convert_ldm_vae_checkpoint(lowerCamelCase , lowerCamelCase ) __lowercase = AutoencoderKL(**lowerCamelCase ) vae.load_state_dict(lowerCamelCase ) vae.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") __UpperCamelCase : Tuple = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Dict=[1, 2, 1] , _lowerCAmelCase : Optional[int]=[2, 2, 4] , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Any=2.0 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=True , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[str]=1e-5 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : str=8 , _lowerCAmelCase : str=["stage1", "stage2", "stage3"] , _lowerCAmelCase : List[str]=[1, 2, 3] , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = patch_norm __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = is_training __lowercase = scope __lowercase = use_labels __lowercase = type_sequence_label_size __lowercase = encoder_stride __lowercase = out_features __lowercase = out_indices def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase = MaskFormerSwinModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" __lowercase = MaskFormerSwinBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCAmelCase ): __lowercase = ["""stem"""] __lowercase = MaskFormerSwinBackbone(config=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __snake_case :Union[str, Any] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __snake_case :str = False __snake_case :int = False __snake_case :Tuple = False __snake_case :Tuple = False __snake_case :Optional[Any] = False def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _a ( self : Tuple ) -> Any: """simple docstring""" pass def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" pass def _a ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swin has a different seq_length __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a ( self : int ) -> Tuple: """simple docstring""" pass def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCAmelCase : Optional[int] ): __lowercase = 0 return t def check_equivalence(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int={} ): with torch.no_grad(): __lowercase = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ).to_tuple() def recursive_check(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): if isinstance(_lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase , _lowerCAmelCase ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCAmelCase ) , set_nan_tensor_to_zero(_lowerCAmelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has' F' `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}.' ) , ) recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) @require_torch class __UpperCamelCase ( unittest.TestCase , _lowerCAmelCase ): __snake_case :Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () __snake_case :Any = MaskFormerSwinConfig def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase = backbone_class(_lowerCAmelCase ) backbone.to(_lowerCAmelCase ) backbone.eval() __lowercase = backbone(**_lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase = backbone(**_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase = backbone(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : __snake_case :List[str] __snake_case :Optional[str] = None # Automatically constructed __snake_case :ClassVar[str] = "dict" __snake_case :ClassVar[Any] = None __snake_case :str = field(default='Translation' , init=_lowerCAmelCase , repr=_lowerCAmelCase ) def __call__( self : Any ) -> List[str]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _a ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : __snake_case :Optional[List] = None __snake_case :Optional[int] = None __snake_case :Optional[str] = None # Automatically constructed __snake_case :ClassVar[str] = "dict" __snake_case :ClassVar[Any] = None __snake_case :str = field(default='TranslationVariableLanguages' , init=_lowerCAmelCase , repr=_lowerCAmelCase ) def _a ( self : Any ) -> str: """simple docstring""" __lowercase = sorted(set(self.languages ) ) if self.languages else None __lowercase = len(self.languages ) if self.languages else None def __call__( self : Any ) -> str: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def _a ( self : Tuple , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = set(self.languages ) if self.languages and set(_lowerCAmelCase ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(_lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_lowerCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __lowercase = [] for lang, text in translation_dict.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __lowercase , __lowercase = zip(*sorted(_lowerCAmelCase ) ) return {"language": languages, "translation": translations} def _a ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __UpperCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :str = field( default=_lowerCAmelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(_lowerCAmelCase )} ) __snake_case :str = field( default=_lowerCAmelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :int = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __snake_case :int = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __snake_case :int = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __snake_case :float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __snake_case :int = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __snake_case :int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __snake_case :int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'train' __snake_case :Union[str, Any] = 'dev' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :SquadDataTrainingArguments __snake_case :List[SquadFeatures] __snake_case :Split __snake_case :bool def __init__( self : Union[str, Any] , _lowerCAmelCase : SquadDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = "pt" , ) -> int: """simple docstring""" __lowercase = args __lowercase = is_language_sensitive __lowercase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowercase = mode # Load data features from cache or dataset file __lowercase = """v2""" if args.version_2_with_negative else """v1""" __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowercase = self.old_features["""features"""] __lowercase = self.old_features.get("""dataset""" , _lowerCAmelCase ) __lowercase = self.old_features.get("""examples""" , _lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) __lowercase , __lowercase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCAmelCase , ) __lowercase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowerCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : str ) -> str: """simple docstring""" return len(self.features ) def __getitem__( self : Any , _lowerCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" __lowercase = self.features[i] __lowercase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowercase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowercase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowercase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowercase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowercase = torch.tensor(feature.start_position , dtype=torch.long ) __lowercase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = ["""a""", """b""", """c"""] # Defaults to last layer if both are None __lowercase , __lowercase = get_aligned_output_features_output_indices(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , ["""c"""] ) self.assertEqual(_lowerCAmelCase , [2] ) # Out indices set to match out features __lowercase , __lowercase = get_aligned_output_features_output_indices(["""a""", """c"""] , _lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(_lowerCAmelCase , [0, 2] ) # Out features set to match out indices __lowercase , __lowercase = get_aligned_output_features_output_indices(_lowerCAmelCase , [0, 2] , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(_lowerCAmelCase , [0, 2] ) # Out features selected from negative indices __lowercase , __lowercase = get_aligned_output_features_output_indices(_lowerCAmelCase , [-3, -1] , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , ["""a""", """c"""] ) self.assertEqual(_lowerCAmelCase , [-3, -1] ) def _a ( self : str ) -> int: """simple docstring""" with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _lowerCAmelCase ) # Out features must be a list with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(_lowerCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(_lowerCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(_lowerCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def _a ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = BackboneMixin() __lowercase = ["""a""", """b""", """c"""] __lowercase = ["""a""", """c"""] __lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __lowercase = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) __lowercase = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
__UpperCamelCase : Union[str, Any] = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } __UpperCamelCase : List[str] = {value: key for key, value in encode_dict.items()} def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def snake_case ( lowerCamelCase ): '''simple docstring''' if set(lowerCamelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) __lowercase = """""" for word in coded.split(): while len(lowerCamelCase ) != 0: decoded += decode_dict[word[:5]] __lowercase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import os def snake_case ( ): '''simple docstring''' __lowercase = os.path.dirname(os.path.realpath(lowerCamelCase ) ) __lowercase = os.path.join(lowerCamelCase , """triangle.txt""" ) with open(lowerCamelCase ) as f: __lowercase = f.readlines() __lowercase = [] for line in triangle: __lowercase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase ) ) a.append(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): for j in range(len(a[i] ) ): __lowercase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowercase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase , lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True ): '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowercase = timm.create_model("""levit_128s""" , pretrained=lowerCamelCase ) else: __lowercase = timm.create_model("""levit_128""" , pretrained=lowerCamelCase ) if hidden_sizes == 192: __lowercase = timm.create_model("""levit_192""" , pretrained=lowerCamelCase ) if hidden_sizes == 256: __lowercase = timm.create_model("""levit_256""" , pretrained=lowerCamelCase ) if hidden_sizes == 384: __lowercase = timm.create_model("""levit_384""" , pretrained=lowerCamelCase ) from_model.eval() __lowercase = LevitForImageClassificationWithTeacher(lowerCamelCase ).eval() __lowercase = OrderedDict() __lowercase = from_model.state_dict() __lowercase = list(from_model.state_dict().keys() ) __lowercase = list(our_model.state_dict().keys() ) print(len(lowerCamelCase ) , len(lowerCamelCase ) ) for i in range(len(lowerCamelCase ) ): __lowercase = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase ) __lowercase = torch.randn((2, 3, 224, 224) ) __lowercase = from_model(lowerCamelCase ) __lowercase = our_model(lowerCamelCase ).logits assert torch.allclose(lowerCamelCase , lowerCamelCase ), "The model logits don't match the original one." __lowercase = name print(lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowercase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def snake_case ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True ): '''simple docstring''' __lowercase = """imagenet-1k-id2label.json""" __lowercase = 1_000 __lowercase = (1, num_labels) __lowercase = """huggingface/label-files""" __lowercase = num_labels __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = partial(lowerCamelCase , num_labels=lowerCamelCase , idalabel=lowerCamelCase , labelaid=lowerCamelCase ) __lowercase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __lowercase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase , names_to_config[model_name] , lowerCamelCase , lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case ( lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("""env""" ) else: __lowercase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=lowerCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = is_xpu_available() __lowercase = is_npu_available() __lowercase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase ): __lowercase = load_config_from_file(args.config_file ).to_dict() __lowercase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(lowerCamelCase ), """PyTorch NPU available""": str(lowerCamelCase ), """System RAM""": F'{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB', } if pt_cuda_available: __lowercase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) __lowercase = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase , lowerCamelCase ) else F'\t{accelerate_config}' ) print(lowerCamelCase ) __lowercase = accelerate_config return info def snake_case ( ): '''simple docstring''' __lowercase = env_command_parser() __lowercase = parser.parse_args() env_command(lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=lowerCamelCase , num_labels=1_000 , idalabel=lowerCamelCase , labelaid=lowerCamelCase , ) return config def snake_case ( lowerCamelCase ): '''simple docstring''' if "stem.conv" in name: __lowercase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowercase = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __lowercase = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __lowercase = """bit.""" + name if "bit" not in name and "classifier" not in name: __lowercase = """bit.encoder.""" + name return name def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase = get_config(lowerCamelCase ) # load original model from timm __lowercase = create_model(lowerCamelCase , pretrained=lowerCamelCase ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(lowerCamelCase ) __lowercase = val.squeeze() if """head""" in key else val # load HuggingFace model __lowercase = BitForImageClassification(lowerCamelCase ) model.eval() model.load_state_dict(lowerCamelCase ) # create image processor __lowercase = create_transform(**resolve_data_config({} , model=lowerCamelCase ) ) __lowercase = transform.transforms __lowercase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=lowerCamelCase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase = prepare_img() __lowercase = transform(lowerCamelCase ).unsqueeze(0 ) __lowercase = processor(lowerCamelCase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) # verify logits with torch.no_grad(): __lowercase = model(lowerCamelCase ) __lowercase = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) __UpperCamelCase : str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=0.9 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=[0.5, 0.5, 0.5] , _lowerCAmelCase : str=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" __lowercase = size if size is not None else {"""shortest_edge""": 30} __lowercase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize_and_center_crop __lowercase = size __lowercase = crop_pct __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = PoolFormerImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = PoolFormerImageProcessingTester(self ) @property def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_pct""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'xlm' __snake_case :Any = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : str , _lowerCAmelCase : Tuple=3_0145 , _lowerCAmelCase : Optional[Any]=2048 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Any=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[Any]=512 , _lowerCAmelCase : Tuple=2048**-0.5 , _lowerCAmelCase : int=1e-12 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[str]="first" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=True , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[Any]=0 , **_lowerCAmelCase : str , ) -> Dict: """simple docstring""" __lowercase = vocab_size __lowercase = emb_dim __lowercase = n_layers __lowercase = n_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = gelu_activation __lowercase = sinusoidal_embeddings __lowercase = causal __lowercase = asm __lowercase = n_langs __lowercase = use_lang_emb __lowercase = layer_norm_eps __lowercase = bos_index __lowercase = eos_index __lowercase = pad_index __lowercase = unk_index __lowercase = mask_index __lowercase = is_encoder __lowercase = max_position_embeddings __lowercase = embed_init_std __lowercase = init_std __lowercase = summary_type __lowercase = summary_use_proj __lowercase = summary_activation __lowercase = summary_proj_to_labels __lowercase = summary_first_dropout __lowercase = start_n_top __lowercase = end_n_top __lowercase = mask_token_id __lowercase = lang_id if "n_words" in kwargs: __lowercase = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): @property def _a ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __UpperCamelCase : Tuple = logging.get_logger(__name__) @dataclass class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : List[Any]=6.0 , _lowerCAmelCase : int=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple="fp4" , _lowerCAmelCase : List[str]=False , **_lowerCAmelCase : Any , ) -> Dict: """simple docstring""" __lowercase = load_in_abit __lowercase = load_in_abit __lowercase = llm_inta_threshold __lowercase = llm_inta_skip_modules __lowercase = llm_inta_enable_fpaa_cpu_offload __lowercase = llm_inta_has_fpaa_weight __lowercase = bnb_abit_quant_type __lowercase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowercase = torch.floataa elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.dtype ): __lowercase = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not isinstance(self.llm_inta_threshold , _lowerCAmelCase ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _lowerCAmelCase ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _lowerCAmelCase ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , _lowerCAmelCase ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , _lowerCAmelCase ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , _lowerCAmelCase ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def _a ( self : Tuple ) -> Dict: """simple docstring""" return self.load_in_abit or self.load_in_abit def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , **_lowerCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = cls(**_lowerCAmelCase ) __lowercase = [] for key, value in kwargs.items(): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) to_remove.append(_lowerCAmelCase ) for key in to_remove: kwargs.pop(_lowerCAmelCase , _lowerCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def _a ( self : Union[str, Any] , _lowerCAmelCase : Union[str, os.PathLike] ) -> Tuple: """simple docstring""" with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: __lowercase = self.to_dict() __lowercase = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + """\n""" writer.write(_lowerCAmelCase ) def _a ( self : List[str] ) -> Dict[str, Any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__( self : int ) -> List[str]: """simple docstring""" return F'{self.__class__.__name__} {self.to_json_string()}' def _a ( self : List[Any] , _lowerCAmelCase : bool = True ) -> str: """simple docstring""" if use_diff is True: __lowercase = self.to_diff_dict() else: __lowercase = self.to_dict() return json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" def _a ( self : str ) -> Dict[str, Any]: """simple docstring""" __lowercase = self.to_dict() # get the default config dict __lowercase = BitsAndBytesConfig().to_dict() __lowercase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowercase = value return serializable_config_dict
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : int=4 , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self : Any ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = True __snake_case :Tuple = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _a ( self : Union[str, Any] ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : str ) -> str: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __lowercase = model(_lowerCAmelCase )[0] __lowercase = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _lowerCAmelCase ) # compare the actual values for a slice. __lowercase = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __lowercase = model(_lowerCAmelCase )[0] # compare the actual values for a slice. __lowercase = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = XLNetTokenizer __snake_case :int = XLNetTokenizerFast __snake_case :Union[str, Any] = True __snake_case :str = True def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = """<s>""" __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<eod>""" ) self.assertEqual(len(_lowerCAmelCase ) , 1006 ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = XLNetTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) __lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = XLNetTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' import logging from transformers import PretrainedConfig __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) __UpperCamelCase : Tuple = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'bertabs' def __init__( self : Union[str, Any] , _lowerCAmelCase : Any=3_0522 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : str=6 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : List[str]=8 , _lowerCAmelCase : Any=512 , _lowerCAmelCase : Any=0.2 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : str=2048 , _lowerCAmelCase : int=0.2 , **_lowerCAmelCase : List[str] , ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = vocab_size __lowercase = max_pos __lowercase = enc_layers __lowercase = enc_hidden_size __lowercase = enc_heads __lowercase = enc_ff_size __lowercase = enc_dropout __lowercase = dec_layers __lowercase = dec_hidden_size __lowercase = dec_heads __lowercase = dec_ff_size __lowercase = dec_dropout
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : bool = False , ) -> Any: """simple docstring""" super().__init__() __lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = False __lowercase = nn.Dropout(p=_lowerCAmelCase ) __lowercase = TaConfig( vocab_size=_lowerCAmelCase , d_model=_lowerCAmelCase , num_heads=_lowerCAmelCase , d_kv=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase , feed_forward_proj=_lowerCAmelCase , is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , ) __lowercase = nn.ModuleList() for lyr_num in range(_lowerCAmelCase ): __lowercase = TaBlock(_lowerCAmelCase ) self.encoders.append(_lowerCAmelCase ) __lowercase = TaLayerNorm(_lowerCAmelCase ) __lowercase = nn.Dropout(p=_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.token_embedder(_lowerCAmelCase ) __lowercase = encoder_input_tokens.shape[1] __lowercase = torch.arange(_lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowerCAmelCase ) __lowercase = self.dropout_pre(_lowerCAmelCase ) # inverted the attention mask __lowercase = encoder_input_tokens.size() __lowercase = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase ) for lyr in self.encoders: __lowercase = lyr(_lowerCAmelCase , _lowerCAmelCase )[0] __lowercase = self.layer_norm(_lowerCAmelCase ) return self.dropout_post(_lowerCAmelCase ), encoder_inputs_mask
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowercase = v else: __lowercase = v __lowercase = chkpt["""params"""] __lowercase = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} __lowercase = chkpt["""dico_word2id"""] __lowercase = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __lowercase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + """/""" + CONFIG_NAME __lowercase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
