code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = n __lowercase = [None] * self.n __lowercase = 0 # index of the first element __lowercase = 0 __lowercase = 0 def __len__( self : int ) -> int: """simple docstring""" return self.size def _a ( self : Tuple ) -> bool: """simple docstring""" return self.size == 0 def _a ( self : str ) -> Optional[Any]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def _a ( self : List[str] , _lowerCAmelCase : List[Any] ) -> str: """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) __lowercase = data __lowercase = (self.rear + 1) % self.n self.size += 1 return self def _a ( self : Any ) -> Optional[Any]: """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) __lowercase = self.array[self.front] __lowercase = None __lowercase = (self.front + 1) % self.n self.size -= 1 return temp
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case ( ): '''simple docstring''' __lowercase = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCamelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCamelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCamelCase ) return parser.parse_args() def snake_case ( ): '''simple docstring''' __lowercase = parse_args() # Import training_script as a module. __lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowercase = script_fpath.stem __lowercase = importlib.import_module(lowerCamelCase ) # Patch sys.argv __lowercase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , **_lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = feature_size __lowercase = sampling_rate __lowercase = padding_value __lowercase = kwargs.pop("""padding_side""" , """right""" ) __lowercase = kwargs.pop("""return_attention_mask""" , _lowerCAmelCase ) super().__init__(**_lowerCAmelCase ) def _a ( self : List[Any] , _lowerCAmelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = True , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: """simple docstring""" if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __lowercase = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(_lowerCAmelCase ) == 0: if return_attention_mask: __lowercase = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __lowercase = required_input[0] if isinstance(_lowerCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __lowercase = 0 while len(required_input[index] ) == 0: index += 1 if index < len(_lowerCAmelCase ): __lowercase = required_input[index][0] if return_tensors is None: if is_tf_tensor(_lowerCAmelCase ): __lowercase = """tf""" elif is_torch_tensor(_lowerCAmelCase ): __lowercase = """pt""" elif isinstance(_lowerCAmelCase , (int, float, list, tuple, np.ndarray) ): __lowercase = """np""" else: raise ValueError( F'type of {first_element} unknown: {type(_lowerCAmelCase )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __lowercase = to_numpy(_lowerCAmelCase ) else: __lowercase = [to_numpy(_lowerCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy __lowercase = self._get_padding_strategies(padding=_lowerCAmelCase , max_length=_lowerCAmelCase ) __lowercase = processed_features[self.model_input_names[0]] __lowercase = len(_lowerCAmelCase ) if not all(len(_lowerCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __lowercase = [] for i in range(_lowerCAmelCase ): __lowercase = {k: v[i] for k, v in processed_features.items()} # truncation __lowercase = self._truncate( _lowerCAmelCase , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , truncation=_lowerCAmelCase , ) truncated_inputs.append(_lowerCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __lowercase = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __lowercase = PaddingStrategy.MAX_LENGTH __lowercase = {} for i in range(_lowerCAmelCase ): # padding __lowercase = self._pad( truncated_inputs[i] , max_length=_lowerCAmelCase , padding_strategy=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: __lowercase = [] if value.dtype is np.dtype(np.floataa ): __lowercase = value.astype(np.floataa ) batch_outputs[key].append(_lowerCAmelCase ) return BatchFeature(_lowerCAmelCase , tensor_type=_lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , ) -> dict: """simple docstring""" __lowercase = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __lowercase = len(_lowerCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowerCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __lowercase = np.ones(len(_lowerCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: __lowercase = max_length - len(_lowerCAmelCase ) if self.padding_side == "right": if return_attention_mask: __lowercase = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __lowercase = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __lowercase = np.pad( _lowerCAmelCase , _lowerCAmelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __lowercase = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __lowercase = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __lowercase = np.pad( _lowerCAmelCase , _lowerCAmelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def _a ( self : str , _lowerCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , ) -> List[Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __lowercase = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __lowercase = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __lowercase = len(_lowerCAmelCase ) > max_length if needs_to_be_truncated: __lowercase = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __lowercase = processed_features["""attention_mask"""][:max_length] return processed_features def _a ( self : Union[str, Any] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Tuple=None ) -> Optional[Any]: """simple docstring""" if padding is not False: if padding is True: __lowercase = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = PaddingStrategy(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = padding else: __lowercase = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = LxmertConfig.from_json_file(lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowercase = LxmertForPreTraining(lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : List[str] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Optional[int] = { """yjernite/retribert-base-uncased""": 512, } __UpperCamelCase : List[Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = VOCAB_FILES_NAMES __snake_case :int = PRETRAINED_VOCAB_FILES_MAP __snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :List[Any] = PRETRAINED_INIT_CONFIGURATION __snake_case :str = RetriBertTokenizer __snake_case :Dict = ['input_ids', 'attention_mask'] def __init__( self : Tuple , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]="[UNK]" , _lowerCAmelCase : List[Any]="[SEP]" , _lowerCAmelCase : Dict="[PAD]" , _lowerCAmelCase : Optional[int]="[CLS]" , _lowerCAmelCase : List[str]="[MASK]" , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCAmelCase ) __lowercase = do_lower_case def _a ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ) -> Optional[int]: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
import os import re import shutil import sys import tempfile import unittest import black __UpperCamelCase : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCamelCase : int = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class __UpperCamelCase ( unittest.TestCase ): def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __lowercase = self.transformer_dir shutil.copy( os.path.join(_lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase = """src/transformers""" shutil.rmtree(self.transformer_dir ) def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any]=None ) -> str: """simple docstring""" __lowercase = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __lowercase = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __lowercase = black.format_str(_lowerCAmelCase , mode=_lowerCAmelCase ) __lowercase = os.path.join(self.transformer_dir , """new_code.py""" ) with open(_lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(_lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCAmelCase ) with open(_lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> List[str]: """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , _lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) # Copy consistency with a really long name __lowercase = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , F'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , _lowerCAmelCase , _lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , _lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , _lowerCAmelCase ) , ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) self.assertFalse(_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCAmelCase ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __lowercase , __lowercase = check_copies.convert_to_localized_md( _lowerCAmelCase , _lowerCAmelCase , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(_lowerCAmelCase , _lowerCAmelCase )
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def snake_case ( ): '''simple docstring''' __lowercase = 10 __lowercase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) __lowercase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowerCamelCase ) ), } , features=lowerCamelCase , ) return dataset @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCamelCase ) return filename # FILE_CONTENT + files __UpperCamelCase : int = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" __lowercase = FILE_CONTENT with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return filename @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" __lowercase = bytes(lowerCamelCase , """utf-8""" ) with bza.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) __lowercase = bytes(lowerCamelCase , """utf-8""" ) with gzip.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" __lowercase = bytes(lowerCamelCase , """utf-8""" ) with lza.frame.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCamelCase , """w""" ) as archive: archive.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' import tarfile __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' import lzma __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" __lowercase = bytes(lowerCamelCase , """utf-8""" ) with lzma.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' import zipfile __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" __lowercase = bytes(lowerCamelCase , """utf-8""" ) with zstd.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" __lowercase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase ) return filename __UpperCamelCase : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] __UpperCamelCase : Union[str, Any] = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] __UpperCamelCase : Tuple = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } __UpperCamelCase : Dict = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] __UpperCamelCase : Optional[int] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def snake_case ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = datasets.Dataset.from_dict(lowerCamelCase ) __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCamelCase ) ) as con: __lowercase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCamelCase , """w""" , newline="""""" ) as f: __lowercase = csv.DictWriter(lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCamelCase , """w""" , newline="""""" ) as f: __lowercase = csv.DictWriter(lowerCamelCase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' import bza __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCamelCase , """rb""" ) as f: __lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase , """wb""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCamelCase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) __lowercase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCamelCase , """wb""" ) as f: __lowercase = pq.ParquetWriter(lowerCamelCase , schema=lowerCamelCase ) __lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase ) )] for k in DATA[0]} , schema=lowerCamelCase ) writer.write_table(lowerCamelCase ) writer.close() return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __lowercase = {"""data""": DATA} with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __lowercase = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCamelCase , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCamelCase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCamelCase , """rb""" ) as orig_file: with gzip.open(lowerCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' import gzip __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCamelCase , """rb""" ) as orig_file: with gzip.open(lowerCamelCase , """wb""" ) as zipped_file: zipped_file.writelines(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.add(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCamelCase , """w""" ) as f: f.add(lowerCamelCase , arcname=os.path.join("""nested""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""0""", """1""", """2""", """3"""] __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""0""", """1""", """2""", """3"""] __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = ["""0""", """1""", """2""", """3"""] __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCamelCase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) f.write(lowerCamelCase , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCamelCase ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCamelCase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) __lowercase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCamelCase ) return path @pytest.fixture(scope="""session""" ) def snake_case ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def snake_case ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCamelCase , """w""" ) as f: f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ) ) f.write(lowerCamelCase , arcname=os.path.basename(lowerCamelCase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[str] = 'camembert' def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any]=3_0522 , _lowerCAmelCase : str=768 , _lowerCAmelCase : List[str]=12 , _lowerCAmelCase : List[Any]=12 , _lowerCAmelCase : int=3072 , _lowerCAmelCase : Any="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : List[str]=512 , _lowerCAmelCase : int=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Dict=1e-12 , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Any="absolute" , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout class __UpperCamelCase ( _lowerCAmelCase ): @property def _a ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = ['image_processor', 'tokenizer'] __snake_case :Dict = 'OwlViTImageProcessor' __snake_case :str = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : str , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowercase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowerCAmelCase , ) __lowercase = kwargs.pop("""feature_extractor""" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self : str , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict="max_length" , _lowerCAmelCase : Optional[Any]="np" , **_lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(_lowerCAmelCase , _lowerCAmelCase ) or (isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(text[0] , _lowerCAmelCase )): __lowercase = [self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase )] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(text[0] , _lowerCAmelCase ): __lowercase = [] # Maximum number of queries across batch __lowercase = max([len(_lowerCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_lowerCAmelCase ) != max_num_queries: __lowercase = t + [""" """] * (max_num_queries - len(_lowerCAmelCase )) __lowercase = self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) encodings.append(_lowerCAmelCase ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": __lowercase = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __lowercase = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __lowercase = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __lowercase = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __lowercase = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) __lowercase = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __lowercase = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) __lowercase = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) __lowercase = BatchEncoding() __lowercase = input_ids __lowercase = attention_mask if query_images is not None: __lowercase = BatchEncoding() __lowercase = self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ).pixel_values __lowercase = query_pixel_values if images is not None: __lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def _a ( self : Optional[int] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Dict ) -> int: """simple docstring""" return self.image_processor.post_process(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : int , *_lowerCAmelCase : Dict , **_lowerCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : str , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : str ) -> List[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Tuple , *_lowerCAmelCase : int , **_lowerCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Optional[int] , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def _a ( self : int ) -> Dict: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowerCAmelCase , ) return self.image_processor_class @property def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowerCAmelCase , ) return self.image_processor
