code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = 'timm_backbone' def __init__( self : str , _lowerCAmelCase : int=None , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[str] , ) -> int: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = backbone __lowercase = num_channels __lowercase = features_only __lowercase = use_pretrained_backbone __lowercase = True __lowercase = out_indices if out_indices is not None else (-1,)
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __lowercase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowercase = v else: __lowercase = v __lowercase = chkpt["""params"""] __lowercase = {n: v for n, v in config.items() if not isinstance(lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} __lowercase = chkpt["""dico_word2id"""] __lowercase = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()} # Save pytorch-model __lowercase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + """/""" + CONFIG_NAME __lowercase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , indent=2 ) + """\n""" ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __UpperCamelCase : Optional[Any] = HfArgumentParser(InitializationArguments) __UpperCamelCase : str = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __UpperCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __UpperCamelCase : Optional[int] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) __UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __UpperCamelCase : Optional[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Any = {"""vocab_file""": """vocab.json"""} __UpperCamelCase : Union[str, Any] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } __UpperCamelCase : List[Any] = {"""mgp-str""": 27} class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = VOCAB_FILES_NAMES __snake_case :Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : int="[GO]" , _lowerCAmelCase : Optional[int]="[GO]" , _lowerCAmelCase : List[str]="[s]" , _lowerCAmelCase : Tuple="[GO]" , **_lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" super().__init__( unk_token=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , **_lowerCAmelCase , ) with open(_lowerCAmelCase , encoding="""utf-8""" ) as vocab_handle: __lowercase = json.load(_lowerCAmelCase ) __lowercase = {v: k for k, v in self.vocab.items()} @property def _a ( self : int ) -> int: """simple docstring""" return len(self.vocab ) def _a ( self : List[str] ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def _a ( self : Any , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = [] for s in text: char_tokens.extend(_lowerCAmelCase ) return char_tokens def _a ( self : Any , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def _a ( self : Any , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return self.decoder.get(_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_lowerCAmelCase ) ) return __lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + """\n""" ) return (vocab_file,)
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' def get_matched_characters(lowerCamelCase , lowerCamelCase ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(lowerCamelCase ) __lowercase = F'{_stra[0:_stra.index(lowerCamelCase )]} {_stra[_stra.index(lowerCamelCase ) + 1:]}' return "".join(lowerCamelCase ) # matching characters __lowercase = get_matched_characters(lowerCamelCase , lowerCamelCase ) __lowercase = get_matched_characters(lowerCamelCase , lowerCamelCase ) __lowercase = len(lowerCamelCase ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(lowerCamelCase , lowerCamelCase ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(lowerCamelCase ) + match_count / len(lowerCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __lowercase = """""" else: __lowercase = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=True ): '''simple docstring''' __lowercase = ViTConfig() # patch_size if model_name[-1] == "8": __lowercase = 8 # set labels if required if not base_model: __lowercase = 1_000 __lowercase = """huggingface/label-files""" __lowercase = """imagenet-1k-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __lowercase = 384 __lowercase = 1_536 __lowercase = 12 __lowercase = 6 # load original model from torch hub __lowercase = torch.hub.load("""facebookresearch/dino:main""" , lowerCamelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys __lowercase = original_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase ) __lowercase = create_rename_keys(lowerCamelCase , base_model=lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_q_k_v(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # load HuggingFace model if base_model: __lowercase = ViTModel(lowerCamelCase , add_pooling_layer=lowerCamelCase ).eval() else: __lowercase = ViTForImageClassification(lowerCamelCase ).eval() model.load_state_dict(lowerCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor __lowercase = ViTImageProcessor() __lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase = encoding["""pixel_values"""] __lowercase = model(lowerCamelCase ) if base_model: __lowercase = original_model(lowerCamelCase ) assert torch.allclose(lowerCamelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: __lowercase = original_model(lowerCamelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase , outputs.logits , atol=1e-3 ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) __UpperCamelCase : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : str = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = DebertaVaTokenizer __snake_case :Optional[Any] = DebertaVaTokenizerFast __snake_case :int = True __snake_case :str = True def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = DebertaVaTokenizer(_lowerCAmelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : str , _lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" __lowercase = """this is a test""" __lowercase = """this is a test""" return input_text, output_text def _a ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = """<pad>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(_lowerCAmelCase ) , 3_0001 ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , do_lower_case=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" pass def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , do_lower_case=_lowerCAmelCase , split_by_punct=_lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) __lowercase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(_lowerCAmelCase ) __lowercase = rust_tokenizer.encode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = """This is a test""" __lowercase = [13, 1, 4398, 25, 21, 1289] __lowercase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = DebertaVaTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __lowercase = DebertaVaTokenizerFast(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) __lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # fmt: off __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __lowercase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = DebertaVaTokenizer(_lowerCAmelCase ) __lowercase = tokenizer.encode("""sequence builders""" ) __lowercase = tokenizer.encode("""multi-sequence build""" ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _lowerCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _lowerCAmelCase , ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {"""input_ids""": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __snake_case :str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) __snake_case :ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) __snake_case :ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) __snake_case :str = "question" __snake_case :str = "context" __snake_case :str = "answers" @property def _a ( self : Optional[int] ) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : Optional[Any] = 16 __UpperCamelCase : Tuple = 32 def snake_case ( lowerCamelCase , lowerCamelCase = 16 ): '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase = 16 elif accelerator.mixed_precision != "no": __lowercase = 8 else: __lowercase = None return tokenizer.pad( lowerCamelCase , padding="""longest""" , max_length=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : Optional[int] = mocked_dataloaders # noqa: F811 def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCamelCase ) == "1": __lowercase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: __lowercase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["""lr"""] __lowercase = int(config["""num_epochs"""] ) __lowercase = int(config["""seed"""] ) __lowercase = int(config["""batch_size"""] ) set_seed(lowerCamelCase ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase , lowerCamelCase ) __lowercase = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation __lowercase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase = batch_size // MAX_GPU_BATCH_SIZE __lowercase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase = model.to(accelerator.device ) # Instantiate optimizer __lowercase = AdamW(params=model.parameters() , lr=lowerCamelCase ) # Instantiate scheduler __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowercase = os.path.split(lowerCamelCase )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCamelCase , lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowercase = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase = model(**lowerCamelCase ) __lowercase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(lowerCamelCase ), """epoch""": epoch, } , step=lowerCamelCase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCamelCase , default=lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCamelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) __lowercase = parser.parse_args() __lowercase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True ): '''simple docstring''' print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowercase = timm.create_model("""levit_128s""" , pretrained=lowerCamelCase ) else: __lowercase = timm.create_model("""levit_128""" , pretrained=lowerCamelCase ) if hidden_sizes == 192: __lowercase = timm.create_model("""levit_192""" , pretrained=lowerCamelCase ) if hidden_sizes == 256: __lowercase = timm.create_model("""levit_256""" , pretrained=lowerCamelCase ) if hidden_sizes == 384: __lowercase = timm.create_model("""levit_384""" , pretrained=lowerCamelCase ) from_model.eval() __lowercase = LevitForImageClassificationWithTeacher(lowerCamelCase ).eval() __lowercase = OrderedDict() __lowercase = from_model.state_dict() __lowercase = list(from_model.state_dict().keys() ) __lowercase = list(our_model.state_dict().keys() ) print(len(lowerCamelCase ) , len(lowerCamelCase ) ) for i in range(len(lowerCamelCase ) ): __lowercase = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase ) __lowercase = torch.randn((2, 3, 224, 224) ) __lowercase = from_model(lowerCamelCase ) __lowercase = our_model(lowerCamelCase ).logits assert torch.allclose(lowerCamelCase , lowerCamelCase ), "The model logits don't match the original one." __lowercase = name print(lowerCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowercase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def snake_case ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True ): '''simple docstring''' __lowercase = """imagenet-1k-id2label.json""" __lowercase = 1_000 __lowercase = (1, num_labels) __lowercase = """huggingface/label-files""" __lowercase = num_labels __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = partial(lowerCamelCase , num_labels=lowerCamelCase , idalabel=lowerCamelCase , labelaid=lowerCamelCase ) __lowercase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __lowercase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase , names_to_config[model_name] , lowerCamelCase , lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ShapEPipeline __snake_case :Dict = ['prompt'] __snake_case :Union[str, Any] = ['prompt'] __snake_case :Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case :str = False @property def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" return 32 @property def _a ( self : Any ) -> Dict: """simple docstring""" return 32 @property def _a ( self : int ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : Optional[int] ) -> Any: """simple docstring""" return 8 @property def _a ( self : str ) -> Any: """simple docstring""" __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a ( self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCAmelCase ) @property def _a ( self : Any ) -> str: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase = PriorTransformer(**_lowerCAmelCase ) return model @property def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase = ShapERenderer(**_lowerCAmelCase ) return model def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.dummy_prior __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_renderer __lowercase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_lowerCAmelCase , clip_sample=_lowerCAmelCase , clip_sample_range=1.0 , ) __lowercase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any=0 ) -> List[Any]: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) __lowercase = output.images[0] __lowercase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = torch_device == """cpu""" __lowercase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCAmelCase , relax_max_difference=_lowerCAmelCase , ) def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = 1 __lowercase = 2 __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __lowercase = batch_size * [inputs[key]] __lowercase = pipe(**_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __lowercase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) __lowercase = pipe( """a shark""" , generator=_lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Dict=[1, 2, 1] , _lowerCAmelCase : Optional[int]=[2, 2, 4] , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Any=2.0 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Dict=True , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[str]=1e-5 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : str=8 , _lowerCAmelCase : str=["stage1", "stage2", "stage3"] , _lowerCAmelCase : List[str]=[1, 2, 3] , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = patch_norm __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = is_training __lowercase = scope __lowercase = use_labels __lowercase = type_sequence_label_size __lowercase = encoder_stride __lowercase = out_features __lowercase = out_indices def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _a ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase = MaskFormerSwinModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowercase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : List[str] ) -> Dict: """simple docstring""" __lowercase = MaskFormerSwinBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCAmelCase ): __lowercase = ["""stem"""] __lowercase = MaskFormerSwinBackbone(config=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __snake_case :Union[str, Any] = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __snake_case :str = False __snake_case :int = False __snake_case :Tuple = False __snake_case :Tuple = False __snake_case :Optional[Any] = False def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCAmelCase ) @unittest.skip("""Swin does not use inputs_embeds""" ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def _a ( self : Tuple ) -> Any: """simple docstring""" pass def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" pass def _a ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # Swin has a different seq_length __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowercase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowercase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowercase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True self.check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def _a ( self : int ) -> Tuple: """simple docstring""" pass def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCAmelCase : Optional[int] ): __lowercase = 0 return t def check_equivalence(_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : int={} ): with torch.no_grad(): __lowercase = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = model(**_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ).to_tuple() def recursive_check(_lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] ): if isinstance(_lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase , _lowerCAmelCase ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCAmelCase ) , set_nan_tensor_to_zero(_lowerCAmelCase ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}. Dict has' F' `nan`: {torch.isnan(_lowerCAmelCase ).any()} and `inf`: {torch.isinf(_lowerCAmelCase )}.' ) , ) recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"""output_hidden_states""": True} ) @require_torch class __UpperCamelCase ( unittest.TestCase , _lowerCAmelCase ): __snake_case :Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () __snake_case :Any = MaskFormerSwinConfig def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = MaskFormerSwinModelTester(self ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: __lowercase = backbone_class(_lowerCAmelCase ) backbone.to(_lowerCAmelCase ) backbone.eval() __lowercase = backbone(**_lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowercase = backbone(**_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowercase , __lowercase , __lowercase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowercase = backbone(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