def snake_case ( lowerCamelCase = 2_000_000 ): '''simple docstring''' __lowercase = [0 for i in range(n + 1 )] __lowercase = 1 __lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCamelCase ): __lowercase = 1 __lowercase = 0 for i in range(lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = Mock() __lowercase = conn, Mock() __lowercase = iter([1, None] ) __lowercase = lambda lowerCamelCase : next(lowerCamelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" , testing=lowerCamelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import math class __UpperCamelCase : def _a ( self : int , _lowerCAmelCase : list[list[float]] , _lowerCAmelCase : list[int] ) -> int: """simple docstring""" __lowercase = 0.0 __lowercase = 0.0 for i in range(len(_lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _a ( self : str , _lowerCAmelCase : list[list[int | float]] , _lowerCAmelCase : list[int] , _lowerCAmelCase : int , _lowerCAmelCase : float ) -> list[list[int | float]]: """simple docstring""" for i in range(len(_lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def snake_case ( ): '''simple docstring''' __lowercase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) __lowercase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training __lowercase = SelfOrganizingMap() __lowercase = 3 __lowercase = 0.5 for _ in range(lowerCamelCase ): for j in range(len(lowerCamelCase ) ): # training sample __lowercase = training_samples[j] # Compute the winning vector __lowercase = self_organizing_map.get_winner(lowerCamelCase , lowerCamelCase ) # Update the winning vector __lowercase = self_organizing_map.update(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # classify test sample __lowercase = [0, 0, 0, 1] __lowercase = self_organizing_map.get_winner(lowerCamelCase , lowerCamelCase ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import numpy # List of input, output pairs __UpperCamelCase : List[str] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __UpperCamelCase : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) __UpperCamelCase : List[Any] = [2, 4, 1, 5] __UpperCamelCase : Union[str, Any] = len(train_data) __UpperCamelCase : List[Any] = 0.0_0_9 def snake_case ( lowerCamelCase , lowerCamelCase="train" ): '''simple docstring''' return calculate_hypothesis_value(lowerCamelCase , lowerCamelCase ) - output( lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 0 for i in range(len(lowerCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case ( lowerCamelCase , lowerCamelCase=m ): '''simple docstring''' __lowercase = 0 for i in range(lowerCamelCase ): if index == -1: summation_value += _error(lowerCamelCase ) else: summation_value += _error(lowerCamelCase ) * train_data[i][0][index] return summation_value def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = summation_of_cost_derivative(lowerCamelCase , lowerCamelCase ) / m return cost_derivative_value def snake_case ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase ) ): __lowercase = get_cost_derivative(i - 1 ) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase , lowerCamelCase , atol=lowerCamelCase , rtol=lowerCamelCase , ): break __lowercase = temp_parameter_vector print(("""Number of iterations:""", j) ) def snake_case ( ): '''simple docstring''' for i in range(len(lowerCamelCase ) ): print(("""Actual output value:""", output(lowerCamelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCamelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import requests __UpperCamelCase : Optional[Any] = """""" # <-- Put your OpenWeatherMap appid here! __UpperCamelCase : Optional[int] = """https://api.openweathermap.org/data/2.5/""" def snake_case ( lowerCamelCase = "Chicago" , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """weather""" , params=locals() ).json() def snake_case ( lowerCamelCase = "Kolkata, India" , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def snake_case ( lowerCamelCase = 55.68 , lowerCamelCase = 12.57 , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __UpperCamelCase : List[Any] = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") __UpperCamelCase : Union[str, Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") __UpperCamelCase : int = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: __UpperCamelCase : Dict = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCamelCase : int = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import re def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = re.compile(r"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(lowerCamelCase , lowerCamelCase ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import qiskit def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(lowerCamelCase , lowerCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowercase = qiskit.execute(lowerCamelCase , lowerCamelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import math import qiskit def snake_case ( lowerCamelCase = 1 , lowerCamelCase = 1 , lowerCamelCase = 1 ): '''simple docstring''' if ( isinstance(lowerCamelCase , lowerCamelCase ) or isinstance(lowerCamelCase , lowerCamelCase ) or isinstance(lowerCamelCase , lowerCamelCase ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowerCamelCase ) != input_a) or (math.floor(lowerCamelCase ) != input_a) or (math.floor(lowerCamelCase ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers __lowercase = qiskit.QuantumRegister(4 , """qr""" ) __lowercase = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries __lowercase = [input_a, input_a, carry_in] __lowercase = qiskit.QuantumCircuit(lowerCamelCase , lowerCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCamelCase ) # measure the last two qbits __lowercase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowercase = qiskit.execute(lowerCamelCase , lowerCamelCase , shots=1_000 ) return job.result().get_counts(lowerCamelCase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = {"""vocab_file""": """vocab.json"""} __UpperCamelCase : Union[str, Any] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } __UpperCamelCase : List[Any] = {"""mgp-str""": 27} class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = VOCAB_FILES_NAMES __snake_case :Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int="[GO]" , _lowerCAmelCase : Optional[int]="[GO]" , _lowerCAmelCase : List[str]="[s]" , _lowerCAmelCase : Tuple="[GO]" , **_lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" super().