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = int(number**0.5 ) return number == sq * sq def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __lowercase = x_den * y_den * z_den __lowercase = gcd(lowerCamelCase , lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def snake_case ( lowerCamelCase = 35 ): '''simple docstring''' __lowercase = set() __lowercase = 42 __lowercase = Fraction(0 ) __lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __lowercase = x_num * y_den + x_den * y_num __lowercase = x_den * y_den __lowercase = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=2 __lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __lowercase = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase ) and is_sq(lowerCamelCase ): __lowercase = int(sqrt(lowerCamelCase ) ) __lowercase = int(sqrt(lowerCamelCase ) ) __lowercase = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=-1 __lowercase = x_num * y_num __lowercase = x_den * y_num + x_num * y_den __lowercase = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) # n=2 __lowercase = x_num * x_num * y_num * y_num __lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase ) and is_sq(lowerCamelCase ): __lowercase = int(sqrt(lowerCamelCase ) ) __lowercase = int(sqrt(lowerCamelCase ) ) __lowercase = gcd(lowerCamelCase , lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __lowercase = add_three( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) unique_s.add(lowerCamelCase ) for num, den in unique_s: total += Fraction(lowerCamelCase , lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = 'decision_transformer' __snake_case :List[str] = ['past_key_values'] __snake_case :str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] , _lowerCAmelCase : List[str]=17 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : List[str]=4096 , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=1 , _lowerCAmelCase : List[str]=1024 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Any="relu" , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Optional[int]=0.1 , _lowerCAmelCase : List[str]=1e-5 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=5_0256 , _lowerCAmelCase : Tuple=5_0256 , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : List[Any]=False , **_lowerCAmelCase : str , ) -> Tuple: """simple docstring""" __lowercase = state_dim __lowercase = act_dim __lowercase = hidden_size __lowercase = max_ep_len __lowercase = action_tanh __lowercase = vocab_size __lowercase = n_positions __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = scale_attn_weights __lowercase = use_cache __lowercase = scale_attn_by_inverse_layer_idx __lowercase = reorder_and_upcast_attn __lowercase = bos_token_id __lowercase = eos_token_id super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __UpperCamelCase : Tuple = logging.get_logger(__name__) @dataclass class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : str=False , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : List[Any]=6.0 , _lowerCAmelCase : int=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple="fp4" , _lowerCAmelCase : List[str]=False , **_lowerCAmelCase : Any , ) -> Dict: """simple docstring""" __lowercase = load_in_abit __lowercase = load_in_abit __lowercase = llm_inta_threshold __lowercase = llm_inta_skip_modules __lowercase = llm_inta_enable_fpaa_cpu_offload __lowercase = llm_inta_has_fpaa_weight __lowercase = bnb_abit_quant_type __lowercase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowercase = torch.floataa elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = getattr(_lowerCAmelCase , _lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.dtype ): __lowercase = bnb_abit_compute_dtype else: raise ValueError("""bnb_4bit_compute_dtype must be a string or a torch.dtype""" ) self.post_init() def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not isinstance(self.llm_inta_threshold , _lowerCAmelCase ): raise ValueError("""llm_int8_threshold must be a float""" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _lowerCAmelCase ): raise ValueError("""llm_int8_skip_modules must be a list of strings""" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _lowerCAmelCase ): raise ValueError("""llm_int8_enable_fp32_cpu_offload must be a boolean""" ) if not isinstance(self.llm_inta_has_fpaa_weight , _lowerCAmelCase ): raise ValueError("""llm_int8_has_fp16_weight must be a boolean""" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("""bnb_4bit_compute_dtype must be torch.dtype""" ) if not isinstance(self.bnb_abit_quant_type , _lowerCAmelCase ): raise ValueError("""bnb_4bit_quant_type must be a string""" ) if not isinstance(self.bnb_abit_use_double_quant , _lowerCAmelCase ): raise ValueError("""bnb_4bit_use_double_quant must be a boolean""" ) if self.load_in_abit and not version.parse(importlib.metadata.version("""bitsandbytes""" ) ) >= version.parse( """0.39.0""" ): raise ValueError( """4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version""" ) def _a ( self : Tuple ) -> Dict: """simple docstring""" return self.load_in_abit or self.load_in_abit def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , **_lowerCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = cls(**_lowerCAmelCase ) __lowercase = [] for key, value in kwargs.items(): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) to_remove.append(_lowerCAmelCase ) for key in to_remove: kwargs.pop(_lowerCAmelCase , _lowerCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def _a ( self : Union[str, Any] , _lowerCAmelCase : Union[str, os.PathLike] ) -> Tuple: """simple docstring""" with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: __lowercase = self.to_dict() __lowercase = json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + """\n""" writer.write(_lowerCAmelCase ) def _a ( self : List[str] ) -> Dict[str, Any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = str(output["""bnb_4bit_compute_dtype"""] ).split(""".""" )[1] return output def __repr__( self : int ) -> List[str]: """simple docstring""" return F'{self.__class__.__name__} {self.to_json_string()}' def _a ( self : List[Any] , _lowerCAmelCase : bool = True ) -> str: """simple docstring""" if use_diff is True: __lowercase = self.to_diff_dict() else: __lowercase = self.to_dict() return json.dumps(_lowerCAmelCase , indent=2 , sort_keys=_lowerCAmelCase ) + "\n" def _a ( self : str ) -> Dict[str, Any]: """simple docstring""" __lowercase = self.to_dict() # get the default config dict __lowercase = BitsAndBytesConfig().to_dict() __lowercase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowercase = value return serializable_config_dict
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_lowerCAmelCase , """num_heads""" ) ) class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Optional[int]=[16, 48, 96] , _lowerCAmelCase : int=[1, 3, 6] , _lowerCAmelCase : int=[1, 2, 10] , _lowerCAmelCase : Optional[Any]=[7, 3, 3] , _lowerCAmelCase : Union[str, Any]=[4, 2, 2] , _lowerCAmelCase : Optional[int]=[2, 1, 1] , _lowerCAmelCase : List[Any]=[2, 2, 2] , _lowerCAmelCase : Optional[Any]=[False, False, True] , _lowerCAmelCase : Optional[Any]=[0.0, 0.0, 0.0] , _lowerCAmelCase : Dict=0.02 , _lowerCAmelCase : Union[str, Any]=1e-12 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=2 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_sizes __lowercase = patch_stride __lowercase = patch_padding __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = num_channels __lowercase = embed_dim __lowercase = num_heads __lowercase = stride_kv __lowercase = depth __lowercase = cls_token __lowercase = attention_drop_rate __lowercase = initializer_range __lowercase = layer_norm_eps def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: # create a random int32 tensor of given shape __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Tuple ) -> str: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" __lowercase = TFCvtModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _a ( self : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFCvtForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Optional[Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __snake_case :Optional[Any] = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) __snake_case :str = False __snake_case :int = False __snake_case :List[Any] = False __snake_case :str = False __snake_case :str = False def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = TFCvtModelTester(self ) __lowercase = TFCvtConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def _a ( self : int ) -> str: """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def _a ( self : Any ) -> Tuple: """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _a ( self : Tuple ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_lowerCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : int ) -> int: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depth ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFCvtModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[int] ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowerCAmelCase , atol=1e-4 ) )
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :int = BioGptTokenizer __snake_case :List[Any] = False def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __lowercase = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) __lowercase = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def _a ( self : List[str] , _lowerCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = """lower newer""" __lowercase = """lower newer""" return input_text, output_text def _a ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowercase = """lower""" __lowercase = ["""low""", """er</w>"""] __lowercase = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = tokens + ["""<unk>"""] __lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" __lowercase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any=13 , _lowerCAmelCase : List[Any]=32 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : List[str]=[10, 20, 30, 40] , _lowerCAmelCase : Tuple=[2, 2, 3, 2] , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Optional[int]=37 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=10 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Optional[int]=["stage2", "stage3", "stage4"] , _lowerCAmelCase : List[str]=3 , _lowerCAmelCase : Optional[Any]=None , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = num_stages __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = intermediate_size __lowercase = hidden_act __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = out_features __lowercase = num_labels __lowercase = scope __lowercase = num_stages def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Any ) -> int: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _a ( self : Dict ) -> str: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _a ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = UperNetForSemanticSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _a ( self : int ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () __snake_case :List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __snake_case :Any = False __snake_case :Any = False __snake_case :List[str] = False __snake_case :Optional[int] = False __snake_case :Any = False __snake_case :List[str] = False def _a ( self : List[Any] ) -> str: """simple docstring""" __lowercase = UperNetModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : Any ) -> Optional[Any]: """simple docstring""" return def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _a ( self : int ) -> Any: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" pass def _a ( self : Dict ) -> int: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = _config_zero_init(_lowerCAmelCase ) __lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _a ( self : Tuple ) -> List[Any]: """simple docstring""" pass @slow def _a ( self : Any ) -> Tuple: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = UperNetForSemanticSegmentation.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def snake_case ( ): '''simple docstring''' __lowercase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __lowercase = Image.open(lowerCamelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __lowercase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowerCAmelCase ) __lowercase = prepare_img() __lowercase = processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __lowercase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowerCAmelCase ) __lowercase = prepare_img() __lowercase = processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Dict=10 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : str=2 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Any=True , _lowerCAmelCase : int=True , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Any=5 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Union[str, Any]=10 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : List[Any]=0.9 , _lowerCAmelCase : List[Any]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = tubelet_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos __lowercase = int(mask_ratio * self.seq_length ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[int] ) -> Any: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEForPreTraining(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.batch_size , -1 ).bool() __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # model only returns predictions for masked patches __lowercase = mask.sum().item() __lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __snake_case :Any = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __snake_case :List[Any] = False __snake_case :List[Any] = False __snake_case :List[Any] = False __snake_case :Union[str, Any] = False def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = VideoMAEModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple=False ) -> int: """simple docstring""" __lowercase = copy.deepcopy(_lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch __lowercase = torch.ones((self.model_tester.num_masks,) ) __lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) __lowercase = mask.expand(self.model_tester.batch_size , -1 ).bool() __lowercase = bool_masked_pos.to(_lowerCAmelCase ) if return_labels: if model_class in [ *get_values(_lowerCAmelCase ), ]: __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _a ( self : int ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _a ( self : List[Any] ) -> Any: """simple docstring""" pass def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase ) @slow def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = VideoMAEModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if not self.has_attentions: pass else: __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __lowercase = len(_lowerCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(_lowerCAmelCase ) ) __lowercase = outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = self.model_tester.seq_length - self.model_tester.num_masks __lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass def snake_case ( ): '''simple docstring''' __lowercase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowercase = np.load(lowerCamelCase ) return list(lowerCamelCase ) @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Tuple ) -> Any: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( _lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(_lowerCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # add boolean mask, indicating which patches to mask __lowercase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowercase = torch.load(_lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) # verify the logits __lowercase = torch.Size([1, 1408, 1536] ) __lowercase = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=_lowerCAmelCase ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) __lowercase = torch.tensor([0.5_142] , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) __lowercase = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=_lowerCAmelCase ).to( _lowerCAmelCase ) with torch.no_grad(): __lowercase = model(**_lowerCAmelCase ) __lowercase = torch.tensor(torch.tensor([0.6_469] ) , device=_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1e-4 ) )
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def snake_case ( lowerCamelCase ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' return max(metric_fn(lowerCamelCase , lowerCamelCase ) for gt in ground_truths ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [line.strip() for line in open(lowerCamelCase , """r""" ).readlines()] __lowercase = [] if args.gold_data_mode == "qa": __lowercase = pd.read_csv(lowerCamelCase , sep="""\t""" , header=lowerCamelCase ) for answer_list in data[1]: __lowercase = ast.literal_eval(lowerCamelCase ) answers.append(lowerCamelCase ) else: __lowercase = [line.strip() for line in open(lowerCamelCase , """r""" ).readlines()] __lowercase = [[reference] for reference in references] __lowercase = __lowercase = __lowercase = 0 for prediction, ground_truths in zip(lowerCamelCase , lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase , lowerCamelCase , lowerCamelCase ) fa += metric_max_over_ground_truths(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = 100.0 * em / total __lowercase = 100.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = args.k __lowercase = [line.strip() for line in open(lowerCamelCase , """r""" ).readlines()] __lowercase = [line.strip() for line in open(lowerCamelCase , """r""" ).readlines()] __lowercase = __lowercase = 0 for hypo, reference in zip(lowerCamelCase , lowerCamelCase ): __lowercase = set(hypo.split("""\t""" )[:k] ) __lowercase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowercase = 100.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' def strip_title(lowerCamelCase ): if title.startswith("""\"""" ): __lowercase = title[1:] if title.endswith("""\"""" ): __lowercase = title[:-1] return title __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase , return_tensors="""pt""" , padding=lowerCamelCase , truncation=lowerCamelCase , )["""input_ids"""].to(args.device ) __lowercase = rag_model.rag.question_encoder(lowerCamelCase ) __lowercase = question_enc_outputs[0] __lowercase = rag_model.retriever( lowerCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __lowercase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowercase = [] for docs in all_docs: __lowercase = [strip_title(lowerCamelCase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCamelCase ) ) return provenance_strings def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' with torch.no_grad(): __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase , return_tensors="""pt""" , padding=lowerCamelCase , truncation=lowerCamelCase ) __lowercase = inputs_dict.input_ids.to(args.device ) __lowercase = inputs_dict.attention_mask.to(args.device ) __lowercase = rag_model.generate( # rag_model overwrites generate lowerCamelCase , attention_mask=lowerCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowercase = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) if args.print_predictions: for q, a in zip(lowerCamelCase , lowerCamelCase ): logger.info("""Q: {} - A: {}""".format(lowerCamelCase , lowerCamelCase ) ) return answers def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCamelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCamelCase , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCamelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCamelCase , type=lowerCamelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCamelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCamelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCamelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCamelCase , type=lowerCamelCase , required=lowerCamelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCamelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCamelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCamelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCamelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCamelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCamelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __lowercase = parser.parse_args() __lowercase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} if args.model_type is None: __lowercase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __lowercase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __lowercase = args.n_docs if args.index_name is not None: __lowercase = args.index_name if args.index_path is not None: __lowercase = args.index_path else: __lowercase = BartForConditionalGeneration __lowercase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCamelCase ) __lowercase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __lowercase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCamelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __lowercase = RagRetriever.from_pretrained(lowerCamelCase , **lowerCamelCase ) __lowercase = model_class.from_pretrained(lowerCamelCase , retriever=lowerCamelCase , **lowerCamelCase ) model.retriever.init_retrieval() else: __lowercase = model_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __lowercase = [] for line in tqdm(lowerCamelCase ): questions.append(line.strip() ) if len(lowerCamelCase ) == args.eval_batch_size: __lowercase = evaluate_batch_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) preds_file.write("""\n""".join(lowerCamelCase ) + """\n""" ) preds_file.flush() __lowercase = [] if len(lowerCamelCase ) > 0: __lowercase = evaluate_batch_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) preds_file.write("""\n""".join(lowerCamelCase ) ) preds_file.flush() score_fn(lowerCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __UpperCamelCase : Dict = get_args() main(args)