from functools import lru_cache def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 2 __lowercase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCamelCase ) if n > 1: factors.add(lowerCamelCase ) return factors @lru_cache def snake_case ( lowerCamelCase ): '''simple docstring''' return len(unique_prime_factors(lowerCamelCase ) ) def snake_case ( lowerCamelCase ): '''simple docstring''' return len(set(lowerCamelCase ) ) in (0, 1) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 2 while True: # Increment each value of a generated range __lowercase = [base + i for i in range(lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase = [upf_len(lowerCamelCase ) for x in group] checker.append(lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def snake_case ( lowerCamelCase = 4 ): '''simple docstring''' __lowercase = run(lowerCamelCase ) return results[0] if len(lowerCamelCase ) else None if __name__ == "__main__": print(solution())
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCamelCase : List[str] = get_logger(__name__) class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : Optional[str] = None ) -> Tuple: """simple docstring""" __lowercase = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowercase = Extractor def _a ( self : str , _lowerCAmelCase : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowercase = os.path.abspath(_lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase ) ) def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(_lowerCAmelCase ) and not (os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase )) ) def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" __lowercase = self.extractor.infer_extractor_format(_lowerCAmelCase ) if not extractor_format: return input_path __lowercase = self._get_output_path(_lowerCAmelCase ) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase ): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return output_path class __UpperCamelCase ( _lowerCAmelCase ): @classmethod @abstractmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" ... class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[bytes] = [] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" with open(_lowerCAmelCase , """rb""" ) as f: return f.read(_lowerCAmelCase ) @classmethod def _a ( cls : Any , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __lowercase = max(len(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: __lowercase = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __UpperCamelCase ( _lowerCAmelCase ): @classmethod def _a ( cls : Dict , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : str ) -> bool: """simple docstring""" return tarfile.is_tarfile(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" def resolved(_lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase ) ) def badpath(_lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ).startswith(_lowerCAmelCase ) def badlink(_lowerCAmelCase : Any , _lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowercase = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowerCAmelCase ) __lowercase = resolved(_lowerCAmelCase ) for finfo in members: if badpath(finfo.name , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase ) ) tar_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x1F\x8B'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(_lowerCAmelCase , """rb""" ) as gzip_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _a ( cls : Optional[Any] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""" ) as fp: __lowercase = _EndRecData(_lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowercase = fp.read(_lowerCAmelCase ) # CD is where we expect it to be if len(_lowerCAmelCase ) == sizeCentralDir: __lowercase = struct.unpack(_lowerCAmelCase , _lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with zipfile.ZipFile(_lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(_lowerCAmelCase ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = rarfile.RarFile(_lowerCAmelCase ) rf.extractall(_lowerCAmelCase ) rf.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [B'\x28\xb5\x2F\xFD'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowercase = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""" ) as ifh, open(_lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x42\x5A\x68'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with bza.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with pyazr.SevenZipFile(_lowerCAmelCase , """r""" ) as archive: archive.extractall(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\x04\x22\x4D\x18'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __snake_case :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return max( len(_lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> Dict: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase ) except OSError: return b"" @classmethod def _a ( cls : str , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = cls.infer_extractor_format(_lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls : Optional[int] , _lowerCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __lowercase = cls._get_magic_number_max_length() __lowercase = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return extractor_format @classmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(_lowerCAmelCase ) , exist_ok=_lowerCAmelCase ) # Prevent parallel extractions __lowercase = str(Path(_lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = extractor if extractor != """deprecated""" else extractor_format else: __lowercase = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase ): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : Union[str, Any] = logging.getLogger() __UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : int , _lowerCAmelCase : Dict ) -> Dict: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = {"""source""": """What is love ?""", """target""": """life"""} __lowercase = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: __lowercase = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(_lowerCAmelCase , F'{split}.{field}' ) , """w""" ) as f: f.write(_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : str = "pytorch" ) -> Tuple: """simple docstring""" __lowercase = self.get_auto_remove_tmp_dir() __lowercase = os.path.join(_lowerCAmelCase , """output""" ) __lowercase = os.path.join(_lowerCAmelCase , """data""" ) self._create_dummy_data(data_dir=_lowerCAmelCase ) __lowercase = F'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split() if gpus > 0: testargs.append(F'--gpus={gpus}' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) __lowercase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(_lowerCAmelCase , env=self.get_env() ) __lowercase = os.path.join(_lowerCAmelCase , """metrics.json""" ) with open(_lowerCAmelCase ) as f: __lowercase = json.load(_lowerCAmelCase ) return result @require_torch_gpu def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def snake_case ( lowerCamelCase ): '''simple docstring''' def is_in_circle(lowerCamelCase , lowerCamelCase ) -> bool: __lowercase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __lowercase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. __lowercase = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(lowerCamelCase , lowerCamelCase ) ) for _ in range(lowerCamelCase ) ) * (max_value - min_value) def snake_case ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): '''simple docstring''' def identity_function(lowerCamelCase ) -> float: return x __lowercase = area_under_curve_estimator( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' def function_to_integrate(lowerCamelCase ) -> float: return sqrt(4.0 - x * x ) __lowercase = area_under_curve_estimator( lowerCamelCase , lowerCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=3 , _lowerCAmelCase : int=32 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=10 , _lowerCAmelCase : Union[str, Any]=[10, 20, 30, 40] , _lowerCAmelCase : List[str]=[1, 1, 2, 1] , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[Any]="relu" , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=None , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(_lowerCAmelCase ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = self.get_config() return config, pixel_values def _a ( self : Optional[Any] ) -> int: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = FlaxRegNetModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : int ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = FlaxRegNetForImageClassification(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Dict ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case :Tuple = False __snake_case :List[Any] = False __snake_case :Dict = False def _a ( self : Any ) -> None: """simple docstring""" __lowercase = FlaxRegNetModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Optional[int] ) -> str: """simple docstring""" return def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _a ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _a ( self : Tuple ) -> Dict: """simple docstring""" pass def _a ( self : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model_class(_lowerCAmelCase ) @jax.jit def model_jitted(_lowerCAmelCase : Any , **_lowerCAmelCase : Optional[int] ): return model(pixel_values=_lowerCAmelCase , **_lowerCAmelCase ) with self.subTest("""JIT Enabled""" ): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowercase = model_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Dict ) -> Tuple: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = (1, 1000) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case ( lowerCamelCase=None ): '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("""env""" ) else: __lowercase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=lowerCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = is_xpu_available() __lowercase = is_npu_available() __lowercase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCamelCase ): __lowercase = load_config_from_file(args.config_file ).to_dict() __lowercase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})', """PyTorch XPU available""": str(lowerCamelCase ), """PyTorch NPU available""": str(lowerCamelCase ), """System RAM""": F'{psutil.virtual_memory().total / 1_024 ** 3:.2f} GB', } if pt_cuda_available: __lowercase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) __lowercase = ( """\n""".join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(lowerCamelCase , lowerCamelCase ) else F'\t{accelerate_config}' ) print(lowerCamelCase ) __lowercase = accelerate_config return info def snake_case ( ): '''simple docstring''' __lowercase = env_command_parser() __lowercase = parser.parse_args() env_command(lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import os def snake_case ( ): '''simple docstring''' __lowercase = os.path.dirname(os.path.realpath(lowerCamelCase ) ) __lowercase = os.path.join(lowerCamelCase , """triangle.txt""" ) with open(lowerCamelCase ) as f: __lowercase = f.readlines() __lowercase = [] for line in triangle: __lowercase = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase ) ) a.append(lowerCamelCase ) for i in range(1 , len(lowerCamelCase ) ): for j in range(len(a[i] ) ): __lowercase = a[i - 1][j] if j != len(a[i - 1] ) else 0 __lowercase = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase , lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCamelCase : Optional[int] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __UpperCamelCase : List[str] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) __UpperCamelCase : Optional[int] = """|""".join(sys.argv[1:]) __UpperCamelCase : Union[str, Any] = re.compile(rF'''^({joined_dirs}).*?\.py$''') __UpperCamelCase : Tuple = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __UpperCamelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : int , _lowerCAmelCase : GenericTensor ) -> np.ndarray: """simple docstring""" if self.framework == "tf": __lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _a ( self : List[str] , _lowerCAmelCase : GenericTensor ) -> np.ndarray: """simple docstring""" __lowercase = self.get_masked_index(_lowerCAmelCase ) __lowercase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , F'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def _a ( self : List[Any] , _lowerCAmelCase : GenericTensor ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowerCAmelCase ) def _a ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[str] ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: __lowercase = self.framework __lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) self.ensure_exactly_one_mask_token(_lowerCAmelCase ) return model_inputs def _a ( self : List[Any] , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" __lowercase = self.model(**_lowerCAmelCase ) __lowercase = model_inputs["""input_ids"""] return model_outputs def _a ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str=5 , _lowerCAmelCase : str=None ) -> Tuple: """simple docstring""" if target_ids is not None and target_ids.shape[0] < top_k: __lowercase = target_ids.shape[0] __lowercase = model_outputs["""input_ids"""][0] __lowercase = model_outputs["""logits"""] if self.framework == "tf": __lowercase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowercase = outputs.numpy() __lowercase = outputs[0, masked_index, :] __lowercase = stable_softmax(_lowerCAmelCase , axis=-1 ) if target_ids is not None: __lowercase = tf.gather_nd(tf.squeeze(_lowerCAmelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowercase = tf.expand_dims(_lowerCAmelCase , 0 ) __lowercase = tf.math.top_k(_lowerCAmelCase , k=_lowerCAmelCase ) __lowercase , __lowercase = topk.values.numpy(), topk.indices.numpy() else: __lowercase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowerCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowercase = outputs[0, masked_index, :] __lowercase = logits.softmax(dim=-1 ) if target_ids is not None: __lowercase = probs[..., target_ids] __lowercase , __lowercase = probs.topk(_lowerCAmelCase ) __lowercase = [] __lowercase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowercase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowercase = input_ids.numpy().copy() if target_ids is not None: __lowercase = target_ids[p].tolist() __lowercase = p # Filter padding out: __lowercase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowercase = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) __lowercase = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) if single_mask: return result[0] return result def _a ( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None ) -> Union[str, Any]: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [targets] try: __lowercase = self.tokenizer.get_vocab() except Exception: __lowercase = {} __lowercase = [] for target in targets: __lowercase = vocab.get(_lowerCAmelCase , _lowerCAmelCase ) if id_ is None: __lowercase = self.tokenizer( _lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , max_length=1 , truncation=_lowerCAmelCase , )["""input_ids"""] if len(_lowerCAmelCase ) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' """We cannot replace it with anything meaningful, ignoring it""" ) continue __lowercase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __lowercase = list(set(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) __lowercase = np.array(_lowerCAmelCase ) return target_ids def _a ( self : Any , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None ) -> Tuple: """simple docstring""" __lowercase = {} if targets is not None: __lowercase = self.get_target_ids(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = target_ids if top_k is not None: __lowercase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self : str , _lowerCAmelCase : Optional[int] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1: return outputs[0] return outputs
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
from __future__ import annotations import requests __UpperCamelCase : Optional[Any] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def snake_case ( lowerCamelCase , lowerCamelCase = 1 , lowerCamelCase = "new" , lowerCamelCase = None ): '''simple docstring''' __lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase ) - valid_terms ) ): __lowercase = F'Invalid search term: {invalid_search_terms}' raise ValueError(lowerCamelCase ) __lowercase = requests.get( F'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"""User-agent""": """A random string"""} , ) if response.status_code == 429: raise requests.HTTPError __lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase )} __lowercase = {} for id_ in range(lowerCamelCase ): __lowercase = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = """laion/clap-htsat-unfused""" __lowercase = tempfile.mkdtemp() def _a ( self : Any , **_lowerCAmelCase : Any ) -> Any: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , **_lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase = self.get_feature_extractor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) __lowercase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) __lowercase = floats_list((3, 1000) ) __lowercase = feature_extractor(_lowerCAmelCase , return_tensors="""np""" ) __lowercase = processor(audios=_lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _a ( self : str ) -> int: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) __lowercase = """This is a test string""" __lowercase = processor(text=_lowerCAmelCase ) __lowercase = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : Any ) -> int: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(_lowerCAmelCase ) __lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = ClapProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