__init__( unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __lowercase = json.load(_lowerCAmelCase ) __lowercase = {v: k for k, v in self.vocab.items()} @property def _a ( self : int ) -> int: """simple docstring""" return len(self.vocab ) def _a ( self : List[str] ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def _a ( self : Any , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = [] for s in text: char_tokens.extend(_lowerCAmelCase ) return char_tokens def _a ( self : Any , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def _a ( self : Any , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return self.decoder.get(_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_lowerCAmelCase ) ) return __lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) return (vocab_file,)
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
import torch def snake_case ( ): '''simple docstring''' if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=8 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[int]=None , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Any ) -> int: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_config() __lowercase = 300 return config def _a ( self : List[str] ) -> Dict: """simple docstring""" ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowercase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , ) -> str: """simple docstring""" __lowercase = True __lowercase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowercase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.num_choices __lowercase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __snake_case :List[Any] = False __snake_case :List[str] = False __snake_case :Dict = False __snake_case :Tuple = False __snake_case :Optional[Any] = () def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = MraModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" return @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __lowercase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __lowercase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = 5_0265 __lowercase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __lowercase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = 5_0265 __lowercase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
import re def snake_case ( lowerCamelCase ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' try: __lowercase = split_input(lowerCamelCase ) if upper: __lowercase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowercase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case ( lowerCamelCase ): '''simple docstring''' return to_simple_case(lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' try: __lowercase = to_simple_case(lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return to_complex_case(lowerCamelCase , lowerCamelCase , """_""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return to_complex_case(lowerCamelCase , lowerCamelCase , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import math def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = int(math.floor(math.sqrt(lowerCamelCase ) ) ) __lowercase = 0 while arr[min(lowerCamelCase , lowerCamelCase ) - 1] < x: __lowercase = step step += int(math.floor(math.sqrt(lowerCamelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowercase = prev + 1 if prev == min(lowerCamelCase , lowerCamelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __UpperCamelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : List[str] = [int(item) for item in user_input.split(""",""")] __UpperCamelCase : Dict = int(input("""Enter the number to be searched:\n""")) __UpperCamelCase : List[Any] = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'''Number {x} is at index {res}''')
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
from manim import * class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = Rectangle(height=0.5 , width=0.5 ) __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""CPU""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) __lowercase = [mem.copy() for i in range(1 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""GPU""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.align_to(_lowerCAmelCase , _lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCAmelCase ) __lowercase = [mem.copy() for i in range(6 )] __lowercase = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) __lowercase = Text("""Model""" , font_size=24 ) __lowercase = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) , Create(_lowerCAmelCase , run_time=1 ) , ) __lowercase = MarkupText( F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) __lowercase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=2.5 ) , Write(_lowerCAmelCase ) , Write(_lowerCAmelCase ) ) self.add(_lowerCAmelCase ) __lowercase = [] __lowercase = [] __lowercase = [] for i, rect in enumerate(_lowerCAmelCase ): __lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(_lowerCAmelCase ) cpu_target.generate_target() __lowercase = 0.46 / 4 __lowercase = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowerCAmelCase , buff=0.0 ) cpu_targs.append(_lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCAmelCase ) ) second_animations.append(MoveToTarget(_lowerCAmelCase , run_time=1.5 ) ) self.play(*_lowerCAmelCase ) self.play(*_lowerCAmelCase ) self.wait()
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0