53
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __UpperCamelCase : Optional[int] = logging.getLogger(__name__) __UpperCamelCase : Optional[int] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __snake_case :str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _a ( self : List[str] ) -> Any: """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case :Optional[str] = field(default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __snake_case :Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) __snake_case :Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def _a ( self : str ) -> int: """simple docstring""" if self.train_file is not None: __lowercase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowercase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as f: __lowercase = [json.loads(lowerCamelCase ) for line in f.read().splitlines() if (len(lowerCamelCase ) > 0 and not line.isspace())] assert len(lowerCamelCase ) == len(lowerCamelCase ) __lowercase = {c: dataset[c] for c in dataset.column_names} __lowercase = refs return Dataset.from_dict(lowerCamelCase ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowercase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: __lowercase = {} if data_args.train_file is not None: __lowercase = data_args.train_file if data_args.validation_file is not None: __lowercase = data_args.validation_file __lowercase = data_args.train_file.split(""".""" )[-1] if extension == "txt": __lowercase = """text""" __lowercase = load_dataset(lowerCamelCase , data_files=lowerCamelCase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , **lowerCamelCase ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) __lowercase = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowerCamelCase ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowerCamelCase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: __lowercase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelForMaskedLM.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowercase = datasets["""train"""].column_names else: __lowercase = datasets["""validation"""].column_names __lowercase = """text""" if """text""" in column_names else column_names[0] __lowercase = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowerCamelCase ): # Remove empty lines __lowercase = [line for line in examples["""text"""] if len(lowerCamelCase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=data_args.max_seq_length ) __lowercase = datasets.map( lowerCamelCase , batched=lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowercase = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowercase = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowercase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowercase = False # Data collator # This one will take care of randomly masking the tokens. __lowercase = DataCollatorForWholeWordMask(tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowerCamelCase , data_collator=lowerCamelCase , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowercase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowercase = model_args.model_name_or_path else: __lowercase = None __lowercase = trainer.train(resume_from_checkpoint=lowerCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __lowercase = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = perplexity __lowercase = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : str , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
53
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __snake_case :Optional[Any] = False __snake_case :Dict = False def _a ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=False ) -> List[Any]: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __lowercase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple=13 , _lowerCAmelCase : Dict=7 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Dict=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : int=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Optional[int]=4 , _lowerCAmelCase : int=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=512 , _lowerCAmelCase : List[str]=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[str]=0.02 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : int=4 , _lowerCAmelCase : str=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = embedding_size def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> Dict: """simple docstring""" __lowercase = TFMobileBertModel(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) __lowercase = [input_ids, input_mask] __lowercase = model(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = TFMobileBertForMaskedLM(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = TFMobileBertForNextSentencePrediction(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = TFMobileBertForPreTraining(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForSequenceClassification(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = TFMobileBertForMultipleChoice(config=_lowerCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = TFMobileBertForTokenClassification(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Any: """simple docstring""" __lowercase = TFMobileBertForQuestionAnswering(config=_lowerCAmelCase ) __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def _a ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFMobileBertModelTest.TFMobileBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Any ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*_lowerCAmelCase ) def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_lowerCAmelCase ) def _a ( self : str ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_lowerCAmelCase ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*_lowerCAmelCase ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*_lowerCAmelCase ) @slow def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: __lowercase = TFMobileBertModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : Any ) -> Any: """simple docstring""" __lowercase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_lowerCAmelCase )[0] __lowercase = [1, 6, 3_0522] self.assertEqual(output.shape , _lowerCAmelCase ) __lowercase = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 )
53
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : float , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : bool = False , ) -> Any: """simple docstring""" super().__init__() __lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = nn.Embedding(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = False __lowercase = nn.Dropout(p=_lowerCAmelCase ) __lowercase = TaConfig( vocab_size=_lowerCAmelCase , d_model=_lowerCAmelCase , num_heads=_lowerCAmelCase , d_kv=_lowerCAmelCase , d_ff=_lowerCAmelCase , dropout_rate=_lowerCAmelCase , feed_forward_proj=_lowerCAmelCase , is_decoder=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , ) __lowercase = nn.ModuleList() for lyr_num in range(_lowerCAmelCase ): __lowercase = TaBlock(_lowerCAmelCase ) self.encoders.append(_lowerCAmelCase ) __lowercase = TaLayerNorm(_lowerCAmelCase ) __lowercase = nn.Dropout(p=_lowerCAmelCase ) def _a ( self : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.token_embedder(_lowerCAmelCase ) __lowercase = encoder_input_tokens.shape[1] __lowercase = torch.arange(_lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowerCAmelCase ) __lowercase = self.dropout_pre(_lowerCAmelCase ) # inverted the attention mask __lowercase = encoder_input_tokens.size() __lowercase = self.get_extended_attention_mask(_lowerCAmelCase , _lowerCAmelCase ) for lyr in self.encoders: __lowercase = lyr(_lowerCAmelCase , _lowerCAmelCase )[0] __lowercase = self.layer_norm(_lowerCAmelCase ) return self.dropout_post(_lowerCAmelCase ), encoder_inputs_mask
53
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
1
from __future__ import annotations def snake_case ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , ): '''simple docstring''' __lowercase = cipher_alphabet or [chr(lowerCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowercase = { """a""": 0.08497, """b""": 0.01492, """c""": 0.02202, """d""": 0.04253, """e""": 0.11162, """f""": 0.02228, """g""": 0.02015, """h""": 0.06094, """i""": 0.07546, """j""": 0.00153, """k""": 0.01292, """l""": 0.04025, """m""": 0.02406, """n""": 0.06749, """o""": 0.07507, """p""": 0.01929, """q""": 0.00095, """r""": 0.07587, """s""": 0.06327, """t""": 0.09356, """u""": 0.02758, """v""": 0.00978, """w""": 0.02560, """x""": 0.00150, """y""": 0.01994, """z""": 0.00077, } else: # Custom frequencies dictionary __lowercase = frequencies_dict if not case_sensitive: __lowercase = ciphertext.lower() # Chi squared statistic values __lowercase = {} # cycle through all of the shifts for shift in range(len(lowerCamelCase ) ): __lowercase = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowercase = (alphabet_letters.index(letter.lower() ) - shift) % len( lowerCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowercase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowercase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.lower().count(lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.count(lowerCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowercase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowerCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowercase = min( lowerCamelCase , key=lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowercase ) , ( __lowercase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
53
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
1
class __UpperCamelCase : def __init__( self : Optional[Any] , _lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = arr.split(""",""" ) def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [int(self.array[0] )] * len(self.array ) __lowercase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowercase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowercase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = input("""please input some numbers:""") __UpperCamelCase : Dict = SubArray(whole_array) __UpperCamelCase : str = array.solve_sub_array() print(("""the results is:""", re))
53
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = 'xlm' __snake_case :Any = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : str , _lowerCAmelCase : Tuple=3_0145 , _lowerCAmelCase : Optional[Any]=2048 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : List[Any]=16 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Any=False , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[Any]=512 , _lowerCAmelCase : Tuple=2048**-0.5 , _lowerCAmelCase : int=1e-12 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : int=0 , _lowerCAmelCase : Dict=1 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : List[str]=5 , _lowerCAmelCase : Any=True , _lowerCAmelCase : List[str]="first" , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=True , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=5 , _lowerCAmelCase : Tuple=5 , _lowerCAmelCase : Union[str, Any]=0 , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[Any]=0 , **_lowerCAmelCase : str , ) -> Dict: """simple docstring""" __lowercase = vocab_size __lowercase = emb_dim __lowercase = n_layers __lowercase = n_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = gelu_activation __lowercase = sinusoidal_embeddings __lowercase = causal __lowercase = asm __lowercase = n_langs __lowercase = use_lang_emb __lowercase = layer_norm_eps __lowercase = bos_index __lowercase = eos_index __lowercase = pad_index __lowercase = unk_index __lowercase = mask_index __lowercase = is_encoder __lowercase = max_position_embeddings __lowercase = embed_init_std __lowercase = init_std __lowercase = summary_type __lowercase = summary_use_proj __lowercase = summary_activation __lowercase = summary_proj_to_labels __lowercase = summary_first_dropout __lowercase = start_n_top __lowercase = end_n_top __lowercase = mask_token_id __lowercase = lang_id if "n_words" in kwargs: __lowercase = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): @property def _a ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
53
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __UpperCamelCase : List[Any] = None __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Dict = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } __UpperCamelCase : Optional[int] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } __UpperCamelCase : List[Any] = """▁""" # Segments (not really needed) __UpperCamelCase : Dict = 0 __UpperCamelCase : str = 1 __UpperCamelCase : Union[str, Any] = 2 __UpperCamelCase : str = 3 __UpperCamelCase : List[str] = 4 class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[Any] = VOCAB_FILES_NAMES __snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :str = 'left' __snake_case :Optional[int] = XLNetTokenizer def __init__( self : Dict , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Any=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : List[Any]="<unk>" , _lowerCAmelCase : Tuple="<sep>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : Optional[Any]="<cls>" , _lowerCAmelCase : List[str]="<mask>" , _lowerCAmelCase : int=["<eop>", "<eod>"] , **_lowerCAmelCase : Tuple , ) -> int: """simple docstring""" __lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( vocab_file=_lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = 3 __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _a ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _a ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _a ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
53
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[str] = ['image_processor', 'tokenizer'] __snake_case :List[Any] = 'BlipImageProcessor' __snake_case :Tuple = 'AutoTokenizer' def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int ) -> List[str]: """simple docstring""" __lowercase = False super().__init__(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.image_processor def __call__( self : List[str] , _lowerCAmelCase : ImageInput = None , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: __lowercase = self.tokenizer __lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) return text_encoding # add pixel_values __lowercase = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) if text is not None: __lowercase = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) else: __lowercase = None if text_encoding is not None: encoding_image_processor.update(_lowerCAmelCase ) return encoding_image_processor def _a ( self : Optional[int] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : Union[str, Any] , *_lowerCAmelCase : Any , **_lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
1
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __lowercase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
53
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __UpperCamelCase : Tuple = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ __UpperCamelCase : Dict = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ __UpperCamelCase : Optional[int] = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : Optional[int] ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : int=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]="auto" , _lowerCAmelCase : Tuple=-1 , _lowerCAmelCase : Optional[int]=0.9 , _lowerCAmelCase : int=5 , _lowerCAmelCase : Tuple=500 , _lowerCAmelCase : List[Any]="gpt2-large" , _lowerCAmelCase : List[str]=-1 , _lowerCAmelCase : List[Any]=1024 , _lowerCAmelCase : Any=25 , _lowerCAmelCase : List[Any]=5 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Optional[int]=25 , ) -> Optional[int]: """simple docstring""" __lowercase = compute_mauve( p_text=_lowerCAmelCase , q_text=_lowerCAmelCase , p_features=_lowerCAmelCase , q_features=_lowerCAmelCase , p_tokens=_lowerCAmelCase , q_tokens=_lowerCAmelCase , num_buckets=_lowerCAmelCase , pca_max_data=_lowerCAmelCase , kmeans_explained_var=_lowerCAmelCase , kmeans_num_redo=_lowerCAmelCase , kmeans_max_iter=_lowerCAmelCase , featurize_model_name=_lowerCAmelCase , device_id=_lowerCAmelCase , max_text_length=_lowerCAmelCase , divergence_curve_discretization_size=_lowerCAmelCase , mauve_scaling_factor=_lowerCAmelCase , verbose=_lowerCAmelCase , seed=_lowerCAmelCase , ) return out