import unittest from knapsack import greedy_knapsack as kp class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = [10, 20, 30, 40, 50, 60] __lowercase = [2, 4, 6, 8, 10, 12] __lowercase = 100 self.assertEqual(kp.calc_profit(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , 210 ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , """max_weight must greater than zero.""" ) def _a ( self : Dict ) -> List[str]: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , """Weight can not be negative.""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , """Profit can not be negative.""" ) def _a ( self : Tuple ) -> int: """simple docstring""" self.assertRaisesRegex(_lowerCAmelCase , """max_weight must greater than zero.""" ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" self.assertRaisesRegex( _lowerCAmelCase , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
import qiskit def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __lowercase = qiskit.QuantumCircuit(lowerCamelCase , lowerCamelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowercase = qiskit.execute(lowerCamelCase , lowerCamelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
from __future__ import annotations import math from collections.abc import Callable def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 100 , ): '''simple docstring''' __lowercase = x_start __lowercase = fnc(lowerCamelCase ) __lowercase = 0.0 for _ in range(lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowercase = xa __lowercase = fxa return length if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __UpperCamelCase : Any = 10 while i <= 100000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __UpperCamelCase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :str = field( default=_lowerCAmelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(_lowerCAmelCase )} ) __snake_case :str = field( default=_lowerCAmelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :int = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __snake_case :int = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __snake_case :int = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __snake_case :float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __snake_case :int = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __snake_case :int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __snake_case :int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'train' __snake_case :Union[str, Any] = 'dev' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :SquadDataTrainingArguments __snake_case :List[SquadFeatures] __snake_case :Split __snake_case :bool def __init__( self : Union[str, Any] , _lowerCAmelCase : SquadDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = "pt" , ) -> int: """simple docstring""" __lowercase = args __lowercase = is_language_sensitive __lowercase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __lowercase = mode # Load data features from cache or dataset file __lowercase = """v2""" if args.version_2_with_negative else """v1""" __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __lowercase = self.old_features["""features"""] __lowercase = self.old_features.get("""dataset""" , _lowerCAmelCase ) __lowercase = self.old_features.get("""examples""" , _lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) __lowercase , __lowercase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCAmelCase , ) __lowercase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowerCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : str ) -> str: """simple docstring""" return len(self.features ) def __getitem__( self : Any , _lowerCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" __lowercase = self.features[i] __lowercase = torch.tensor(feature.input_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.attention_mask , dtype=torch.long ) __lowercase = torch.tensor(feature.token_type_ids , dtype=torch.long ) __lowercase = torch.tensor(feature.cls_index , dtype=torch.long ) __lowercase = torch.tensor(feature.p_mask , dtype=torch.float ) __lowercase = torch.tensor(feature.is_impossible , dtype=torch.float ) __lowercase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __lowercase = torch.tensor(feature.start_position , dtype=torch.long ) __lowercase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def snake_case ( lowerCamelCase ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = np.max(_outputs , axis=-1 , keepdims=lowerCamelCase ) __lowercase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCamelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = 'sigmoid' __snake_case :List[str] = 'softmax' __snake_case :Any = 'none' @add_end_docstrings( _lowerCAmelCase , R'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = False __snake_case :int = ClassificationFunction.NONE def __init__( self : Optional[Any] , **_lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _a ( self : Optional[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]="" , **_lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = tokenizer_kwargs __lowercase = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __lowercase = self.model.config.return_all_scores if isinstance(_lowerCAmelCase , _lowerCAmelCase ) or top_k is None: __lowercase = top_k __lowercase = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , _lowerCAmelCase , ) if return_all_scores: __lowercase = None else: __lowercase = 1 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowercase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : int , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowercase = """top_k""" not in kwargs if isinstance(args[0] , _lowerCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _a ( self : Union[str, Any] , _lowerCAmelCase : str , **_lowerCAmelCase : Tuple ) -> Dict[str, GenericTensor]: """simple docstring""" __lowercase = self.framework if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return self.tokenizer(**_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) == 1 and isinstance(inputs[0] , _lowerCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" return self.model(**_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=1 , _lowerCAmelCase : List[str]=True ) -> Dict: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowercase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowercase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __lowercase = self.model.config.function_to_apply else: __lowercase = ClassificationFunction.NONE __lowercase = model_outputs["""logits"""][0] __lowercase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowercase = sigmoid(_lowerCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowercase = softmax(_lowerCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: __lowercase = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowercase = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(_lowerCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda _lowerCAmelCase : x["score"] , reverse=_lowerCAmelCase ) if top_k is not None: __lowercase = dict_scores[:top_k] return dict_scores
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") __UpperCamelCase , __UpperCamelCase : Union[str, Any] = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") __UpperCamelCase : int = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: __UpperCamelCase : Dict = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCamelCase : int = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(_lowerCAmelCase ) ) def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __lowercase = """fp16""" self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] __lowercase = """fp16""" self.assertTrue(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] __lowercase = """fp16""" self.assertFalse(is_safetensors_compatible(_lowerCAmelCase , variant=_lowerCAmelCase ) )
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """file.csv""" __lowercase = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """malformed_file.csv""" __lowercase = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """csv_with_image.csv""" __lowercase = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """csv_with_label.csv""" __lowercase = textwrap.dedent( """\ label good bad good """ ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path / """csv_with_int_list.csv""" __lowercase = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = Csv() __lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowerCamelCase , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , encoding="""utf-8""" ) as f: __lowercase = f.read().splitlines()[1] __lowercase = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) __lowercase = csv._generate_tables([[csv_file_with_image]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() __lowercase = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , encoding="""utf-8""" ) as f: __lowercase = f.read().splitlines()[1:] __lowercase = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) __lowercase = csv._generate_tables([[csv_file_with_label]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() __lowercase = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowerCamelCase ) for label in labels] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda lowerCamelCase : [int(lowerCamelCase ) for i in x.split()]} ) __lowercase = csv._generate_tables([[csv_file_with_int_list]] ) __lowercase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) __lowercase = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __UpperCamelCase : List[Any] = NewType("""DataClass""", Any) __UpperCamelCase : str = NewType("""DataClassType""", Any) def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , lowerCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {str(lowerCamelCase ): choice for choice in choices} return lambda lowerCamelCase : str_to_choice.get(lowerCamelCase , lowerCamelCase ) def snake_case ( *, lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = dataclasses.MISSING , lowerCamelCase = dataclasses.MISSING , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __lowercase = {} if aliases is not None: __lowercase = aliases if help is not None: __lowercase = help return dataclasses.field(metadata=lowerCamelCase , default=lowerCamelCase , default_factory=lowerCamelCase , **lowerCamelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Iterable[DataClassType] def __init__( self : Union[str, Any] , _lowerCAmelCase : Union[DataClassType, Iterable[DataClassType]] , **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if "formatter_class" not in kwargs: __lowercase = ArgumentDefaultsHelpFormatter super().__init__(**_lowerCAmelCase ) if dataclasses.is_dataclass(_lowerCAmelCase ): __lowercase = [dataclass_types] __lowercase = list(_lowerCAmelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : ArgumentParser , _lowerCAmelCase : dataclasses.Field ) -> int: """simple docstring""" __lowercase = F'--{field.name}' __lowercase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _lowerCAmelCase ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) __lowercase = kwargs.pop("""aliases""" , [] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = [aliases] __lowercase = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(_lowerCAmelCase , """UnionType""" ) and isinstance(_lowerCAmelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_lowerCAmelCase ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F' Problem encountered in field \'{field.name}\'.' ) if type(_lowerCAmelCase ) not in field.type.__args__: # filter `str` in Union __lowercase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __lowercase = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __lowercase = ( field.type.__args__[0] if isinstance(_lowerCAmelCase , field.type.__args__[1] ) else field.type.__args__[1] ) __lowercase = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __lowercase = {} if origin_type is Literal or (isinstance(field.type , _lowerCAmelCase ) and issubclass(field.type , _lowerCAmelCase )): if origin_type is Literal: __lowercase = field.type.__args__ else: __lowercase = [x.value for x in field.type] __lowercase = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: __lowercase = field.default else: __lowercase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __lowercase = copy(_lowerCAmelCase ) # Hack because type=bool in argparse does not behave as we want. __lowercase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __lowercase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __lowercase = default # This tells argparse we accept 0 or 1 value after --field_name __lowercase = """?""" # This is the value that will get picked if we do --field_name (without value) __lowercase = True elif isclass(_lowerCAmelCase ) and issubclass(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = field.type.__args__[0] __lowercase = """+""" if field.default_factory is not dataclasses.MISSING: __lowercase = field.default_factory() elif field.default is dataclasses.MISSING: __lowercase = True else: __lowercase = field.type if field.default is not dataclasses.MISSING: __lowercase = field.default elif field.default_factory is not dataclasses.MISSING: __lowercase = field.default_factory() else: __lowercase = True parser.add_argument(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __lowercase = False parser.add_argument(F'--no_{field.name}' , action="""store_false""" , dest=field.name , **_lowerCAmelCase ) def _a ( self : List[str] , _lowerCAmelCase : DataClassType ) -> List[Any]: """simple docstring""" if hasattr(_lowerCAmelCase , """_argument_group_name""" ): __lowercase = self.add_argument_group(dtype._argument_group_name ) else: __lowercase = self try: __lowercase = get_type_hints(_lowerCAmelCase ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_lowerCAmelCase ): __lowercase = """.""".join(map(_lowerCAmelCase , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(_lowerCAmelCase ): if not field.init: continue __lowercase = type_hints[field.name] self._parse_dataclass_field(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __lowercase = [] if args_filename: args_files.append(Path(_lowerCAmelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __lowercase = ArgumentParser() args_file_parser.add_argument(_lowerCAmelCase , type=_lowerCAmelCase , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) __lowercase , __lowercase = args_file_parser.parse_known_args(args=_lowerCAmelCase ) __lowercase = vars(_lowerCAmelCase ).get(args_file_flag.lstrip("""-""" ) , _lowerCAmelCase ) if cmd_args_file_paths: args_files.extend([Path(_lowerCAmelCase ) for p in cmd_args_file_paths] ) __lowercase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __lowercase = file_args + args if args is not None else file_args + sys.argv[1:] __lowercase , __lowercase = self.parse_known_args(args=_lowerCAmelCase ) __lowercase = [] for dtype in self.dataclass_types: __lowercase = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} __lowercase = {k: v for k, v in vars(_lowerCAmelCase ).items() if k in keys} for k in keys: delattr(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_lowerCAmelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def _a ( self : int , _lowerCAmelCase : Dict[str, Any] , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" __lowercase = set(args.keys() ) __lowercase = [] for dtype in self.dataclass_types: __lowercase = {f.name for f in dataclasses.fields(_lowerCAmelCase ) if f.init} __lowercase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __lowercase = dtype(**_lowerCAmelCase ) outputs.append(_lowerCAmelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(_lowerCAmelCase )}' ) return tuple(_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(_lowerCAmelCase ) , encoding="""utf-8""" ) as open_json_file: __lowercase = json.loads(open_json_file.read() ) __lowercase = self.parse_dict(_lowerCAmelCase , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> Tuple[DataClass, ...]: """simple docstring""" __lowercase = self.parse_dict(yaml.safe_load(Path(_lowerCAmelCase ).read_text() ) , allow_extra_keys=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case ( lowerCamelCase=None , lowerCamelCase=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=lowerCamelCase ) @dataclass class __UpperCamelCase : __snake_case :str = field( metadata={'help': 'The csv file to plot.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Disable logarithmic scale when plotting'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , ) __snake_case :Optional[List[str]] = list_field( default=_lowerCAmelCase , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def snake_case ( lowerCamelCase ): '''simple docstring''' try: int(lowerCamelCase ) return True except ValueError: return False def snake_case ( lowerCamelCase ): '''simple docstring''' try: float(lowerCamelCase ) return True except ValueError: return False class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = args __lowercase = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: __lowercase = csv.DictReader(_lowerCAmelCase ) for row in reader: __lowercase = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None __lowercase = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None __lowercase = float(row["""result"""] ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = plt.subplots() __lowercase = """Time usage""" if self.args.is_time else """Memory usage""" __lowercase = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) __lowercase = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) __lowercase = self.result_dict[model_name]["""result"""] ((__lowercase) , (__lowercase)) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_lowerCAmelCase , ) else: __lowercase = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase) , (__lowercase)) = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) __lowercase = np.asarray(_lowerCAmelCase , _lowerCAmelCase )[: len(_lowerCAmelCase )] plt.scatter( _lowerCAmelCase , _lowerCAmelCase , label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(_lowerCAmelCase , _lowerCAmelCase , """--""" ) title_str += F' {label_model_name} vs.' __lowercase = title_str[:-4] __lowercase = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(_lowerCAmelCase ) plt.xlabel(_lowerCAmelCase ) plt.ylabel(_lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = parser.parse_args_into_dataclasses()[0] __lowercase = Plot(args=lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Tuple=8 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=36 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : str=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[int]=None , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Any ) -> int: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_config() __lowercase = 300 return config def _a ( self : List[str] ) -> Dict: """simple docstring""" ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = self.prepare_config_and_inputs() __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowercase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , ) -> str: """simple docstring""" __lowercase = True __lowercase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowercase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.num_choices __lowercase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __snake_case :List[Any] = False __snake_case :List[str] = False __snake_case :Dict = False __snake_case :Tuple = False __snake_case :Optional[Any] = () def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = MraModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" return @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __lowercase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __lowercase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = 5_0265 __lowercase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __lowercase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __lowercase = model(_lowerCAmelCase )[0] __lowercase = 5_0265 __lowercase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = ProphetNetTokenizer __snake_case :List[str] = False def _a ( self : Union[str, Any] ) -> str: """simple docstring""" super().setUp() __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = """UNwant\u00E9d,running""" __lowercase = """unwanted, running""" return input_text, output_text def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _a ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase , strip_accents=_lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _a ( self : List[Any] ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowercase = {} for i, token in enumerate(_lowerCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowercase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowercase = [1037, 2146, 2_0423, 2005, 7680, 7849, 3989, 1012, 102] __lowercase = tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[int] = None __snake_case :Union[str, Any] = BloomTokenizerFast __snake_case :List[Any] = BloomTokenizerFast __snake_case :Union[str, Any] = True __snake_case :List[Any] = False __snake_case :Dict = 'tokenizer_file' __snake_case :int = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().setUp() __lowercase = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : Dict , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __lowercase = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] __lowercase = tokenizer.batch_encode_plus(_lowerCAmelCase )["""input_ids"""] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict=6 ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowercase = """This is a simple input""" __lowercase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase = ("""This is a simple input""", """This is a pair""") __lowercase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.encode(_lowerCAmelCase , max_length=_lowerCAmelCase ) tokenizer_r.batch_encode_plus(_lowerCAmelCase , max_length=_lowerCAmelCase ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __lowercase = None # Hotfixing padding = None self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCAmelCase , tokenizer_r.encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCAmelCase , tokenizer_r.batch_encode_plus , _lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , ) def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=_lowerCAmelCase ) __lowercase = next(iter(_lowerCAmelCase ) )["""premise"""] # pick up one data __lowercase = list(sample_data.values() ) __lowercase = list(map(tokenizer.encode , _lowerCAmelCase ) ) __lowercase = [tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) for x in output_tokens] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if numbers[j] < numbers[i]: __lowercase , __lowercase = numbers[j], numbers[i] return numbers if __name__ == "__main__": __UpperCamelCase : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : int = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : int = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["""CLIPFeatureExtractor"""] __UpperCamelCase : Optional[int] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :"DiagonalGaussianDistribution" class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Dict = True @register_to_config def __init__( self : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _lowerCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _lowerCAmelCase : Tuple[int] = (64,) , _lowerCAmelCase : int = 1 , _lowerCAmelCase : str = "silu" , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : float = 0.18_215 , ) -> Dict: """simple docstring""" super().__init__() # pass init params to Encoder __lowercase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) # pass init params to Decoder __lowercase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , act_fn=_lowerCAmelCase , ) __lowercase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) __lowercase = False __lowercase = False # only relevant if vae tiling is enabled __lowercase = self.config.sample_size __lowercase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowercase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowercase = 0.25 def _a ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=False ) -> List[str]: """simple docstring""" if isinstance(_lowerCAmelCase , (Encoder, Decoder) ): __lowercase = value def _a ( self : Union[str, Any] , _lowerCAmelCase : bool = True ) -> Union[str, Any]: """simple docstring""" __lowercase = use_tiling def _a ( self : Dict ) -> Tuple: """simple docstring""" self.enable_tiling(_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = True def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _a ( self : Dict ) -> Dict[str, AttentionProcessor]: """simple docstring""" __lowercase = {} def fn_recursive_add_processors(_lowerCAmelCase : str , _lowerCAmelCase : torch.nn.Module , _lowerCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_lowerCAmelCase , """set_processor""" ): __lowercase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , _lowerCAmelCase , _lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return processors def _a ( self : Tuple , _lowerCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Any: """simple docstring""" __lowercase = len(self.attn_processors.keys() ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(_lowerCAmelCase )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(_lowerCAmelCase : str , _lowerCAmelCase : torch.nn.Module , _lowerCAmelCase : str ): if hasattr(_lowerCAmelCase , """set_processor""" ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): module.set_processor(_lowerCAmelCase ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , _lowerCAmelCase , _lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Tuple ) -> Any: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def _a ( self : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowercase = [self.encoder(_lowerCAmelCase ) for x_slice in x.split(1 )] __lowercase = torch.cat(_lowerCAmelCase ) else: __lowercase = self.encoder(_lowerCAmelCase ) __lowercase = self.quant_conv(_lowerCAmelCase ) __lowercase = DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_lowerCAmelCase , return_dict=_lowerCAmelCase ) __lowercase = self.post_quant_conv(_lowerCAmelCase ) __lowercase = self.decoder(_lowerCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) @apply_forward_hook def _a ( self : Optional[int] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: __lowercase = [self._decode(_lowerCAmelCase ).sample for z_slice in z.split(1 )] __lowercase = torch.cat(_lowerCAmelCase ) else: __lowercase = self._decode(_lowerCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_lowerCAmelCase ) def _a ( self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = min(a.shape[2] , b.shape[2] , _lowerCAmelCase ) for y in range(_lowerCAmelCase ): __lowercase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = min(a.shape[3] , b.shape[3] , _lowerCAmelCase ) for x in range(_lowerCAmelCase ): __lowercase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _a ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> AutoencoderKLOutput: """simple docstring""" __lowercase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowercase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowercase = [] for i in range(0 , x.shape[2] , _lowerCAmelCase ): __lowercase = [] for j in range(0 , x.shape[3] , _lowerCAmelCase ): __lowercase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowercase = self.encoder(_lowerCAmelCase ) __lowercase = self.quant_conv(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) __lowercase = [] for i, row in enumerate(_lowerCAmelCase ): __lowercase = [] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: __lowercase = self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) __lowercase = torch.cat(_lowerCAmelCase , dim=2 ) __lowercase = DiagonalGaussianDistribution(_lowerCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __lowercase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowercase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowercase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowercase = [] for i in range(0 , z.shape[2] , _lowerCAmelCase ): __lowercase = [] for j in range(0 , z.shape[3] , _lowerCAmelCase ): __lowercase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowercase = self.post_quant_conv(_lowerCAmelCase ) __lowercase = self.decoder(_lowerCAmelCase ) row.append(_lowerCAmelCase ) rows.append(_lowerCAmelCase ) __lowercase = [] for i, row in enumerate(_lowerCAmelCase ): __lowercase = [] for j, tile in enumerate(_lowerCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowercase = self.blend_v(rows[i - 1][j] , _lowerCAmelCase , _lowerCAmelCase ) if j > 0: __lowercase = self.blend_h(row[j - 1] , _lowerCAmelCase , _lowerCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_lowerCAmelCase , dim=3 ) ) __lowercase = torch.cat(_lowerCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def _a ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __lowercase = sample __lowercase = self.encode(_lowerCAmelCase ).latent_dist if sample_posterior: __lowercase = posterior.sample(generator=_lowerCAmelCase ) else: __lowercase = posterior.mode() __lowercase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = 'audio-spectrogram-transformer' def __init__( self : Any , _lowerCAmelCase : Optional[Any]=768 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[Any]=12 , _lowerCAmelCase : Optional[Any]=3072 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[Any]=10 , _lowerCAmelCase : Dict=10 , _lowerCAmelCase : Optional[Any]=1024 , _lowerCAmelCase : Optional[int]=128 , **_lowerCAmelCase : Optional[Any] , ) -> str: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = patch_size __lowercase = qkv_bias __lowercase = frequency_stride __lowercase = time_stride __lowercase = max_length __lowercase = num_mel_bins
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Any = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :int = ['pixel_values'] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 255 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowerCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = size if size is not None else {"""shortest_edge""": 224} __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowercase = int((256 / 224) * size["""shortest_edge"""] ) __lowercase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _lowerCAmelCase , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : str , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : List[Any] , ) -> np.ndarray: """simple docstring""" return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Any , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : List[Any] , ) -> BatchFeature: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(_lowerCAmelCase , param_name="""crop_size""" ) __lowercase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: __lowercase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] __lowercase = {"""pixel_values""": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=13 , _lowerCAmelCase : str=3 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : str=224 , _lowerCAmelCase : Tuple=1000 , _lowerCAmelCase : str=[3, 3, 6, 4] , _lowerCAmelCase : str=[48, 56, 112, 220] , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = num_labels __lowercase = image_size __lowercase = layer_depths __lowercase = embed_dims def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> List[Any]: """simple docstring""" return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1e-5 , ) def _a ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : int ) -> Any: """simple docstring""" ((__lowercase) , (__lowercase) , (__lowercase)) = self.prepare_config_and_inputs() __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __snake_case :List[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __snake_case :Tuple = False __snake_case :List[Any] = False __snake_case :List[str] = False __snake_case :Tuple = False __snake_case :int = False def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = SwiftFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self : Tuple ) -> str: """simple docstring""" pass def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" def _config_zero_init(_lowerCAmelCase : Union[str, Any] ): __lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1e-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): __lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : int ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([[-2.1703e00, 2.1107e00, -2.0811e00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
import argparse from collections import defaultdict def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(lowerCamelCase , """r""" ) as f: __lowercase = f.readlines() __lowercase = F'class {class_name}(' __lowercase = F'{4 * " "}def {test_name}(' __lowercase = F'{8 * " "}{correct_line.split()[0]}' __lowercase = F'{16 * " "}{correct_line.split()[0]}' __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = 0 __lowercase = 0 __lowercase = [] for line in lines: if line.startswith(lowerCamelCase ): __lowercase = True elif in_class and line.startswith(lowerCamelCase ): __lowercase = True elif in_class and in_func and (line.startswith(lowerCamelCase ) or line.startswith(lowerCamelCase )): __lowercase = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowercase = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowercase = True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) __lowercase = __lowercase = __lowercase = __lowercase = False else: new_lines.append(lowerCamelCase ) with open(lowerCamelCase , """w""" ) as f: for line in new_lines: f.write(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' if fail is not None: with open(lowerCamelCase , """r""" ) as f: __lowercase = {l.strip() for l in f.readlines()} else: __lowercase = None with open(lowerCamelCase , """r""" ) as f: __lowercase = f.readlines() __lowercase = defaultdict(lowerCamelCase ) for line in correct_lines: __lowercase , __lowercase , __lowercase , __lowercase = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) __UpperCamelCase : int = parser.parse_args() main(args.correct_filename, args.fail_filename)