53
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
1
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :torch.FloatTensor class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): @register_to_config def __init__( self : str , _lowerCAmelCase : int = 16 , _lowerCAmelCase : int = 88 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 1 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : int = 32 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : str = "geglu" , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = num_attention_heads * attention_head_dim __lowercase = in_channels __lowercase = torch.nn.GroupNorm(num_groups=_lowerCAmelCase , num_channels=_lowerCAmelCase , eps=1e-6 , affine=_lowerCAmelCase ) __lowercase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) # 3. Define transformers blocks __lowercase = nn.ModuleList( [ BasicTransformerBlock( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dropout=_lowerCAmelCase , cross_attention_dim=_lowerCAmelCase , activation_fn=_lowerCAmelCase , attention_bias=_lowerCAmelCase , double_self_attention=_lowerCAmelCase , norm_elementwise_affine=_lowerCAmelCase , ) for d in range(_lowerCAmelCase ) ] ) __lowercase = nn.Linear(_lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Any=None , _lowerCAmelCase : bool = True , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = hidden_states.shape __lowercase = batch_frames // num_frames __lowercase = hidden_states __lowercase = hidden_states[None, :].reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowercase = self.norm(_lowerCAmelCase ) __lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = self.proj_in(_lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: __lowercase = block( _lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , timestep=_lowerCAmelCase , cross_attention_kwargs=_lowerCAmelCase , class_labels=_lowerCAmelCase , ) # 3. Output __lowercase = self.proj_out(_lowerCAmelCase ) __lowercase = ( hidden_states[None, None, :] .reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowercase = hidden_states.reshape(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=_lowerCAmelCase )
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase : List[Any] = None __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Optional[int] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : Union[str, Any] = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } __UpperCamelCase : Optional[Any] = """▁""" class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = VOCAB_FILES_NAMES __snake_case :List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[Any] = ['input_ids', 'attention_mask'] __snake_case :Tuple = BarthezTokenizer def __init__( self : int , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : List[str]="</s>" , _lowerCAmelCase : int="<s>" , _lowerCAmelCase : Union[str, Any]="<unk>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : Any="<mask>" , **_lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" __lowercase = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _a ( self : str , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : Optional[Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # General docstring __UpperCamelCase : List[Any] = """RegNetConfig""" # Base docstring __UpperCamelCase : Dict = """facebook/regnet-y-040""" __UpperCamelCase : Tuple = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : Union[str, Any] = """facebook/regnet-y-040""" __UpperCamelCase : Tuple = """tabby, tabby cat""" __UpperCamelCase : Optional[int] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : int , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : Optional[str] = "relu" , **_lowerCAmelCase : Tuple , ) -> str: """simple docstring""" super().__init__(**_lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowercase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowercase = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=_lowerCAmelCase , strides=_lowerCAmelCase , padding="""VALID""" , groups=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" , ) __lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) __lowercase = ACTaFN[activation] if activation is not None else tf.identity def _a ( self : int , _lowerCAmelCase : Any ) -> str: """simple docstring""" __lowercase = self.convolution(self.padding(_lowerCAmelCase ) ) __lowercase = self.normalization(_lowerCAmelCase ) __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : int , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = config.num_channels __lowercase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def _a ( self : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = shape_list(_lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 2, 3, 1) ) __lowercase = self.embedder(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = tf.keras.layers.ConvaD( filters=_lowerCAmelCase , kernel_size=1 , strides=_lowerCAmelCase , use_bias=_lowerCAmelCase , name="""convolution""" ) __lowercase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False ) -> tf.Tensor: """simple docstring""" return self.normalization(self.convolution(_lowerCAmelCase ) , training=_lowerCAmelCase ) class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) __lowercase = [ tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=_lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def _a ( self : int , _lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = self.pooler(_lowerCAmelCase ) for layer_module in self.attention: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = hidden_state * pooled return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowercase = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.2""" ), ] __lowercase = ACTaFN[config.hidden_act] def _a ( self : int , _lowerCAmelCase : Tuple ) -> int: """simple docstring""" __lowercase = hidden_state for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = self.shortcut(_lowerCAmelCase ) hidden_state += residual __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : str , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 1 , **_lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( TFRegNetShortCut(_lowerCAmelCase , stride=_lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) __lowercase = [ TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( _lowerCAmelCase , stride=_lowerCAmelCase , groups=_lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(_lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(_lowerCAmelCase , kernel_size=1 , activation=_lowerCAmelCase , name="""layer.3""" ), ] __lowercase = ACTaFN[config.hidden_act] def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowercase = hidden_state for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) __lowercase = self.shortcut(_lowerCAmelCase ) hidden_state += residual __lowercase = self.activation(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[int] , _lowerCAmelCase : RegNetConfig , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer __lowercase = [ # downsampling is done in the first layer with stride of 2 layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , stride=_lowerCAmelCase , name="""layers.0""" ), *[layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def _a ( self : Optional[Any] , _lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" for layer_module in self.layers: __lowercase = layer_module(_lowerCAmelCase ) return hidden_state class __UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _lowerCAmelCase : RegNetConfig , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , depth=_lowerCAmelCase , name=F'stages.{i+1}' ) ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True ) -> TFBaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_lowerCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) @keras_serializable class __UpperCamelCase ( tf.keras.layers.Layer ): __snake_case :Dict = RegNetConfig def __init__( self : List[str] , _lowerCAmelCase : Optional[int] , **_lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = config __lowercase = TFRegNetEmbeddings(_lowerCAmelCase , name="""embedder""" ) __lowercase = TFRegNetEncoder(_lowerCAmelCase , name="""encoder""" ) __lowercase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowerCAmelCase , name="""pooler""" ) @unpack_inputs def _a ( self : List[str] , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) __lowercase = tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowercase = tuple([tf.transpose(_lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCAmelCase , pooler_output=_lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = RegNetConfig __snake_case :Optional[Any] = 'regnet' __snake_case :Dict = 'pixel_values' @property def _a ( self : List[str] ) -> Any: """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCamelCase : Tuple = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ __UpperCamelCase : Union[str, Any] = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , _lowerCAmelCase , ) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Optional[Any] , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Any ) -> List[Any]: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self : Tuple , _lowerCAmelCase : tf.Tensor , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : int=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet( pixel_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _lowerCAmelCase , ) class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): def __init__( self : int , _lowerCAmelCase : RegNetConfig , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" super().__init__(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = config.num_labels __lowercase = TFRegNetMainLayer(_lowerCAmelCase , name="""regnet""" ) # classification head __lowercase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self : List[Any] , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : tf.Tensor = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : bool = None , _lowerCAmelCase : Union[str, Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , training=_lowerCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier[0](_lowerCAmelCase ) __lowercase = self.classifier[1](_lowerCAmelCase ) __lowercase = None if labels is None else self.hf_compute_loss(labels=_lowerCAmelCase , logits=_lowerCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = """hf-internal-testing/tiny-random-t5""" __lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) __lowercase = tokenizer("""This is me""" , return_tensors="""pt""" ) __lowercase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowercase = model.generate(**_lowerCAmelCase ) __lowercase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowercase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = """hf-internal-testing/tiny-random-t5""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) __lowercase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) __lowercase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
53
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
1
from math import factorial def snake_case ( lowerCamelCase = 100 ): '''simple docstring''' return sum(int(lowerCamelCase ) for x in str(factorial(lowerCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
53
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
1
class __UpperCamelCase ( _lowerCAmelCase ): pass class __UpperCamelCase ( _lowerCAmelCase ): pass class __UpperCamelCase : def __init__( self : int ) -> int: """simple docstring""" __lowercase = [ [], [], [], ] def _a ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : int ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(_lowerCAmelCase ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : str ) -> str: """simple docstring""" return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __UpperCamelCase : def __init__( self : List[str] ) -> str: """simple docstring""" __lowercase = [] def _a ( self : List[str] , _lowerCAmelCase : int ) -> None: """simple docstring""" if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(_lowerCAmelCase ) def _a ( self : Any ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: __lowercase = min(self.queue ) self.queue.remove(_lowerCAmelCase ) return data def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.queue ) def snake_case ( ): '''simple docstring''' __lowercase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case ( ): '''simple docstring''' __lowercase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
53
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __UpperCamelCase ( unittest.TestCase ): @require_torch def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) __lowercase = load_dataset("""ashraq/esc50""" ) __lowercase = dataset["""train"""]["""audio"""][-1]["""array"""] __lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def _a ( self : Any ) -> int: """simple docstring""" pass @slow @require_torch def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog __lowercase = load_dataset("""ashraq/esc50""" ) __lowercase = dataset["""train"""]["""audio"""][-1]["""array"""] __lowercase = audio_classifier(_lowerCAmelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) __lowercase = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) __lowercase = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" pass
53
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
1
def snake_case ( lowerCamelCase ): '''simple docstring''' return "".join(chr(ord(lowerCamelCase ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
53
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Any=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : int="resnet50" , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=True , ) -> Optional[int]: """simple docstring""" __lowercase = parent __lowercase = out_indices if out_indices is not None else [4] __lowercase = stage_names __lowercase = out_features __lowercase = backbone __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = use_pretrained_backbone __lowercase = is_training def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = self.get_config() return config, pixel_values def _a ( self : Any ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : int ) -> List[str]: """simple docstring""" __lowercase = TimmBackbone(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(_lowerCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :str = (TimmBackbone,) if is_torch_available() else () __snake_case :Dict = {'feature-extraction': TimmBackbone} if is_torch_available() else {} __snake_case :Union[str, Any] = False __snake_case :List[Any] = False __snake_case :Tuple = False __snake_case :Dict = False def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = TimmBackboneModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _a ( self : str ) -> List[str]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = """resnet18""" __lowercase = """microsoft/resnet-18""" __lowercase = AutoBackbone.from_pretrained(_lowerCAmelCase , use_timm_backbone=_lowerCAmelCase ) __lowercase = AutoBackbone.from_pretrained(_lowerCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase = AutoBackbone.from_pretrained(_lowerCAmelCase , use_timm_backbone=_lowerCAmelCase , out_indices=[1, 2, 3] ) __lowercase = AutoBackbone.from_pretrained(_lowerCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def _a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def _a ( self : Optional[int] ) -> str: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def _a ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def _a ( self : Any ) -> str: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self : Tuple ) -> int: """simple docstring""" pass def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase = self.all_model_classes[0] __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) __lowercase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = model(**_lowerCAmelCase ) __lowercase = outputs[0][-1] # Encoder-/Decoder-only models __lowercase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(**_lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase = copy.deepcopy(_lowerCAmelCase ) __lowercase = None __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(**_lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase = copy.deepcopy(_lowerCAmelCase ) __lowercase = False __lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __lowercase = model(**_lowerCAmelCase )
53
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : Any = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __UpperCamelCase : List[Any] = {"""mobilebert-uncased""": 512} __UpperCamelCase : Optional[Any] = {} class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = VOCAB_FILES_NAMES __snake_case :List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case :Tuple = PRETRAINED_INIT_CONFIGURATION __snake_case :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :Optional[int] = MobileBertTokenizer def __init__( self : List[Any] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]="[UNK]" , _lowerCAmelCase : List[str]="[SEP]" , _lowerCAmelCase : Dict="[PAD]" , _lowerCAmelCase : str="[CLS]" , _lowerCAmelCase : List[str]="[MASK]" , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("""type""" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCAmelCase ) __lowercase = do_lower_case def _a ( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=None ) -> Tuple: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self : Dict , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
53