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) __UpperCamelCase : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case ( lowerCamelCase , lowerCamelCase=100 , lowerCamelCase=" " ): '''simple docstring''' __lowercase = text.split(lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCamelCase ) , lowerCamelCase )] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(lowerCamelCase ): titles.append(title if title is not None else """""" ) texts.append(lowerCamelCase ) return {"title": titles, "text": texts} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __lowercase = ctx_encoder(input_ids.to(device=lowerCamelCase ) , return_dict=lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowercase = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowercase = dataset.map(lowerCamelCase , batched=lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCamelCase ) __lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowercase = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __lowercase = dataset.map( partial(lowerCamelCase , ctx_encoder=lowerCamelCase , ctx_tokenizer=lowerCamelCase ) , batched=lowerCamelCase , batch_size=processing_args.batch_size , features=lowerCamelCase , ) # And finally save your dataset __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=lowerCamelCase ) # And save the index __lowercase = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __UpperCamelCase : __snake_case :str = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) __snake_case :str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) __snake_case :str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) __snake_case :Optional[str] = field( default=str(Path(_lowerCAmelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) __snake_case :int = field( default=1_6 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __UpperCamelCase : __snake_case :int = field( default=7_6_8 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __UpperCamelCase : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __UpperCamelCase : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def snake_case ( lowerCamelCase , lowerCamelCase=0.999 , lowerCamelCase="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase = [] for i in range(lowerCamelCase ): __lowercase = i / num_diffusion_timesteps __lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) , lowerCamelCase ) ) return torch.tensor(lowerCamelCase , dtype=torch.floataa ) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Tuple = [e.name for e in KarrasDiffusionSchedulers] __snake_case :Optional[int] = 2 @register_to_config def __init__( self : List[str] , _lowerCAmelCase : int = 1000 , _lowerCAmelCase : float = 0.00_085 , _lowerCAmelCase : float = 0.012 , _lowerCAmelCase : str = "linear" , _lowerCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase : str = "epsilon" , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : Optional[bool] = False , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : str = "linspace" , _lowerCAmelCase : int = 0 , ) -> List[Any]: """simple docstring""" if trained_betas is not None: __lowercase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": __lowercase = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="""exp""" ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase = 1.0 - self.betas __lowercase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = use_karras_sigmas def _a ( self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=None ) -> Optional[int]: """simple docstring""" if schedule_timesteps is None: __lowercase = self.timesteps __lowercase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowercase = 1 if len(_lowerCAmelCase ) > 1 else 0 else: __lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep __lowercase = self._index_counter[timestep_int] return indices[pos].item() @property def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _a ( self : int , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: """simple docstring""" __lowercase = self.index_for_timestep(_lowerCAmelCase ) __lowercase = self.sigmas[step_index] __lowercase = sample / ((sigma**2 + 1) ** 0.5) return sample def _a ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None , _lowerCAmelCase : Optional[int] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = num_inference_steps __lowercase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowercase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowercase = np.log(_lowerCAmelCase ) __lowercase = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase ) if self.config.use_karras_sigmas: __lowercase = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps ) __lowercase = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] ) __lowercase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowercase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) __lowercase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) __lowercase = torch.from_numpy(_lowerCAmelCase ) __lowercase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith("""mps""" ): # mps does not support float64 __lowercase = timesteps.to(_lowerCAmelCase , dtype=torch.floataa ) else: __lowercase = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative __lowercase = None __lowercase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase = defaultdict(_lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" __lowercase = np.log(_lowerCAmelCase ) # get distribution __lowercase = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range __lowercase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) __lowercase = low_idx + 1 __lowercase = log_sigmas[low_idx] __lowercase = log_sigmas[high_idx] # interpolate sigmas __lowercase = (low - log_sigma) / (low - high) __lowercase = np.clip(_lowerCAmelCase , 0 , 1 ) # transform interpolation to time range __lowercase = (1 - w) * low_idx + w * high_idx __lowercase = t.reshape(sigma.shape ) return t def _a ( self : Tuple , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : int ) -> torch.FloatTensor: """simple docstring""" __lowercase = in_sigmas[-1].item() __lowercase = in_sigmas[0].item() __lowercase = 7.0 # 7.0 is the value used in the paper __lowercase = np.linspace(0 , 1 , _lowerCAmelCase ) __lowercase = sigma_min ** (1 / rho) __lowercase = sigma_max ** (1 / rho) __lowercase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _a ( self : Any ) -> Optional[int]: """simple docstring""" return self.dt is None def _a ( self : Union[str, Any] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : Union[float, torch.FloatTensor] , _lowerCAmelCase : Union[torch.FloatTensor, np.ndarray] , _lowerCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" __lowercase = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 __lowercase = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase = self.sigmas[step_index] __lowercase = self.sigmas[step_index + 1] else: # 2nd order / Heun's method __lowercase = self.sigmas[step_index - 1] __lowercase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase = 0 __lowercase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase = sigma_hat if self.state_in_first_order else sigma_next __lowercase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase = sigma_hat if self.state_in_first_order else sigma_next __lowercase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": __lowercase = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: __lowercase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase = sigma_next - sigma_hat # store for 2nd order step __lowercase = derivative __lowercase = dt __lowercase = sample else: # 2. 2nd order / Heun's method __lowercase = (sample - pred_original_sample) / sigma_next __lowercase = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample __lowercase = self.dt __lowercase = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" __lowercase = None __lowercase = None __lowercase = None __lowercase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" __lowercase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 __lowercase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowercase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowercase = self.timesteps.to(original_samples.device ) __lowercase = timesteps.to(original_samples.device ) __lowercase = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps] __lowercase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowercase = sigma.unsqueeze(-1 ) __lowercase = original_samples + noise * sigma return noisy_samples def __len__( self : Tuple ) -> Any: """simple docstring""" return self.config.num_train_timesteps
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
from math import ceil def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = list(range(0 , lowerCamelCase ) ) __lowercase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowercase = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase ) # Missing blocks __lowercase = [i for i in blocks if i not in device_map_blocks] __lowercase = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowerCamelCase ) ) if len(lowerCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowerCamelCase ) ) if len(lowerCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowerCamelCase ) ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = list(range(lowerCamelCase ) ) __lowercase = int(ceil(n_layers / len(lowerCamelCase ) ) ) __lowercase = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase , lowerCamelCase )] return dict(zip(lowerCamelCase , lowerCamelCase ) )
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : List[Any]=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : Tuple="gelu" , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Any=512 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Any=None , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[Any] ) -> Tuple: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = LlamaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , ) -> Optional[Any]: """simple docstring""" __lowercase = True __lowercase = LlamaModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" __lowercase = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , ) -> List[str]: """simple docstring""" __lowercase = True __lowercase = True __lowercase = LlamaForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase , ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] __lowercase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )["""hidden_states"""][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :int = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __snake_case :List[Any] = (LlamaForCausalLM,) if is_torch_available() else () __snake_case :Tuple = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case :Union[str, Any] = False __snake_case :int = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = LlamaModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Dict ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : int ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """single_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """multi_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(_lowerCAmelCase ) __lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase = LlamaForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] , config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = LlamaModel(_lowerCAmelCase ) original_model.to(_lowerCAmelCase ) original_model.eval() __lowercase = original_model(_lowerCAmelCase ).last_hidden_state __lowercase = original_model(_lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {"""type""": scaling_type, """factor""": 10.0} __lowercase = LlamaModel(_lowerCAmelCase ) scaled_model.to(_lowerCAmelCase ) scaled_model.eval() __lowercase = scaled_model(_lowerCAmelCase ).last_hidden_state __lowercase = scaled_model(_lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-5 ) ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __lowercase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __lowercase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __lowercase = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowercase = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __lowercase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __lowercase = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 __lowercase = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowercase = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def _a ( self : int ) -> Any: """simple docstring""" __lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __lowercase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __lowercase = model(torch.tensor(_lowerCAmelCase ) ) # Expected mean on dim = -1 __lowercase = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __lowercase = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __lowercase = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __lowercase = model(torch.tensor(_lowerCAmelCase ) ) __lowercase = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _lowerCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off __lowercase = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _lowerCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("""Model is curently gated""" ) @slow def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __lowercase = """Simply put, the theory of relativity states that """ __lowercase = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __lowercase = tokenizer.encode(_lowerCAmelCase , return_tensors="""pt""" ) __lowercase = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=_lowerCAmelCase ) # greedy generation outputs __lowercase = model.generate(_lowerCAmelCase , max_new_tokens=64 , top_p=_lowerCAmelCase , temperature=1 , do_sample=_lowerCAmelCase ) __lowercase = tokenizer.decode(generated_ids[0] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCamelCase : Any = input("""Enter image url: """).strip() print(F'''Downloading image from {url} ...''') __UpperCamelCase : List[str] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image __UpperCamelCase : Union[str, Any] = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] __UpperCamelCase : int = requests.get(image_url).content __UpperCamelCase : Dict = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" __lowercase = True # 0 and 1 are none primes. if number <= 1: __lowercase = False for divisor in range(2 , int(round(sqrt(lowerCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __lowercase = False break # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'status' must been from type bool" return status def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __lowercase = list(range(2 , n + 1 ) ) __lowercase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCamelCase ) ): for j in range(i + 1 , len(lowerCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __lowercase = 0 # filters actual prime numbers. __lowercase = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n > 2), "'N' must been an int and > 2" __lowercase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCamelCase ): ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and number >= 0, "'number' must been an int and >= 0" __lowercase = [] # this list will be returns of the function. # potential prime number factors. __lowercase = 2 __lowercase = number if number == 0 or number == 1: ans.append(lowerCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCamelCase ): while quotient != 1: if is_prime(lowerCamelCase ) and (quotient % factor == 0): ans.append(lowerCamelCase ) quotient /= factor else: factor += 1 else: ans.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type list" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = max(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" __lowercase = 0 # prime factorization of 'number' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = min(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ), "'ans' must been from type int" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 == 0 def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCamelCase ), "compare bust been from type bool" return number % 2 != 0 def snake_case ( lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (number > 2) and is_even(lowerCamelCase ) ), "'number' must been an int, even and > 2" __lowercase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __lowercase = get_prime_numbers(lowerCamelCase ) __lowercase = len(lowerCamelCase ) # run variable for while-loops. __lowercase = 0 __lowercase = None # exit variable. for break up the loops __lowercase = True while i < len_pn and loop: __lowercase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __lowercase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (len(lowerCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __lowercase = 0 while numbera != 0: __lowercase = numbera % numbera __lowercase = numbera __lowercase = rest # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __lowercase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __lowercase = prime_factorization(lowerCamelCase ) __lowercase = prime_factorization(lowerCamelCase ) elif numbera == 1 or numbera == 1: __lowercase = [] __lowercase = [] __lowercase = max(lowerCamelCase , lowerCamelCase ) __lowercase = 0 __lowercase = 0 __lowercase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __lowercase = prime_fac_a.count(lowerCamelCase ) __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(max(lowerCamelCase , lowerCamelCase ) ): ans *= n else: __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __lowercase = prime_fac_a.count(lowerCamelCase ) for _ in range(lowerCamelCase ): ans *= n done.append(lowerCamelCase ) # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'number' must been a positive int" __lowercase = 0 __lowercase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCamelCase ): ans += 1 # precondition assert isinstance(lowerCamelCase , lowerCamelCase ) and is_prime( lowerCamelCase ), "'ans' must been a prime number and from type int" return ans def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( is_prime(lowerCamelCase ) and is_prime(lowerCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __lowercase = p_number_a + 1 # jump to the next number __lowercase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 while number < p_number_a: ans.append(lowerCamelCase ) number += 1 # fetch the next prime number. while not is_prime(lowerCamelCase ): number += 1 # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and ans[0] != p_number_a and ans[len(lowerCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 1), "'n' must been int and >= 1" __lowercase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCamelCase ) # precondition assert ans[0] == 1 and ans[len(lowerCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" __lowercase = get_divisors(lowerCamelCase ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (divisors[0] == 1) and (divisors[len(lowerCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert ( isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(lowerCamelCase , lowerCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __lowercase = gcd(abs(lowerCamelCase ) , abs(lowerCamelCase ) ) # precondition assert ( isinstance(lowerCamelCase , lowerCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been a int and >= 0" __lowercase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def snake_case ( lowerCamelCase ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) and (n >= 0), "'n' must been an int and >= 0" __lowercase = 0 __lowercase = 1 __lowercase = 1 # this will be return for _ in range(n - 1 ): __lowercase = ans ans += fiba __lowercase = tmp return ans
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor __UpperCamelCase : Dict = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , torch.Tensor ): return image elif isinstance(lowerCamelCase , PIL.Image.Image ): __lowercase = [image] __lowercase = [trans(img.convert("""RGB""" ) ) for img in image] __lowercase = torch.stack(lowerCamelCase ) return image class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM __lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def _a ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" __lowercase = min(int(num_inference_steps * strength ) , _lowerCAmelCase ) __lowercase = max(num_inference_steps - init_timestep , 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _a ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=None ) -> Optional[int]: """simple docstring""" if not isinstance(_lowerCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowerCAmelCase )}' ) __lowercase = image.to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowercase = init_latents.shape __lowercase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) # get latents print("""add noise to latents at timestep""" , _lowerCAmelCase ) __lowercase = self.scheduler.add_noise(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = init_latents return latents @torch.no_grad() def __call__( self : Any , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , _lowerCAmelCase : float = 0.8 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 50 , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_lowerCAmelCase ) # 2. Preprocess image __lowercase = preprocess(_lowerCAmelCase ) # 3. set timesteps self.scheduler.set_timesteps(_lowerCAmelCase , device=self.device ) __lowercase , __lowercase = self.get_timesteps(_lowerCAmelCase , _lowerCAmelCase , self.device ) __lowercase = timesteps[:1].repeat(_lowerCAmelCase ) # 4. Prepare latent variables __lowercase = self.prepare_latents(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.unet.dtype , self.device , _lowerCAmelCase ) __lowercase = latents # 5. Denoising loop for t in self.progress_bar(_lowerCAmelCase ): # 1. predict noise model_output __lowercase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __lowercase = self.scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , eta=_lowerCAmelCase , use_clipped_model_output=_lowerCAmelCase , generator=_lowerCAmelCase , ).prev_sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_lowerCAmelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowerCAmelCase )
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :Optional[int] = 'convnextv2' def __init__( self : Dict , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : str=None , _lowerCAmelCase : str=None , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=224 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ) -> Any: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = num_channels __lowercase = patch_size __lowercase = num_stages __lowercase = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __lowercase = [3, 3, 9, 3] if depths is None else depths __lowercase = hidden_act __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = drop_path_rate __lowercase = image_size __lowercase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Union[str, Any] = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' __lowercase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: __lowercase = 1 - (matter_density + radiation_density + dark_energy) __lowercase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowercase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __UpperCamelCase : int = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __UpperCamelCase : List[Any] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __UpperCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case ( ): '''simple docstring''' __lowercase = """https://pypi.org/pypi/diffusers/json""" __lowercase = json.loads(request.urlopen(lowerCamelCase ).read() )["""releases"""].keys() return sorted(lowerCamelCase , key=lambda lowerCamelCase : version.Version(lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(lowerCamelCase ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __lowercase = Path(lowerCamelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case ( lowerCamelCase ): '''simple docstring''' init_hf_modules() __lowercase = Path(lowerCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __lowercase = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __lowercase = f.read() # Imports of the form `import .xxx` __lowercase = re.findall("""^\s*import\s+\.(\S+)\s*$""" , lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , lowerCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(lowerCamelCase ) ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = False __lowercase = [module_file] __lowercase = [] # Let's recurse through all relative imports while not no_change: __lowercase = [] for f in files_to_check: new_imports.extend(get_relative_imports(lowerCamelCase ) ) __lowercase = Path(lowerCamelCase ).parent __lowercase = [str(module_path / m ) for m in new_imports] __lowercase = [f for f in new_import_files if f not in all_relative_imports] __lowercase = [F'{f}.py' for f in new_import_files] __lowercase = len(lowerCamelCase ) == 0 all_relative_imports.extend(lowerCamelCase ) return all_relative_imports def snake_case ( lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __lowercase = f.read() # Imports of the form `import xxx` __lowercase = re.findall("""^\s*import\s+(\S+)\s*$""" , lowerCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , lowerCamelCase , flags=re.MULTILINE ) # Only keep the top-level module __lowercase = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all __lowercase = list(set(lowerCamelCase ) ) __lowercase = [] for imp in imports: try: importlib.import_module(lowerCamelCase ) except ImportError: missing_packages.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'{", ".join(lowerCamelCase )}. Run `pip install {" ".join(lowerCamelCase )}`' ) return get_relative_imports(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = module_path.replace(os.path.sep , """.""" ) __lowercase = importlib.import_module(lowerCamelCase ) if class_name is None: return find_pipeline_class(lowerCamelCase ) return getattr(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' from ..pipelines import DiffusionPipeline __lowercase = dict(inspect.getmembers(lowerCamelCase , inspect.isclass ) ) __lowercase = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , lowerCamelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) __lowercase = cls return pipeline_class def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): '''simple docstring''' __lowercase = str(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.isfile(lowerCamelCase ): __lowercase = module_file_or_url __lowercase = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: __lowercase = get_diffusers_versions() # cut ".dev0" __lowercase = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: __lowercase = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: __lowercase = F'v{revision}' elif revision == "main": __lowercase = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub __lowercase = COMMUNITY_PIPELINES_URL.format(revision=lowerCamelCase , pipeline=lowerCamelCase ) try: __lowercase = cached_download( lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , proxies=lowerCamelCase , resume_download=lowerCamelCase , local_files_only=lowerCamelCase , use_auth_token=lowerCamelCase , ) __lowercase = """git""" __lowercase = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached __lowercase = hf_hub_download( lowerCamelCase , lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , proxies=lowerCamelCase , resume_download=lowerCamelCase , local_files_only=lowerCamelCase , use_auth_token=lowerCamelCase , ) __lowercase = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment __lowercase = check_imports(lowerCamelCase ) # Now we move the module inside our cached dynamic modules. __lowercase = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(lowerCamelCase ) __lowercase = Path(lowerCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(lowerCamelCase , submodule_path / module_file ) for module_needed in modules_needed: __lowercase = F'{module_needed}.py' shutil.copy(os.path.join(lowerCamelCase , lowerCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = use_auth_token elif use_auth_token is True: __lowercase = HfFolder.get_token() else: __lowercase = None __lowercase = model_info(lowerCamelCase , revision=lowerCamelCase , token=lowerCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __lowercase = submodule_path / commit_hash __lowercase = full_submodule + os.path.sep + commit_hash create_dynamic_module(lowerCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(lowerCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( lowerCamelCase , F'{module_needed}.py' , cache_dir=lowerCamelCase , force_download=lowerCamelCase , resume_download=lowerCamelCase , proxies=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , local_files_only=lowerCamelCase , ) return os.path.join(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , **lowerCamelCase , ): '''simple docstring''' __lowercase = get_cached_module_file( lowerCamelCase , lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , resume_download=lowerCamelCase , proxies=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , local_files_only=lowerCamelCase , ) return get_class_in_module(lowerCamelCase , final_module.replace(""".py""" , """""" ) )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
import torch def snake_case ( ): '''simple docstring''' if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class __UpperCamelCase : __snake_case :str = PegasusConfig __snake_case :List[Any] = {} __snake_case :Union[str, Any] = 'gelu' def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Any=4 , _lowerCAmelCase : Any=37 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=40 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Optional[int]=0 , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_pegasus_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFPegasusModel(config=_lowerCAmelCase ).get_decoder() __lowercase = inputs_dict["""input_ids"""] __lowercase = input_ids[:1, :] __lowercase = inputs_dict["""attention_mask"""][:1, :] __lowercase = inputs_dict["""head_mask"""] __lowercase = 1 # first forward pass __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , head_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] __lowercase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1e-3 ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () __snake_case :Tuple = (TFPegasusForConditionalGeneration,) if is_tf_available() else () __snake_case :Tuple = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) __snake_case :int = True __snake_case :Dict = False __snake_case :Dict = False def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFPegasusModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase ) def _a ( self : Dict ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCamelCase ( unittest.TestCase ): __snake_case :Any = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] __snake_case :List[str] = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers __snake_case :Union[str, Any] = 'google/pegasus-xsum' @cached_property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self : Tuple , **_lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.translate_src_text(**_lowerCAmelCase ) assert self.expected_text == generated_words def _a ( self : str , **_lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = self.tokenizer(self.src_text , **_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""tf""" ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCAmelCase , ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCAmelCase ) return generated_words @slow def _a ( self : Tuple ) -> Tuple: """simple docstring""" self._assert_generated_batch_equal_expected()
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'speech_to_text_2' __snake_case :str = ['past_key_values'] __snake_case :Tuple = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , _lowerCAmelCase : List[Any]=1_0000 , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : int=2048 , _lowerCAmelCase : Union[str, Any]=4 , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]="relu" , _lowerCAmelCase : int=256 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Any=1024 , **_lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" __lowercase = vocab_size __lowercase = d_model __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = decoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = max_target_positions super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from __future__ import annotations import numpy as np def snake_case ( lowerCamelCase ): '''simple docstring''' return np.maximum(0 , lowerCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from math import isclose, sqrt def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = point_y / 4 / point_x __lowercase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowercase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowercase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowercase = outgoing_gradient**2 + 4 __lowercase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowercase = (point_y - outgoing_gradient * point_x) ** 2 - 100 __lowercase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowercase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowercase = x_minus if isclose(lowerCamelCase , lowerCamelCase ) else x_plus __lowercase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case ( lowerCamelCase = 1.4 , lowerCamelCase = -9.6 ): '''simple docstring''' __lowercase = 0 __lowercase = first_x_coord __lowercase = first_y_coord __lowercase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowercase , __lowercase , __lowercase = next_point(lowerCamelCase , lowerCamelCase , lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def snake_case ( lowerCamelCase ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.nan for i in range(lowerCamelCase ): __lowercase = features[:, labels == i] __lowercase = data.mean(1 ) # Centralize the data of class i __lowercase = data - column_reshape(lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase = np.dot(lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = features.mean(1 ) __lowercase = np.nan for i in range(lowerCamelCase ): __lowercase = features[:, labels == i] __lowercase = data.shape[1] __lowercase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase ) , (column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowercase = device_data * np.dot( column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase ) , (column_reshape(lowerCamelCase ) - column_reshape(lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if features.any(): __lowercase = features.mean(1 ) # Center the dataset __lowercase = features - np.reshape(lowerCamelCase , (data_mean.size, 1) ) __lowercase = np.dot(lowerCamelCase , centered_data.T ) / features.shape[1] __lowercase , __lowercase = np.linalg.eigh(lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first __lowercase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowercase = np.dot(filtered_eigenvectors.T , lowerCamelCase ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowerCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: __lowercase , __lowercase = eigh( covariance_between_classes(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , covariance_within_classes(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , ) __lowercase = eigenvectors[:, ::-1][:, :dimensions] __lowercase , __lowercase , __lowercase = np.linalg.svd(lowerCamelCase ) __lowercase = svd_matrix[:, 0:dimensions] __lowercase = np.dot(filtered_svd_matrix.T , lowerCamelCase ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=lowerCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def snake_case ( ): '''simple docstring''' __lowercase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowercase = np.array([0, 0, 0, 1, 1] ) __lowercase = 2 __lowercase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(lowerCamelCase ) as error_info: __lowercase = linear_discriminant_analysis( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if isinstance(lowerCamelCase , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def snake_case ( ): '''simple docstring''' __lowercase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowercase = 2 __lowercase = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(lowerCamelCase ) as error_info: __lowercase = principal_component_analysis(lowerCamelCase , lowerCamelCase ) if not np.allclose(lowerCamelCase , lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
import pytest import datasets # Import fixture modules as plugins __UpperCamelCase : Optional[int] = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def snake_case ( lowerCamelCase ): '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.getbasetemp() / """cache""" __lowercase = test_hf_cache_home / """datasets""" __lowercase = test_hf_cache_home / """metrics""" __lowercase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowerCamelCase ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowerCamelCase ) ) __lowercase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowerCamelCase ) ) __lowercase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCamelCase ) ) @pytest.fixture(autouse=lowerCamelCase , scope="""session""" ) def snake_case ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowerCamelCase ) @pytest.fixture def snake_case ( lowerCamelCase ): '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowerCamelCase )
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import re def snake_case ( lowerCamelCase ): '''simple docstring''' return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' try: __lowercase = split_input(lowerCamelCase ) if upper: __lowercase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowercase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case ( lowerCamelCase ): '''simple docstring''' return to_simple_case(lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' try: __lowercase = to_simple_case(lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return to_complex_case(lowerCamelCase , lowerCamelCase , """_""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return to_complex_case(lowerCamelCase , lowerCamelCase , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __UpperCamelCase : Tuple = False class __UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger """ __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = generator.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger """ __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images __lowercase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
def snake_case ( lowerCamelCase , lowerCamelCase = 0 ): '''simple docstring''' __lowercase = length or len(lowerCamelCase ) __lowercase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowercase , __lowercase = list_data[i + 1], list_data[i] __lowercase = True return list_data if not swapped else bubble_sort(lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import logging from transformers import PretrainedConfig __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) __UpperCamelCase : Tuple = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'bertabs' def __init__( self : Union[str, Any] , _lowerCAmelCase : Any=3_0522 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : str=6 , _lowerCAmelCase : Union[str, Any]=512 , _lowerCAmelCase : List[str]=8 , _lowerCAmelCase : Any=512 , _lowerCAmelCase : Any=0.2 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : str=2048 , _lowerCAmelCase : int=0.2 , **_lowerCAmelCase : List[str] , ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = vocab_size __lowercase = max_pos __lowercase = enc_layers __lowercase = enc_hidden_size __lowercase = enc_heads __lowercase = enc_ff_size __lowercase = enc_dropout __lowercase = dec_layers __lowercase = dec_hidden_size __lowercase = dec_heads __lowercase = dec_ff_size __lowercase = dec_dropout
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = current_set.copy() for row_index, row in enumerate(lowerCamelCase ): __lowercase = row[0] for column_index, column in enumerate(lowerCamelCase ): if magnitude == 0: __lowercase = column continue __lowercase = column / magnitude # Subtract to cancel term __lowercase = current_set[0] __lowercase = [first_row] __lowercase = current_set[1::] for row in current_set: __lowercase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase ) continue for column_index in range(len(lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowercase = final_set[0] __lowercase = [] __lowercase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowercase = simplify(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase ) __lowercase = resultant return final_set def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) __lowercase = len(lowerCamelCase ) + 1 if any(len(lowerCamelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCamelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] __lowercase = equations.copy() if any(0 in row for row in data_set ): __lowercase = data_set.copy() __lowercase = [] for row_index, row in enumerate(lowerCamelCase ): if 0 not in row: __lowercase = data_set.pop(lowerCamelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCamelCase ) __lowercase = data_set.copy() __lowercase = simplify(lowerCamelCase ) __lowercase = simplified[::-1] __lowercase = [] for row in simplified: __lowercase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowercase = row.copy()[: len(lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase ) == 0: solutions.append(0 ) continue __lowercase = temp_row[1::] __lowercase = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase ) __lowercase = [] for item in solutions: final.append(float(round(lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __UpperCamelCase : __snake_case :List[str] __snake_case :Optional[str] = None # Automatically constructed __snake_case :ClassVar[str] = "dict" __snake_case :ClassVar[Any] = None __snake_case :str = field(default='Translation' , init=_lowerCAmelCase , repr=_lowerCAmelCase ) def __call__( self : Any ) -> List[str]: """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def _a ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __UpperCamelCase : __snake_case :Optional[List] = None __snake_case :Optional[int] = None __snake_case :Optional[str] = None # Automatically constructed __snake_case :ClassVar[str] = "dict" __snake_case :ClassVar[Any] = None __snake_case :str = field(default='TranslationVariableLanguages' , init=_lowerCAmelCase , repr=_lowerCAmelCase ) def _a ( self : Any ) -> str: """simple docstring""" __lowercase = sorted(set(self.languages ) ) if self.languages else None __lowercase = len(self.languages ) if self.languages else None def __call__( self : Any ) -> str: """simple docstring""" return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def _a ( self : Tuple , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = set(self.languages ) if self.languages and set(_lowerCAmelCase ) - lang_set: raise ValueError( F'Some languages in example ({", ".join(sorted(set(_lowerCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_lowerCAmelCase )}).' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __lowercase = [] for lang, text in translation_dict.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __lowercase , __lowercase = zip(*sorted(_lowerCAmelCase ) ) return {"language": languages, "translation": translations} def _a ( self : Union[str, Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCamelCase : Any = 16 __UpperCamelCase : Tuple = 32 def snake_case ( lowerCamelCase , lowerCamelCase = 16 , lowerCamelCase = "bert-base-cased" ): '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) __lowercase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) __lowercase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' model.eval() __lowercase = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase ) - 1: __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase , references=lowerCamelCase , ) __lowercase = metric.compute() return eval_metric["accuracy"] def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config["""lr"""] __lowercase = int(config["""num_epochs"""] ) __lowercase = int(config["""seed"""] ) __lowercase = int(config["""batch_size"""] ) __lowercase = args.model_name_or_path set_seed(lowerCamelCase ) __lowercase , __lowercase = get_dataloaders(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowercase = 1 __lowercase = (len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=0 , num_training_steps=lowerCamelCase , ) else: __lowercase = DummyScheduler(lowerCamelCase , total_num_steps=lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 __lowercase = evaluate.load("""glue""" , """mrpc""" ) __lowercase = num_epochs if args.partial_train_epoch is not None: __lowercase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowercase = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowercase = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowercase = int(lowerCamelCase ) + 1 __lowercase = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) accelerator.print("""resumed checkpoint performance:""" , lowerCamelCase ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , F'state_{starting_epoch-1}.json' ) , """r""" ) as f: __lowercase = json.load(lowerCamelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowercase = {} for epoch in range(lowerCamelCase , lowerCamelCase ): model.train() for step, batch in enumerate(lowerCamelCase ): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowercase = F'epoch_{epoch}' __lowercase = os.path.join(args.output_dir , lowerCamelCase ) accelerator.save_state(lowerCamelCase ) __lowercase = evaluation_loop(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = accuracy __lowercase = lr_scheduler.get_lr()[0] __lowercase = optimizer.param_groups[0]["""lr"""] __lowercase = epoch __lowercase = overall_step accelerator.print(F'epoch {epoch}:' , lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'state_{epoch}.json' ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCamelCase , default=lowerCamelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCamelCase , default=lowerCamelCase , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=2 , help="""Number of train epochs.""" , ) __lowercase = parser.parse_args() __lowercase = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Dict=18 , _lowerCAmelCase : str=30 , _lowerCAmelCase : Tuple=400 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=None , ) -> str: """simple docstring""" __lowercase = size if size is not None else {"""shortest_edge""": 20} __lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size def _a ( self : Dict ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :List[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = MobileNetVaImageProcessingTester(self ) @property def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1
import requests __UpperCamelCase : Optional[Any] = """""" # <-- Put your OpenWeatherMap appid here! __UpperCamelCase : Optional[int] = """https://api.openweathermap.org/data/2.5/""" def snake_case ( lowerCamelCase = "Chicago" , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """weather""" , params=locals() ).json() def snake_case ( lowerCamelCase = "Kolkata, India" , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def snake_case ( lowerCamelCase = 55.68 , lowerCamelCase = 12.57 , lowerCamelCase = APPID ): '''simple docstring''' return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __UpperCamelCase : List[Any] = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def _a ( self : int ) -> Dict: """simple docstring""" debug_launcher(test_ops.main )
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) def snake_case ( lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=16 , lowerCamelCase = 10 , lowerCamelCase = 2 ): '''simple docstring''' def get_dataset(lowerCamelCase ): __lowercase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowercase = get_dataset(lowerCamelCase ) __lowercase = get_dataset(lowerCamelCase ) __lowercase = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4 ) __lowercase = DataLoader(lowerCamelCase , shuffle=lowerCamelCase , batch_size=lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase=None ): '''simple docstring''' __lowercase = [] for epoch in range(lowerCamelCase ): # Train quickly model.train() for batch in dataloader: __lowercase , __lowercase = batch __lowercase = model(lowerCamelCase ) __lowercase = torch.nn.functional.mse_loss(lowerCamelCase , lowerCamelCase ) accelerator.backward(lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __UpperCamelCase ( nn.Module ): def __init__( self : int ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase = nn.Parameter(torch.randn(1 ) ) __lowercase = nn.Parameter(torch.randn(1 ) ) def _a ( self : Tuple , _lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return x * self.a + self.b class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(total_limit=1 , project_dir=_lowerCAmelCase , automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() # Train baseline __lowercase = Accelerator() __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial __lowercase = os.path.join(_lowerCAmelCase , """initial""" ) accelerator.save_state(_lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() __lowercase = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = Accelerator() __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(_lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything __lowercase = os.path.join(_lowerCAmelCase , """checkpoint""" ) accelerator.save_state(_lowerCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(_lowerCAmelCase ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() __lowercase = train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() # Train partially set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=_lowerCAmelCase ) __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = train(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ((__lowercase) , (__lowercase)) = model.a.item(), model.b.item() __lowercase = optimizer.state_dict() self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = torch.tensor([1, 2, 3] ) __lowercase = torch.tensor([2, 3, 4] ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(net.parameters() ) __lowercase = Accelerator() with self.assertRaises(_lowerCAmelCase ) as ve: accelerator.register_for_checkpointing(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __lowercase = torch.optim.lr_scheduler.StepLR(_lowerCAmelCase , step_size=1 , gamma=0.99 ) __lowercase , __lowercase = dummy_dataloaders() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save initial accelerator.save_state() __lowercase = scheduler.state_dict() train(3 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertNotEqual(_lowerCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(_lowerCAmelCase , scheduler.state_dict() ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowercase = DummyModel() __lowercase = ProjectConfiguration(automatic_checkpoint_naming=_lowerCAmelCase , total_limit=2 ) # Train baseline __lowercase = Accelerator(project_dir=_lowerCAmelCase , project_config=_lowerCAmelCase ) __lowercase = accelerator.prepare(_lowerCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_lowerCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(_lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase : Dict = """/tmp/accelerate/state_checkpointing""" __UpperCamelCase : str = DummyModel() __UpperCamelCase : int = torch.optim.Adam(params=model.parameters(), lr=1e-3) __UpperCamelCase : List[str] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __UpperCamelCase , __UpperCamelCase : Optional[int] = dummy_dataloaders() __UpperCamelCase : str = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCamelCase : List[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCamelCase , __UpperCamelCase : Any = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCamelCase : Optional[int] = group["""params"""][0].device break assert param_device.type == accelerator.device.type __UpperCamelCase : int = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __UpperCamelCase : Optional[Any] = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __UpperCamelCase : str = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Union[str, Any]=0.9 , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=[0.5, 0.5, 0.5] , _lowerCAmelCase : str=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" __lowercase = size if size is not None else {"""shortest_edge""": 30} __lowercase = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize_and_center_crop __lowercase = size __lowercase = crop_pct __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Dict = PoolFormerImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = PoolFormerImageProcessingTester(self ) @property def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """crop_pct""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """image_std""" ) ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Union[str, Any]=7 , _lowerCAmelCase : Union[str, Any]=6 , _lowerCAmelCase : List[Any]=17 , _lowerCAmelCase : Optional[Any]=23 , _lowerCAmelCase : Optional[int]=11 , _lowerCAmelCase : List[str]=True , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _a ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowercase = DecisionTransformerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = (DecisionTransformerModel,) if is_torch_available() else () __snake_case :Optional[int] = () __snake_case :Optional[Any] = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case :Union[str, Any] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case :str = False __snake_case :int = False __snake_case :List[Any] = False __snake_case :Any = False __snake_case :List[Any] = False __snake_case :Any = False __snake_case :Any = False __snake_case :List[Any] = False __snake_case :Optional[int] = False def _a ( self : str ) -> Any: """simple docstring""" __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(_lowerCAmelCase )] , _lowerCAmelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 10 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __lowercase = model.to(_lowerCAmelCase ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_lowerCAmelCase ) __lowercase = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase = state __lowercase = torch.zeros(1 , 0 , config.act_dim , device=_lowerCAmelCase , dtype=torch.floataa ) __lowercase = torch.zeros(1 , 0 , device=_lowerCAmelCase , dtype=torch.floataa ) __lowercase = torch.tensor(0 , device=_lowerCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCAmelCase ): __lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCAmelCase )] , dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCAmelCase )] , dim=1 ) __lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase , __lowercase , __lowercase = model( states=_lowerCAmelCase , actions=_lowerCAmelCase , rewards=_lowerCAmelCase , returns_to_go=_lowerCAmelCase , timesteps=_lowerCAmelCase , attention_mask=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowercase , __lowercase , __lowercase , __lowercase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state] , dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