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets __UpperCamelCase : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __UpperCamelCase : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __UpperCamelCase : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : Any ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def _a ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None ) -> List[str]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __lowercase = hex_num[0] == """-""" if is_negative: __lowercase = hex_num[1:] try: __lowercase = int(__A , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __lowercase = """""" while int_num > 0: __lowercase = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
__UpperCamelCase : str = 'Input must be a string of 8 numbers plus letter' __UpperCamelCase : Dict = 'TRWAGMYFPDXBNJZSQVHLCKE' def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F'Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}' raise TypeError(_SCREAMING_SNAKE_CASE ) __lowercase = spanish_id.replace("""-""" , """""" ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: __lowercase = int(spanish_id_clean[0:8] ) __lowercase = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class __UpperCamelCase ( _SCREAMING_SNAKE_CASE ): __snake_case :Tuple = ["input_features", "attention_mask"] def __init__( self : str , _lowerCAmelCase : Tuple=80 , _lowerCAmelCase : Union[str, Any]=1_6000 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : int=10 , _lowerCAmelCase : Optional[int]=25 , _lowerCAmelCase : List[Any]="hamming_window" , _lowerCAmelCase : Dict=3_2768.0 , _lowerCAmelCase : Optional[Any]=0.97 , _lowerCAmelCase : Any=1.0 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=False , **_lowerCAmelCase : Optional[int] , ) -> Optional[int]: """simple docstring""" super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) __lowercase = feature_size __lowercase = sampling_rate __lowercase = padding_value __lowercase = hop_length __lowercase = win_length __lowercase = frame_signal_scale __lowercase = preemphasis_coeff __lowercase = mel_floor __lowercase = normalize_means __lowercase = normalize_vars __lowercase = win_function __lowercase = return_attention_mask __lowercase = win_length * sampling_rate // 1000 __lowercase = hop_length * sampling_rate // 1000 __lowercase = optimal_fft_length(self.sample_size ) __lowercase = (self.n_fft // 2) + 1 def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] ) -> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": __lowercase = window_function(window_length=self.sample_size , name=self.win_function , periodic=A_ ) else: __lowercase = window_function(window_length=self.sample_size , name=self.win_function ) __lowercase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __lowercase = spectrogram( one_waveform * self.frame_signal_scale , window=A_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A_ , preemphasis=self.preemphasis_coeff , mel_filters=A_ , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def _a ( self : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if self.normalize_means: __lowercase = x[:input_length].mean(axis=0 ) __lowercase = np.subtract(A_ , A_ ) if self.normalize_vars: __lowercase = x[:input_length].std(axis=0 ) __lowercase = np.divide(A_ , A_ ) if input_length < x.shape[0]: __lowercase = padding_value # make sure array is in float32 __lowercase = x.astype(np.floataa ) return x def _a ( self : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple = None ) -> List[np.ndarray]: """simple docstring""" __lowercase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A_ , A_ , self.padding_value ) for x, n in zip(A_ , A_ )] def __call__( self : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] = False , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Optional[int] = False , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : str = None , **_lowerCAmelCase : Dict , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowercase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __lowercase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): __lowercase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase = [raw_speech] # extract fbank features __lowercase = [self._extract_mfsc_features(A_ ) for one_waveform in raw_speech] # convert into correct format for padding __lowercase = BatchFeature({"""input_features""": features} ) __lowercase = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format __lowercase = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , A_ ): __lowercase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] __lowercase = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __lowercase = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __lowercase = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __lowercase = self.normalize( padded_inputs["""input_features"""] , attention_mask=A_ ) if return_tensors is not None: __lowercase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> Any: """simple docstring""" __lowercase = torch.nn.Linear(10 , 10 ) __lowercase = torch.optim.SGD(model.parameters() , 0.1 ) __lowercase = Accelerator() __lowercase = accelerator.prepare(UpperCamelCase_ ) try: pickle.loads(pickle.dumps(UpperCamelCase_ ) ) except Exception as e: self.fail(F'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : str = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __UpperCamelCase ( lowercase__ ): __snake_case :str = 'swin2sr' __snake_case :Dict = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , _lowerCAmelCase : List[str]=64 , _lowerCAmelCase : Any=1 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Any=180 , _lowerCAmelCase : Optional[int]=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : str=8 , _lowerCAmelCase : List[str]=2.0 , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Optional[int]=1e-5 , _lowerCAmelCase : str=2 , _lowerCAmelCase : int=1.0 , _lowerCAmelCase : int="1conv" , _lowerCAmelCase : str="pixelshuffle" , **_lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(**__lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(__lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCamelCase : Dict = Lock() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCamelCase_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __lowercase = min(lowerCamelCase_ , lowerCamelCase_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCamelCase_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __lowercase = max(lowerCamelCase_ , lowerCamelCase_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCamelCase_ ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=lowerCamelCase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __lowercase = temp_rs __lowercase = temp_rr for i in range(1 , len(lowerCamelCase_ ) - 1 ): __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=lowerCamelCase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __lowercase = temp_rs __lowercase = temp_rr process_array_.append( Process( target=lowerCamelCase_ , args=( len(lowerCamelCase_ ) - 1, arr[len(lowerCamelCase_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCamelCase_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCamelCase_ ) ): __lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def snake_case ( ): '''simple docstring''' __lowercase = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowerCamelCase_ ) __lowercase = odd_even_transposition(lowerCamelCase_ ) print("""Sorted List\n""" ) print(*lowerCamelCase_ ) if __name__ == "__main__": main()
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Dict = "▁" __UpperCamelCase : str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __UpperCamelCase ( UpperCAmelCase_ , unittest.TestCase ): __snake_case :Optional[Any] = BertGenerationTokenizer __snake_case :Dict = False __snake_case :List[Any] = True def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase = BertGenerationTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self : List[str] ) -> Any: """simple docstring""" __lowercase = '<s>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_lowercase ) , 1002 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = BertGenerationTokenizer(_lowercase , keep_accents=_lowercase ) __lowercase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [285, 46, 10, 170, 382] , ) __lowercase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = 'Hello World!' __lowercase = [1_8536, 2260, 101] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) __lowercase = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @require_torch @slow def _a ( self : Any ) -> Any: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase = ' '.join(_lowercase ) __lowercase = self.big_tokenizer.encode_plus(_lowercase , return_tensors="""pt""" , return_token_type_ids=_lowercase ) __lowercase = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_lowercase ) __lowercase = BertGenerationConfig() __lowercase = BertGenerationEncoder(_lowercase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase ) model(**_lowercase ) @slow def _a ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = {'input_ids': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCamelCase ( __A , __A , __A , unittest.TestCase ): __snake_case :str = StableDiffusionLatentUpscalePipeline __snake_case :Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __snake_case :int = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __snake_case :Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __snake_case :Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case :str = frozenset([] ) __snake_case :Optional[Any] = True @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = 1 __lowercase = 4 __lowercase = (16, 16) __lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=_lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=_lowerCAmelCase , only_cross_attention=_lowerCAmelCase , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) __lowercase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) __lowercase = EulerDiscreteScheduler(prediction_type="""sample""" ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) __lowercase = CLIPTextModel(_lowerCAmelCase ) __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _a ( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=0 ) -> List[str]: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) __lowercase = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) __lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1e-3 ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _a ( self : str ) -> int: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _a ( self : str ) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _a ( self : Dict ) -> int: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _a ( self : int ) -> Tuple: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs(_lowerCAmelCase ) __lowercase = 2 __lowercase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __lowercase = getattr(_lowerCAmelCase , scheduler_enum.name ) __lowercase = scheduler_cls.from_config(pipe.scheduler.config ) __lowercase = pipe(**_lowerCAmelCase )[0] outputs.append(_lowerCAmelCase ) assert check_same_shape(_lowerCAmelCase ) @require_torch_gpu @slow class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Tuple ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = torch.manual_seed(33 ) __lowercase = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __lowercase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __lowercase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __lowercase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , output_type="""latent""" ).images __lowercase = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type="""np""" , ).images[0] __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = torch.manual_seed(33 ) __lowercase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __lowercase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) __lowercase = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type="""np""" , ).images[0] __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-2
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __UpperCamelCase : List[Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": __UpperCamelCase : int = 'hopper-medium-v2' __UpperCamelCase : List[Any] = gym.make(env_name) __UpperCamelCase : str = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) __UpperCamelCase : List[str] = env.reset() __UpperCamelCase : Any = 0 __UpperCamelCase : Tuple = 0 __UpperCamelCase : Optional[Any] = 1000 __UpperCamelCase : Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __UpperCamelCase : List[Any] = pipeline(obs, planning_horizon=32) # execute action in environment __UpperCamelCase : Optional[int] = env.step(denorm_actions) __UpperCamelCase : Tuple = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __UpperCamelCase : List[str] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
import os import platform import sys __UpperCamelCase : List[str] = "3" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __UpperCamelCase : def __init__( self : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any=13 , _lowerCAmelCase : int=7 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Any=True , _lowerCAmelCase : Tuple=99 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Optional[Any]=37 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : str=None , _lowerCAmelCase : str=0 , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = projection_dim def _a ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) __lowercase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = TFDPRContextEncoder(config=__A ) __lowercase = model(__A , attention_mask=__A , token_type_ids=__A ) __lowercase = model(__A , token_type_ids=__A ) __lowercase = model(__A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = TFDPRQuestionEncoder(config=__A ) __lowercase = model(__A , attention_mask=__A , token_type_ids=__A ) __lowercase = model(__A , token_type_ids=__A ) __lowercase = model(__A ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _a ( self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = TFDPRReader(config=__A ) __lowercase = model(__A , attention_mask=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _a ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {"input_ids": input_ids} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __snake_case :List[str] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} __snake_case :str = False __snake_case :int = False __snake_case :Dict = False __snake_case :Optional[Any] = False __snake_case :str = False def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = TFDPRModelTester(self ) __lowercase = ConfigTester(self , config_class=__A , hidden_size=37 ) def _a ( self : str ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__A ) def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__A ) def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__A ) @slow def _a ( self : Any ) -> Dict: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRContextEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRQuestionEncoder.from_pretrained(__A ) self.assertIsNotNone(__A ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFDPRReader.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : Any ) -> int: """simple docstring""" __lowercase = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __lowercase = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] __lowercase = model(__A )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __lowercase = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowercase = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCAmelCase ) if number < 0: return False __lowercase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Dict = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import datasets __UpperCamelCase : Dict = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __UpperCamelCase : Dict = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __UpperCamelCase : Any = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def _a ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" return {"accuracy": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase )}
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :Any = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : Dict , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : str , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :Dict = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : str , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : Union[str, Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[Any] ) -> int: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : Union[str, Any] , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : Any , *_lowerCAmelCase : str , **_lowerCAmelCase : Any ) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : Dict , *_lowerCAmelCase : List[str] , **_lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : int , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : List[Any] ) -> Any: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : str , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : List[str] ) -> str: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : str , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class __UpperCamelCase ( metaclass=__lowerCAmelCase ): __snake_case :Any = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_lowerCAmelCase : Any , **_lowerCAmelCase : str ) -> List[str]: """simple docstring""" requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : str , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : int ) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def _a ( cls : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ) -> int: """simple docstring""" requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import os import platform import sys __UpperCamelCase : Tuple = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCamelCase : str = 1.0_5457_1817e-34 # unit of ℏ : J * s __UpperCamelCase : Tuple = 3e8 # unit of c : m * s^-1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: __lowercase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowercase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowercase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import math def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = len(a_ ) __lowercase = int(math.floor(math.sqrt(a_ ) ) ) __lowercase = 0 while arr[min(a_ , a_ ) - 1] < x: __lowercase = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowercase = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : List[str] = [int(item) for item in user_input.split(""",""")] __UpperCamelCase : Dict = int(input("""Enter the number to be searched:\n""")) __UpperCamelCase : Tuple = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'''Number {x} is at index {res}''')
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCamelCase ( _UpperCAmelCase ): __snake_case :Any = ['image_processor', 'tokenizer'] __snake_case :List[str] = 'AutoImageProcessor' __snake_case :Dict = 'AutoTokenizer' def __init__( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any ) -> List[str]: """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) __lowercase = self.image_processor def __call__( self : int , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __lowercase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: __lowercase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _a ( self : Optional[Any] , *_lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _a ( self : Optional[int] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _a ( self : Any ) -> Any: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import math def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 0 __lowercase = 0 while num > 0: __lowercase = num % 8 __lowercase = octal + (remainder * math.floor(math.pow(10 , lowerCamelCase ) )) counter += 1 __lowercase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(lowerCamelCase )}' def snake_case ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __UpperCamelCase : Optional[int] = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") __UpperCamelCase : Optional[Any] = parser.parse_args() __UpperCamelCase : Dict = '''cpu''' __UpperCamelCase : Optional[Any] = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __UpperCamelCase : Tuple = '''path-to-your-trained-model''' __UpperCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __UpperCamelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __UpperCamelCase : List[Any] = pipe.to(device) # to channels last __UpperCamelCase : Optional[Any] = pipe.unet.to(memory_format=torch.channels_last) __UpperCamelCase : List[str] = pipe.vae.to(memory_format=torch.channels_last) __UpperCamelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __UpperCamelCase : Dict = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __UpperCamelCase : Tuple = torch.randn(2, 4, 64, 64) __UpperCamelCase : Any = torch.rand(1) * 999 __UpperCamelCase : List[str] = torch.randn(2, 77, 768) __UpperCamelCase : Optional[int] = (sample, timestep, encoder_hidden_status) try: __UpperCamelCase : List[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __UpperCamelCase : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __UpperCamelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __UpperCamelCase : List[str] = 666 __UpperCamelCase : Optional[int] = torch.Generator(device).manual_seed(seed) __UpperCamelCase : List[Any] = {'''generator''': generator} if args.steps is not None: __UpperCamelCase : Any = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __UpperCamelCase : str = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase : Dict = logging.getLogger(__name__) class __UpperCamelCase ( _lowercase ): __snake_case :List[Any] = '''sequence-classification''' def __init__( self : Any , _lowerCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" if type(A_ ) == dict: __lowercase = Namespace(**A_ ) __lowercase = glue_output_modes[hparams.task] __lowercase = glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode ) def _a ( self : Dict , **_lowerCAmelCase : Dict ) -> str: """simple docstring""" return self.model(**A_ ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowercase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowercase = self(**A_ ) __lowercase = outputs[0] __lowercase = self.trainer.lr_schedulers[0]["""scheduler"""] __lowercase = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.hparams __lowercase = processors[args.task]() __lowercase = processor.get_labels() for mode in ["train", "dev"]: __lowercase = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , A_ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __lowercase = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) __lowercase = convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , A_ ) torch.save(A_ , A_ ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : bool = False ) -> DataLoader: """simple docstring""" __lowercase = """dev""" if mode == """test""" else mode __lowercase = self._feature_file(A_ ) logger.info("""Loading features from cached file %s""" , A_ ) __lowercase = torch.load(A_ ) __lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __lowercase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __lowercase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ , shuffle=A_ , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowercase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowercase = self(**A_ ) __lowercase , __lowercase = outputs[:2] __lowercase = logits.detach().cpu().numpy() __lowercase = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _a ( self : List[str] , _lowerCAmelCase : str ) -> tuple: """simple docstring""" __lowercase = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() __lowercase = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __lowercase = np.argmax(A_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __lowercase = np.squeeze(A_ ) __lowercase = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __lowercase = [[] for _ in range(out_label_ids.shape[0] )] __lowercase = [[] for _ in range(out_label_ids.shape[0] )] __lowercase = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_ )} __lowercase = dict(results.items() ) __lowercase = results return ret, preds_list, out_label_list def _a ( self : Optional[Any] , _lowerCAmelCase : list ) -> dict: """simple docstring""" __lowercase , __lowercase , __lowercase = self._eval_end(A_ ) __lowercase = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _a ( self : Dict , _lowerCAmelCase : Dict ) -> dict: """simple docstring""" __lowercase , __lowercase , __lowercase = self._eval_end(A_ ) __lowercase = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _a ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( """--max_seq_length""" , default=128 , type=A_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=A_ , required=A_ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=A_ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd() ) __lowercase = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd() ) __lowercase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __lowercase = os.path.join( """./results""" , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) __lowercase = GLUETransformer(snake_case__ ) __lowercase = generic_train(snake_case__ , snake_case__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __lowercase = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=snake_case__ ) ) __lowercase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(snake_case__ ) if __name__ == "__main__": main()
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
from __future__ import annotations import math def snake_case ( lowerCamelCase ): '''simple docstring''' if num <= 0: __lowercase = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(__SCREAMING_SNAKE_CASE ) __lowercase = [True] * (num + 1) __lowercase = [] __lowercase = 2 __lowercase = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(__SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , __SCREAMING_SNAKE_CASE ): if sieve[i] is True: __lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(__SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
from collections import deque def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = deque() __lowercase = [False for _ in range(lowerCamelCase )] __lowercase = [-1 for _ in range(lowerCamelCase )] __lowercase = index_of[:] def strong_connect(lowerCamelCase , lowerCamelCase , lowerCamelCase ): __lowercase = index # the number when this node is seen __lowercase = index # lowest rank node reachable from here index += 1 stack.append(lowerCamelCase ) __lowercase = True for w in g[v]: if index_of[w] == -1: __lowercase = strong_connect(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __lowercase = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __lowercase = [] __lowercase = stack.pop() __lowercase = False component.append(lowerCamelCase ) while w != v: __lowercase = stack.pop() __lowercase = False component.append(lowerCamelCase ) components.append(lowerCamelCase ) return index __lowercase = [] for v in range(lowerCamelCase ): if index_of[v] == -1: strong_connect(lowerCamelCase , 0 , lowerCamelCase ) return components def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [[] for _ in range(lowerCamelCase )] for u, v in edges: g[u].append(lowerCamelCase ) return g if __name__ == "__main__": # Test __UpperCamelCase : str = 7 __UpperCamelCase : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] __UpperCamelCase : str = [1, 3, 2, 0, 1, 4, 5, 6, 5] __UpperCamelCase : List[Any] = [(u, v) for u, v in zip(source, target)] __UpperCamelCase : Any = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class __UpperCamelCase ( UpperCamelCase_ ): __snake_case :Dict = 'bart' __snake_case :List[str] = ['past_key_values'] __snake_case :Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : int , _lowerCAmelCase : Dict=5_0265 , _lowerCAmelCase : Dict=1024 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Union[str, Any]=4096 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : str=4096 , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Optional[Any]=1024 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Tuple=2 , **_lowerCAmelCase : Any , ) -> Dict: """simple docstring""" __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = classifier_dropout __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __A ): __lowercase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class __UpperCamelCase ( UpperCamelCase_ ): @property def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase = {0: "batch"} __lowercase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowercase = {0: "batch", 1: "decoder_sequence"} __lowercase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __lowercase = self.num_layers for i in range(__A ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} else: __lowercase = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def _a ( self : int ) -> List[str]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(__A , self ).outputs if self.use_past: __lowercase = self.num_layers for i in range(__A ): __lowercase = {0: "batch", 2: "past_sequence + sequence"} __lowercase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _a ( self : Any , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) __lowercase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase = common_inputs["input_ids"].shape __lowercase = common_inputs["decoder_input_ids"].shape[1] __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__A , __A )] , dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase = self.num_layers __lowercase = min(__A , __A ) __lowercase = max(__A , __A ) - min_num_layers __lowercase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def _a ( self : List[Any] , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = self.num_layers __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs["attention_mask"].dtype __lowercase = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) __lowercase = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def _a ( self : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ) -> Optional[int]: """simple docstring""" __lowercase = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(__A ) __lowercase = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence __lowercase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def _a ( self : Tuple , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : int = -1 , _lowerCAmelCase : int = -1 , _lowerCAmelCase : bool = False , _lowerCAmelCase : Optional[TensorType] = None , ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def _a ( self : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: __lowercase = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A )
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
import cva import numpy as np class __UpperCamelCase : def __init__( self : Union[str, Any] , _lowerCAmelCase : float , _lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" if k in (0.04, 0.06): __lowercase = k __lowercase = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Optional[int] ) -> str: """simple docstring""" return str(self.k ) def _a ( self : Optional[int] , _lowerCAmelCase : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __lowercase = cva.imread(_lowerCAmelCase , 0 ) __lowercase = img.shape __lowercase = [] __lowercase = img.copy() __lowercase = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) __lowercase = np.gradient(_lowerCAmelCase ) __lowercase = dx**2 __lowercase = dy**2 __lowercase = dx * dy __lowercase = 0.04 __lowercase = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): __lowercase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase = (wxx * wyy) - (wxy**2) __lowercase = wxx + wyy __lowercase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase : Optional[int] = HarrisCorner(0.0_4, 3) __UpperCamelCase : Dict = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import itertools import string from collections.abc import Generator, Iterable def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = iter(lowerCamelCase ) while True: __lowercase = tuple(itertools.islice(lowerCamelCase , lowerCamelCase ) ) if not chunk: return yield chunk def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""".join([c.upper() for c in dirty if c in string.ascii_letters] ) __lowercase = """""" if len(lowerCamelCase ) < 2: return dirty for i in range(len(lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase ) & 1: clean += "X" return clean def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __lowercase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase ) return table def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = generate_table(lowerCamelCase ) __lowercase = prepare_input(lowerCamelCase ) __lowercase = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): __lowercase = divmod(table.index(lowerCamelCase ) , 5 ) __lowercase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = generate_table(lowerCamelCase ) __lowercase = """""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): __lowercase = divmod(table.index(lowerCamelCase ) , 5 ) __lowercase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
__UpperCamelCase : List[Any] = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
import random from typing import Any def snake_case ( lowerCamelCase ): '''simple docstring''' for _ in range(len(__snake_case ) ): __lowercase = random.randint(0 , len(__snake_case ) - 1 ) __lowercase = random.randint(0 , len(__snake_case ) - 1 ) __lowercase , __lowercase = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Optional[int] = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : int = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' return len(set(UpperCAmelCase__ ) ) == len(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCamelCase : Dict = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = b.T __lowercase = np.sum(np.square(_lowercase ) , axis=1 ) __lowercase = np.sum(np.square(_lowercase ) , axis=0 ) __lowercase = np.matmul(_lowercase , _lowercase ) __lowercase = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = x.reshape(-1 , 3 ) __lowercase = squared_euclidean_distance(_lowercase , _lowercase ) return np.argmin(_lowercase , axis=1 ) class __UpperCamelCase ( a__ ): __snake_case :Union[str, Any] = ["""pixel_values"""] def __init__( self : Optional[int] , _lowerCAmelCase : int = None , _lowerCAmelCase : Optional[Any] = True , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Any = PILImageResampling.BILINEAR , _lowerCAmelCase : int = True , _lowerCAmelCase : Tuple = True , **_lowerCAmelCase : Dict , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase__ ) __lowercase = size if size is not None else {"height": 256, "width": 256} __lowercase = get_size_dict(lowerCAmelCase__ ) __lowercase = np.array(lowerCAmelCase__ ) if clusters is not None else None __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_normalize __lowercase = do_color_quantize def _a ( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] = PILImageResampling.BILINEAR , _lowerCAmelCase : List[Any] = None , **_lowerCAmelCase : str , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] = None , ) -> np.ndarray: """simple docstring""" __lowercase = rescale(image=lowerCAmelCase__ , scale=1 / 127.5 , data_format=lowerCAmelCase__ ) __lowercase = image - 1 return image def _a ( self : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Any] = ChannelDimension.FIRST , **_lowerCAmelCase : Any , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowerCAmelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __lowercase = clusters if clusters is not None else self.clusters __lowercase = np.array(lowerCAmelCase__ ) __lowercase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowerCAmelCase__ ) for image in images] if do_color_quantize: __lowercase = [to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __lowercase = np.array(lowerCAmelCase__ ) __lowercase = color_quantize(lowerCAmelCase__ , lowerCAmelCase__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __lowercase = images.shape[0] __lowercase = images.reshape(lowerCAmelCase__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __lowercase = list(lowerCAmelCase__ ) else: __lowercase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __lowercase = {"input_ids": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