from math import factorial def snake_case ( lowerCamelCase = 20 ): '''simple docstring''' __lowercase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __lowercase = n // 2 return int(factorial(lowerCamelCase ) / (factorial(lowerCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCamelCase : Optional[int] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __lowercase = emb.weight.data return lin_layer def snake_case ( lowerCamelCase , lowerCamelCase="facebook/mbart-large-en-ro" , lowerCamelCase=False , lowerCamelCase=False ): '''simple docstring''' __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] remove_ignore_keys_(lowerCamelCase ) __lowercase = state_dict["""encoder.embed_tokens.weight"""].shape[0] __lowercase = MBartConfig.from_pretrained(lowerCamelCase , vocab_size=lowerCamelCase ) if mbart_aa and finetuned: __lowercase = """relu""" __lowercase = state_dict["""decoder.embed_tokens.weight"""] __lowercase = MBartForConditionalGeneration(lowerCamelCase ) model.model.load_state_dict(lowerCamelCase ) if finetuned: __lowercase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : int=5 , _lowerCAmelCase : List[str]=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Optional[Any]=512 , _lowerCAmelCase : Optional[Any]=16 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : int=4 , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _a ( self : Any ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = True __snake_case :Tuple = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormModelTester(self ) @slow def _a ( self : Union[str, Any] ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : str ) -> str: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __lowercase = model(_lowerCAmelCase )[0] __lowercase = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _lowerCAmelCase ) # compare the actual values for a slice. __lowercase = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_lowerCAmelCase ) __lowercase = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __lowercase = model(_lowerCAmelCase )[0] # compare the actual values for a slice. __lowercase = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
# Algorithm for the pigeonhole sorting def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = min(lowerCamelCase ) # min() finds the minimum value __lowercase = max(lowerCamelCase ) # max() finds the maximum value __lowercase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowercase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCamelCase , lowerCamelCase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowercase = 0 for count in range(lowerCamelCase ): while holes[count] > 0: holes[count] -= 1 __lowercase = count + min_val i += 1 def snake_case ( ): '''simple docstring''' __lowercase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCamelCase ) print("""Sorted order is:""" , """ """.join(lowerCamelCase ) ) if __name__ == "__main__": main()
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = 'swin2sr' __snake_case :str = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any] , _lowerCAmelCase : Any=64 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : str=180 , _lowerCAmelCase : str=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Dict=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : Dict=2.0 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : List[Any]=1e-5 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Optional[Any]=1.0 , _lowerCAmelCase : Dict="1conv" , _lowerCAmelCase : Union[str, Any]="pixelshuffle" , **_lowerCAmelCase : Optional[int] , ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(_lowerCAmelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[Any] = True __UpperCamelCase : List[str] = False if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") __UpperCamelCase : str = parser.parse_args() __UpperCamelCase : Dict = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } __UpperCamelCase : List[str] = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } __UpperCamelCase : Optional[int] = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: __UpperCamelCase : List[str] = reader.read() __UpperCamelCase : Union[str, Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): __UpperCamelCase : Tuple = UNetaDModel(**config) else: __UpperCamelCase : Union[str, Any] = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel __UpperCamelCase : Any = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __UpperCamelCase : Dict = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __UpperCamelCase : List[str] = config[key] del config[key] __UpperCamelCase : Optional[int] = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] __UpperCamelCase : Any = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: __UpperCamelCase : Optional[int] = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) __UpperCamelCase : Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue __UpperCamelCase : List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: __UpperCamelCase : int = param_value __UpperCamelCase : Dict = True if not has_changed: __UpperCamelCase : List[Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = DanceDiffusionPipeline __snake_case :Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __snake_case :Any = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } __snake_case :Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __snake_case :List[Any] = False __snake_case :Optional[Any] = False def _a ( self : int ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_lowerCAmelCase , use_timestep_embedding=_lowerCAmelCase , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) __lowercase = IPNDMScheduler() __lowercase = { """unet""": unet, """scheduler""": scheduler, } return components def _a ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=0 ) -> int: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def _a ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = DanceDiffusionPipeline(**_lowerCAmelCase ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowercase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _a ( self : Any ) -> Tuple: """simple docstring""" return super().test_save_load_local() @skip_mps def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def _a ( self : Tuple ) -> Dict: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" return super().test_attention_slicing_forward_pass() def _a ( self : List[str] ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=_lowerCAmelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = torch_device __lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) __lowercase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(generator=_lowerCAmelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) __lowercase = output.audios __lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowercase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
def snake_case ( lowerCamelCase = 2_000_000 ): '''simple docstring''' __lowercase = [0 for i in range(n + 1 )] __lowercase = 1 __lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCamelCase ): __lowercase = 1 __lowercase = 0 for i in range(lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __UpperCamelCase : Optional[Any] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' warnings.warn(lowerCamelCase , lowerCamelCase ) requires_backends(lowerCamelCase , """sklearn""" ) return (preds == labels).mean() def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' warnings.warn(lowerCamelCase , lowerCamelCase ) requires_backends(lowerCamelCase , """sklearn""" ) __lowercase = simple_accuracy(lowerCamelCase , lowerCamelCase ) __lowercase = fa_score(y_true=lowerCamelCase , y_pred=lowerCamelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' warnings.warn(lowerCamelCase , lowerCamelCase ) requires_backends(lowerCamelCase , """sklearn""" ) __lowercase = pearsonr(lowerCamelCase , lowerCamelCase )[0] __lowercase = spearmanr(lowerCamelCase , lowerCamelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' warnings.warn(lowerCamelCase , lowerCamelCase ) requires_backends(lowerCamelCase , """sklearn""" ) assert len(lowerCamelCase ) == len(lowerCamelCase ), F'Predictions and labels have mismatched lengths {len(lowerCamelCase )} and {len(lowerCamelCase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase , lowerCamelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase , lowerCamelCase ) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase , lowerCamelCase ) elif task_name == "qqp": return acc_and_fa(lowerCamelCase , lowerCamelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} else: raise KeyError(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' warnings.warn(lowerCamelCase , lowerCamelCase ) requires_backends(lowerCamelCase , """sklearn""" ) if len(lowerCamelCase ) != len(lowerCamelCase ): raise ValueError(F'Predictions and labels have mismatched lengths {len(lowerCamelCase )} and {len(lowerCamelCase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase , lowerCamelCase )} else: raise KeyError(lowerCamelCase )
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :torch.FloatTensor class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : Tuple , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _lowerCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _lowerCAmelCase : Tuple[int] = (64,) , _lowerCAmelCase : int = 1 , _lowerCAmelCase : str = "silu" , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : int = 256 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : float = 0.18_215 , _lowerCAmelCase : str = "group" , ) -> Dict: """simple docstring""" super().__init__() # pass init params to Encoder __lowercase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) __lowercase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) __lowercase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) __lowercase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder __lowercase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def _a ( self : List[str] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> VQEncoderOutput: """simple docstring""" __lowercase = self.encoder(_lowerCAmelCase ) __lowercase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def _a ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: __lowercase , __lowercase , __lowercase = self.quantize(_lowerCAmelCase ) else: __lowercase = h __lowercase = self.post_quant_conv(_lowerCAmelCase ) __lowercase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def _a ( self : List[Any] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __lowercase = sample __lowercase = self.encode(_lowerCAmelCase ).latents __lowercase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Dict = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : int = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __UpperCamelCase : Optional[Any] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __UpperCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __UpperCamelCase : Tuple = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __UpperCamelCase : Optional[Any] = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[Any] = VOCAB_FILES_NAMES __snake_case :Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Optional[int] = DPRContextEncoderTokenizer class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = VOCAB_FILES_NAMES __snake_case :Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case :Tuple = DPRQuestionEncoderTokenizer __UpperCamelCase : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __UpperCamelCase : Any = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __UpperCamelCase : str = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_lowerCAmelCase ) class __UpperCamelCase : def __call__( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Union[bool, str] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Optional[bool] = None , **_lowerCAmelCase : Optional[Any] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( _lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = titles if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [titles] __lowercase = texts if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [texts] __lowercase = len(_lowerCAmelCase ) __lowercase = questions if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) else [questions] * n_passages assert len(_lowerCAmelCase ) == len( _lowerCAmelCase ), F'There should be as many titles than texts but got {len(_lowerCAmelCase )} titles and {len(_lowerCAmelCase )} texts.' __lowercase = super().__call__(_lowerCAmelCase , _lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] __lowercase = super().__call__(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase )["""input_ids"""] __lowercase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCAmelCase , _lowerCAmelCase ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(_lowerCAmelCase , padding=_lowerCAmelCase , max_length=_lowerCAmelCase , return_tensors=_lowerCAmelCase ) def _a ( self : Union[str, Any] , _lowerCAmelCase : BatchEncoding , _lowerCAmelCase : DPRReaderOutput , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = reader_input["""input_ids"""] __lowercase , __lowercase , __lowercase = reader_output[:3] __lowercase = len(_lowerCAmelCase ) __lowercase = sorted(range(_lowerCAmelCase ) , reverse=_lowerCAmelCase , key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(_lowerCAmelCase ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCAmelCase , top_spans=_lowerCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCAmelCase , start_index=_lowerCAmelCase , end_index=_lowerCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self : List[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : int , _lowerCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" __lowercase = [] for start_index, start_score in enumerate(_lowerCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] , reverse=_lowerCAmelCase ) __lowercase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __lowercase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :int = VOCAB_FILES_NAMES __snake_case :Dict = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[int] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Tuple = READER_PRETRAINED_INIT_CONFIGURATION __snake_case :List[Any] = ['input_ids', 'attention_mask'] __snake_case :Any = DPRReaderTokenizer
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any]=13 , _lowerCAmelCase : Tuple=30 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Dict=37 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : List[str]=10 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=0.6 , _lowerCAmelCase : List[Any]=None , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : List[Any] ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowercase = ViTMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) __lowercase = (self.image_size // self.patch_size) ** 2 __lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase = 1 __lowercase = ViTMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase ) __lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __snake_case :Optional[int] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __snake_case :Optional[int] = False __snake_case :str = False __snake_case :Dict = False __snake_case :Any = False def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = ViTMAEModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" pass def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" np.random.seed(2 ) __lowercase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = torch.from_numpy(_lowerCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase = pt_noise super().check_pt_tf_models(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs[0].cpu().numpy() __lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = model_class.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) # Make sure we don't have nans __lowercase = after_outputs[0].cpu().numpy() __lowercase = 0 __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : List[str] ) -> int: """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _a ( self : int ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @slow def _a ( self : List[str] ) -> Dict: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : int ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _a ( self : Optional[Any] ) -> int: """simple docstring""" np.random.seed(2 ) __lowercase = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase = ViTMAEConfig() __lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase , noise=torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) ) # verify the logits __lowercase = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCAmelCase ) , atol=1e-4 ) )
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __UpperCamelCase : List[str] = (3, 9, -11, 0, 7, 5, 1, -1) __UpperCamelCase : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __UpperCamelCase : __snake_case :int __snake_case :Node | None class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : Iterable[int] ) -> None: """simple docstring""" __lowercase = None for i in sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ): __lowercase = Node(_lowerCAmelCase , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" __lowercase = self.head while node: yield node.data __lowercase = node.next_node def __len__( self : Dict ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : int ) -> str: """simple docstring""" return " -> ".join([str(_lowerCAmelCase ) for node in self] ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return SortedLinkedList(list(lowerCamelCase ) + list(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1