from numpy import exp, pi, sqrt def snake_case ( lowerCamelCase , lowerCamelCase = 0.0 , lowerCamelCase = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : str=7 , _lowerCAmelCase : str=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : Tuple=30 , _lowerCAmelCase : Optional[Any]=400 , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : List[Any]=True , ) -> Dict: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): __snake_case :Dict = GLPNImageProcessor if is_vision_available() else None def _a ( self : List[Any] ) -> str: """simple docstring""" __lowercase = GLPNImageProcessingTester(self ) @property def _a ( self : List[str] ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size_divisor""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """resample""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_rescale""" ) ) def _a ( self : List[Any] ) -> int: """simple docstring""" pass def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : str ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
import datasets from .evaluate import evaluate __UpperCamelCase : List[Any] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __UpperCamelCase : str = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __UpperCamelCase : Union[str, Any] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def _a ( self : str ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _a ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} __lowercase = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] __lowercase = evaluate(dataset=UpperCamelCase__ , predictions=UpperCamelCase__ ) return score
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
def snake_case ( lowerCamelCase ): '''simple docstring''' if any(not isinstance(__UpperCamelCase , __UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(__UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : int=3 , _lowerCAmelCase : List[str]=18 , _lowerCAmelCase : Dict=30 , _lowerCAmelCase : int=400 , _lowerCAmelCase : int=True , _lowerCAmelCase : str=None , _lowerCAmelCase : Optional[Any]=True , ) -> Union[str, Any]: """simple docstring""" __lowercase = size if size is not None else {"""height""": 18, """width""": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def _a ( self : List[Any] ) -> Any: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __UpperCamelCase ( UpperCAmelCase__ , unittest.TestCase ): __snake_case :str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """apply_ocr""" ) ) def _a ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" pass def _a ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , _lowerCAmelCase ) self.assertIsInstance(encoding.boxes , _lowerCAmelCase ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __lowercase = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __lowercase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCAmelCase ) self.assertListEqual(encoding.boxes , _lowerCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_lowerCAmelCase ) __lowercase = image_processing(_lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
from ....utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : int=2048 ) -> Dict: """simple docstring""" __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __UpperCamelCase ( __snake_case ): __snake_case :torch.FloatTensor __snake_case :torch.FloatTensor __snake_case :Optional[torch.FloatTensor] = None class __UpperCamelCase ( __snake_case , __snake_case ): __snake_case :int = 2 @register_to_config def __init__( self : Union[str, Any] , _lowerCAmelCase : List[str] = 0.02 , _lowerCAmelCase : Any = 100 , _lowerCAmelCase : Dict = 1.007 , _lowerCAmelCase : str = 80 , _lowerCAmelCase : int = 0.05 , _lowerCAmelCase : Tuple = 50 , ) -> List[Any]: """simple docstring""" __lowercase = sigma_max # setable values __lowercase = None __lowercase = None __lowercase = None # sigma(t_i) def _a ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str = None ) -> List[str]: """simple docstring""" return sample def _a ( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] = None ) -> List[Any]: """simple docstring""" __lowercase = num_inference_steps __lowercase = np.arange(0 , self.num_inference_steps )[::-1].copy() __lowercase = torch.from_numpy(A_ ).to(A_ ) __lowercase = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __lowercase = torch.tensor(A_ , dtype=torch.floataa , device=A_ ) def _a ( self : str , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int = None ) -> Dict: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __lowercase = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __lowercase = 0 # sample eps ~ N(0, S_noise^2 * I) __lowercase = self.config.s_noise * randn_tensor(sample.shape , generator=A_ ).to(sample.device ) __lowercase = sigma + gamma * sigma __lowercase = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _a ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] = True , ) -> Optional[int]: """simple docstring""" __lowercase = sample_hat + sigma_hat * model_output __lowercase = (sample_hat - pred_original_sample) / sigma_hat __lowercase = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def _a ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] = True , ) -> List[Any]: """simple docstring""" __lowercase = sample_prev + sigma_prev * model_output __lowercase = (sample_prev - pred_original_sample) / sigma_prev __lowercase = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=A_ , derivative=A_ , pred_original_sample=A_ ) def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" raise NotImplementedError()
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __UpperCamelCase : Tuple = logging.get_logger(__name__) class __UpperCamelCase ( UpperCamelCase__ ): def __init__( self : int , *_lowerCAmelCase : int , **_lowerCAmelCase : Optional[int] ) -> None: """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
717
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [] def parse_line(lowerCamelCase ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: __lowercase = """\n""".join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: __lowercase = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = set() __lowercase = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def snake_case ( lowerCamelCase ): '''simple docstring''' return values.split(""",""" ) __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __UpperCamelCase : List[str] = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __UpperCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __UpperCamelCase : Union[str, Any] = extract_warnings(args.output_dir, args.targets) __UpperCamelCase : Any = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
53
0
import requests __UpperCamelCase : Tuple = """YOUR API KEY""" def snake_case ( lowerCamelCase , lowerCamelCase = giphy_api_key ): '''simple docstring''' __lowercase = "+".join(query.split() ) __lowercase = F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' __lowercase = requests.get(__lowerCAmelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
718
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
53
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCamelCase : Optional[Any] = None __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __UpperCamelCase : int = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } __UpperCamelCase : List[str] = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } __UpperCamelCase : Tuple = """▁""" class __UpperCamelCase ( __a ): __snake_case :Optional[int] = VOCAB_FILES_NAMES __snake_case :List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case :Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case :int = BigBirdTokenizer __snake_case :List[Any] = ["input_ids", "attention_mask"] __snake_case :List[int] = [] def __init__( self : int , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : int="<s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : Dict="<pad>" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : Dict="[MASK]" , _lowerCAmelCase : Optional[int]="[CLS]" , **_lowerCAmelCase : Tuple , ) -> int: """simple docstring""" __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : int = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any = None , _lowerCAmelCase : Optional[Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase = os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
719
def snake_case ( lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase = str(lowerCamelCase ) __lowercase = """""".join(sorted(lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case ( lowerCamelCase = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase = 0 __lowercase = 1 while True: if check_bouncy(lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
53
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] for d in reversed(UpperCamelCase__ ): idx.append(flat_idx % d ) __lowercase = flat_idx // d return tuple(reversed(UpperCamelCase__ ) ) @torch.jit.ignore def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ): '''simple docstring''' def reduce_edge_list(lowerCamelCase ) -> None: __lowercase = True for i in range(len(UpperCamelCase__ ) ): __lowercase = -1 * (i + 1) l[reversed_idx] &= tally __lowercase = l[reversed_idx] if start_edges is None: __lowercase = [s == 0 for s in start] reduce_edge_list(UpperCamelCase__ ) if end_edges is None: __lowercase = [e == (d - 1) for e, d in zip(UpperCamelCase__ , UpperCamelCase__ )] reduce_edge_list(UpperCamelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCamelCase__ ) == 0: return [()] elif len(UpperCamelCase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase = [] __lowercase = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCamelCase__ , UpperCamelCase__ ): if s == e: path_list.append(slice(UpperCamelCase__ , s + 1 ) ) else: break __lowercase = tuple(UpperCamelCase__ ) __lowercase = len(UpperCamelCase__ ) # start == end, and we're done if divergence_idx == len(UpperCamelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = start[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase = end[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = t.shape[:no_batch_dims] __lowercase = list(_flat_idx_to_idx(UpperCamelCase__ , UpperCamelCase__ ) ) # _get_minimal_slice_set is inclusive __lowercase = list(_flat_idx_to_idx(flat_end - 1 , UpperCamelCase__ ) ) # Get an ordered list of slices to perform __lowercase = _get_minimal_slice_set( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) __lowercase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = False , ): '''simple docstring''' if not (len(UpperCamelCase__ ) > 0): raise ValueError("""Must provide at least one input""" ) __lowercase = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCamelCase__ )] __lowercase = tuple([max(UpperCamelCase__ ) for s in zip(*UpperCamelCase__ )] ) def _prep_inputs(lowerCamelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase = tensor_tree_map(_prep_inputs , UpperCamelCase__ ) __lowercase = None if _out is not None: __lowercase = tensor_tree_map(lambda lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase = 0 __lowercase = prepped_outputs for _ in range(UpperCamelCase__ ): # Chunk the input if not low_mem: __lowercase = _select_chunk else: __lowercase = partial( _chunk_slice , flat_start=UpperCamelCase__ , flat_end=min(UpperCamelCase__ , i + chunk_size ) , no_batch_dims=len(UpperCamelCase__ ) , ) __lowercase = tensor_tree_map(UpperCamelCase__ , UpperCamelCase__ ) # Run the layer on the chunk __lowercase = layer(**UpperCamelCase__ ) # Allocate space for the output if out is None: __lowercase = tensor_tree_map(lambda lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCamelCase__ ) # Put the chunk in its pre-allocated space if isinstance(UpperCamelCase__ , UpperCamelCase__ ): def assign(lowerCamelCase , lowerCamelCase ) -> None: for k, v in da.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): assign(UpperCamelCase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase = da[k] assign(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): for xa, xa in zip(UpperCamelCase__ , UpperCamelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase = xa elif isinstance(UpperCamelCase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowercase = tensor_tree_map(lambda lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , UpperCamelCase__ ) return out class __UpperCamelCase : def __init__( self : List[str] , _lowerCAmelCase : int = 512 , ) -> Optional[int]: """simple docstring""" __lowercase = max_chunk_size __lowercase = None __lowercase = None def _a ( self : Union[str, Any] , _lowerCAmelCase : Callable , _lowerCAmelCase : tuple , _lowerCAmelCase : int ) -> int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowercase = [c for c in candidates if c > min_chunk_size] __lowercase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_lowerCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False __lowercase = 0 __lowercase = len(__a ) - 1 while i > min_viable_chunk_size_index: __lowercase = test_chunk_size(candidates[i] ) if not viable: __lowercase = (min_viable_chunk_size_index + i) // 2 else: __lowercase = i __lowercase = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _a ( self : Dict , _lowerCAmelCase : Iterable , _lowerCAmelCase : Iterable ) -> bool: """simple docstring""" __lowercase = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): __lowercase = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] __lowercase = [v for _, v in sorted(aa.items() , key=lambda _lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def _a ( self : Tuple , _lowerCAmelCase : Callable , _lowerCAmelCase : tuple , _lowerCAmelCase : int , ) -> int: """simple docstring""" __lowercase = True __lowercase = tree_map(lambda _lowerCAmelCase : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) __lowercase = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value __lowercase = False if not consistent: __lowercase = self._determine_favorable_chunk_size( __a , __a , __a , ) __lowercase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
'''simple docstring''' import functools def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = len(_UpperCamelCase ) __lowercase = len(_UpperCamelCase ) @functools.cache def min_distance(lowerCamelCase , lowerCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowercase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _UpperCamelCase ) , 1 + min_distance(_UpperCamelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
721
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def _a ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = """stabilityai/stable-diffusion-2""" __lowercase , __lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase = scheduler_params __lowercase = """A painting of a squirrel eating a burger""" __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase = replicate(_lowerCAmelCase ) __lowercase = shard(_lowerCAmelCase ) __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase = images[0, 253:256, 253:256, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
53
0
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] for line in lines: __lowercase = re.sub(r"""#.*""" , """""" , lowerCamelCase ) # remove comments if line: filtered_lines.append(lowerCamelCase ) __lowercase = """\n""".join(lowerCamelCase ) # Make a hash from all this code __lowercase = full_str.encode("""utf-8""" ) return shaaaa(lowerCamelCase ).hexdigest() # get importable module names and hash for caching __UpperCamelCase : Optional[int] = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __UpperCamelCase : Dict = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __UpperCamelCase : str = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name __UpperCamelCase : Union[str, Any] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
700
import heapq import sys import numpy as np __UpperCamelCase : List[str] = tuple[int, int] class __UpperCamelCase : def __init__( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = [] __lowercase = set() def _a ( self : int ) -> List[Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" return len(self.elements ) == 0 def _a ( self : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCAmelCase ) else: # update # print("update", item) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self : List[str] , _lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" if item in self.set: self.set.remove(_lowerCAmelCase ) __lowercase = [] ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self : Any ) -> List[Any]: """simple docstring""" return self.elements[0][1] def _a ( self : Optional[int] ) -> List[Any]: """simple docstring""" ((__lowercase) , (__lowercase)) = heapq.heappop(self.elements ) self.set.remove(_lowerCAmelCase ) return (priority, item) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) __lowercase = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __lowercase = """*""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __lowercase = """#""" __lowercase = """-""" __lowercase = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) = x # print(x) __lowercase = """-""" __lowercase = back_pointer[x] __lowercase = """-""" for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase = back_pointer[goal] while x != start: print(lowerCamelCase , end=""" """ ) __lowercase = back_pointer[x] print(lowerCamelCase ) sys.exit() def snake_case ( lowerCamelCase ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) = s __lowercase = (x - 1, y) __lowercase = (x + 1, y) __lowercase = (x, y + 1) __lowercase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __lowercase = -1 __lowercase = float("""inf""" ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __lowercase = g_function[s] + 1 __lowercase = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def snake_case ( ): '''simple docstring''' __lowercase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCamelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCamelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCamelCase : Optional[Any] = make_common_ground() __UpperCamelCase : Dict = blocks_blk # hyper parameters __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Union[str, Any] = 1 __UpperCamelCase : Optional[int] = 20 __UpperCamelCase : List[str] = 3 # one consistent and two other inconsistent # start and end destination __UpperCamelCase : str = (0, 0) __UpperCamelCase : str = (n - 1, n - 1) __UpperCamelCase : Optional[Any] = 1 def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {start: 0, goal: float("""inf""" )} __lowercase = {start: -1, goal: -1} __lowercase = [] __lowercase = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __lowercase = [] __lowercase = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase , __lowercase = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowercase = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
53
0
def snake_case ( lowerCamelCase = 50 ): '''simple docstring''' __lowercase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
701
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( __snake_case , unittest.TestCase ): __snake_case :Union[str, Any] = ShapEImgaImgPipeline __snake_case :Tuple = ['image'] __snake_case :Optional[Any] = ['image'] __snake_case :Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case :int = False @property def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" return 32 @property def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : Any ) -> List[Any]: """simple docstring""" return 8 @property def _a ( self : str ) -> Dict: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowercase = CLIPVisionModel(__UpperCamelCase ) return model @property def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = CLIPImageProcessor( crop_size=224 , do_center_crop=__UpperCamelCase , do_normalize=__UpperCamelCase , do_resize=__UpperCamelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _a ( self : Dict ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowercase = PriorTransformer(**__UpperCamelCase ) return model @property def _a ( self : List[str] ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowercase = ShapERenderer(**__UpperCamelCase ) return model def _a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.dummy_prior __lowercase = self.dummy_image_encoder __lowercase = self.dummy_image_processor __lowercase = self.dummy_renderer __lowercase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__UpperCamelCase , clip_sample=__UpperCamelCase , clip_sample_range=1.0 , ) __lowercase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=0 ) -> Union[str, Any]: """simple docstring""" __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(__UpperCamelCase ) else: __lowercase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __lowercase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = """cpu""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCamelCase ) __lowercase = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __lowercase = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) __lowercase = output.images[0] __lowercase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowercase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> str: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = torch_device == """cpu""" __lowercase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , ) def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**__UpperCamelCase ) __lowercase = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __lowercase = 1 __lowercase = 2 __lowercase = self.get_dummy_inputs(__UpperCamelCase ) for key in inputs.keys(): if key in self.batch_params: __lowercase = batch_size * [inputs[key]] __lowercase = pipe(**__UpperCamelCase , num_images_per_prompt=__UpperCamelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def _a ( self : int ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowercase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowercase = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __lowercase = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) __lowercase = pipe( __UpperCamelCase , generator=__UpperCamelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
702
from math import sqrt def snake_case ( lowerCamelCase ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case ( lowerCamelCase = 10_001 ): '''simple docstring''' __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCamelCase ): count += 1 while count != nth: number += 2 if is_prime(lowerCamelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
53
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def snake_case ( lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCamelCase : def _a ( self : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Dict ) -> Optional[int]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass def _a ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : int ) -> str: """simple docstring""" __lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=None , **_lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , **_lowerCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , **_lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __lowercase = after_output[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) def _a ( self : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=None , **_lowerCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : List[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float ) -> Optional[int]: """simple docstring""" __lowercase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase = self.get_pretrained_model_and_inputs() __lowercase = model_a(**_lowerCAmelCase ) __lowercase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) __lowercase = model_a(**_lowerCAmelCase ) __lowercase = after_outputs[0].numpy() __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1e-5 ) @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = TFViTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = TFViTModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int=None , **_lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase , __lowercase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) __lowercase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) __lowercase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) __lowercase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __lowercase = to_atuple(vision_model.config.image_size ) __lowercase = to_atuple(vision_model.config.patch_size ) __lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = TFDeiTModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFRobertaModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Tuple ) -> str: """simple docstring""" __lowercase = TFDeiTModelTester(self ) __lowercase = TFRobertaModelTester(self ) __lowercase = vit_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __lowercase = 13 __lowercase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __lowercase = random_attention_mask([batch_size, 4] ) __lowercase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFCLIPVisionModel(_lowerCAmelCase , name="""vision_model""" ) __lowercase = TFBertModel(_lowerCAmelCase , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFCLIPVisionModelTester(self ) __lowercase = TFBertModelTester(self ) __lowercase = clip_model_tester.prepare_config_and_inputs() __lowercase = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase = vision_config_and_inputs ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def _a ( self : int ) -> Tuple: """simple docstring""" __lowercase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) __lowercase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""np""" ) __lowercase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1e-3 ) )
53
0
from __future__ import annotations import math def snake_case ( lowerCamelCase ): '''simple docstring''' if num <= 0: __lowercase = F'{num}: Invalid input, please enter a positive integer.' raise ValueError(SCREAMING_SNAKE_CASE__ ) __lowercase = [True] * (num + 1) __lowercase = [] __lowercase = 2 __lowercase = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE__ ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE__ ): if sieve[i] is True: __lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
704
from __future__ import annotations from scipy.special import comb # type: ignore class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : list[tuple[float, float]] ) -> Any: """simple docstring""" __lowercase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase = len(_lowerCAmelCase ) - 1 def _a ( self : Tuple , _lowerCAmelCase : float ) -> list[float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _lowerCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_lowerCAmelCase ) , 5 ) == 1 return output_values def _a ( self : List[str] , _lowerCAmelCase : float ) -> tuple[float, float]: """simple docstring""" assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase = self.basis_function(_lowerCAmelCase ) __lowercase = 0.0 __lowercase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _a ( self : Optional[int] , _lowerCAmelCase : float = 0.01 ) -> Union[str, Any]: """simple docstring""" from matplotlib import pyplot as plt # type: ignore __lowercase = [] # x coordinates of points to plot __lowercase = [] # y coordinates of points to plot __lowercase = 0.0 while t <= 1: __lowercase = self.bezier_curve_function(_lowerCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase = [i[0] for i in self.list_of_points] __lowercase = [i[1] for i in self.list_of_points] plt.plot( _lowerCAmelCase , _lowerCAmelCase , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(_lowerCAmelCase , _lowerCAmelCase , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
53
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __snake_case :Optional[int] = DebertaTokenizer __snake_case :Optional[int] = True __snake_case :Any = DebertaTokenizerFast def _a ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __lowercase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __lowercase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __lowercase = {'''unk_token''': '''[UNK]'''} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def _a ( self : str , **_lowerCAmelCase : Dict ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def _a ( self : Optional[Any] , _lowerCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowercase = '''lower newer''' __lowercase = '''lower newer''' return input_text, output_text def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = '''lower newer''' __lowercase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __lowercase = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = tokenizer("""Hello""" , """World""" ) __lowercase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , __snake_case ) @slow def _a ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__snake_case ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__snake_case ) __lowercase = tokenizer.encode( """sequence builders""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) __lowercase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) __lowercase = tokenizer.build_inputs_with_special_tokens(__snake_case ) __lowercase = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowercase = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowercase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __lowercase = tokenizer(__snake_case , padding=__snake_case ) __lowercase = [tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) for seq in encoding['''input_ids''']] # fmt: off __lowercase = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowercase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __snake_case ) for expected, decoded in zip(__snake_case , __snake_case ): self.assertEqual(__snake_case , __snake_case )
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = "cvt" def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : int=[7, 3, 3] , _lowerCAmelCase : Optional[Any]=[4, 2, 2] , _lowerCAmelCase : int=[2, 1, 1] , _lowerCAmelCase : str=[64, 192, 384] , _lowerCAmelCase : Union[str, Any]=[1, 3, 6] , _lowerCAmelCase : Dict=[1, 2, 10] , _lowerCAmelCase : List[str]=[4.0, 4.0, 4.0] , _lowerCAmelCase : int=[0.0, 0.0, 0.0] , _lowerCAmelCase : Optional[Any]=[0.0, 0.0, 0.0] , _lowerCAmelCase : Any=[0.0, 0.0, 0.1] , _lowerCAmelCase : int=[True, True, True] , _lowerCAmelCase : Any=[False, False, True] , _lowerCAmelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , _lowerCAmelCase : int=[3, 3, 3] , _lowerCAmelCase : List[Any]=[1, 1, 1] , _lowerCAmelCase : List[Any]=[2, 2, 2] , _lowerCAmelCase : Any=[1, 1, 1] , _lowerCAmelCase : List[str]=[1, 1, 1] , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : Optional[int]=1e-12 , **_lowerCAmelCase : str , ) -> Optional[int]: """simple docstring""" super().__init__(**_lowerCAmelCase ) __lowercase = num_channels __lowercase = patch_sizes __lowercase = patch_stride __lowercase = patch_padding __lowercase = embed_dim __lowercase = num_heads __lowercase = depth __lowercase = mlp_ratio __lowercase = attention_drop_rate __lowercase = drop_rate __lowercase = drop_path_rate __lowercase = qkv_bias __lowercase = cls_token __lowercase = qkv_projection_method __lowercase = kernel_qkv __lowercase = padding_kv __lowercase = stride_kv __lowercase = padding_q __lowercase = stride_q __lowercase = initializer_range __lowercase = layer_norm_eps
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 2 __lowercase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowercase_ ) if n > 1: factors.append(lowercase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
707
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCamelCase ( _lowerCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _a ( self : Any , _lowerCAmelCase : str=0 ) -> str: """simple docstring""" __lowercase = np.random.RandomState(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _a ( self : int ) -> List[Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = pipe(**_lowerCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] __lowercase = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase = prompt_embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def _a ( self : int ) -> str: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = self.get_dummy_inputs() __lowercase = 3 * ["""this is a negative prompt"""] __lowercase = negative_prompt __lowercase = 3 * [inputs["""prompt"""]] # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] __lowercase = self.get_dummy_inputs() __lowercase = 3 * [inputs.pop("""prompt""" )] __lowercase = [] for p in [prompt, negative_prompt]: __lowercase = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __lowercase = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase = embeds # forward __lowercase = pipe(**_lowerCAmelCase ) __lowercase = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): @property def _a ( self : Dict ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = ort.SessionOptions() __lowercase = False return options def _a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Tuple ) -> Any: """simple docstring""" __lowercase = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : Dict ) -> Dict: """simple docstring""" __lowercase = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """open neural network exchange""" __lowercase = np.random.RandomState(0 ) __lowercase = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _a ( self : str ) -> List[str]: """simple docstring""" __lowercase = 0 def test_callback_fn(_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : np.ndarray ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 __lowercase = False __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __lowercase = """Andromeda galaxy in a bottle""" __lowercase = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __lowercase = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
53
0
from __future__ import annotations import numpy as np def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase , __lowercase = np.shape(__UpperCamelCase ) if rows != columns: __lowercase = ( """\'table\' has to be of square shaped array but got a """ F'{rows}x{columns} array:\n{table}' ) raise ValueError(__UpperCamelCase ) __lowercase = np.zeros((rows, columns) ) __lowercase = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): __lowercase = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) __lowercase = (table[i][j] - total) / upper[j][j] __lowercase = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): __lowercase = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) __lowercase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
708
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(lowerCamelCase ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowerCamelCase ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' return "".join(cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowerCamelCase , lowerCamelCase ) for ch in message.upper() ) def snake_case ( ): '''simple docstring''' __lowercase = input("""Enter message to encode or decode: """ ).strip() __lowercase = input("""Enter keyword: """ ).strip() __lowercase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: __lowercase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) __lowercase = create_cipher_map(lowerCamelCase ) print(func(lowerCamelCase , lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
0
'''simple docstring''' def snake_case ( ): '''simple docstring''' for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = 1 __lowercase = 2 while i * i <= n: __lowercase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def snake_case ( ): '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(snake_case_ ) > 500 ) if __name__ == "__main__": print(solution())
709
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = IFInpaintingPipeline __snake_case :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __snake_case :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case :str = PipelineTesterMixin.required_optional_params - {'latents'} def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self._get_dummy_components() def _a ( self : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=0 ) -> Any: """simple docstring""" if str(_lowerCAmelCase ).startswith("""mps""" ): __lowercase = torch.manual_seed(_lowerCAmelCase ) else: __lowercase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _a ( self : Tuple ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _a ( self : str ) -> Optional[int]: """simple docstring""" self._test_save_load_local() def _a ( self : List[str] ) -> List[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
53
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : int = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): __snake_case :int = 'swin2sr' __snake_case :Dict = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , _lowerCAmelCase : Optional[int]=64 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=180 , _lowerCAmelCase : Tuple=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Optional[int]=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Tuple=8 , _lowerCAmelCase : List[Any]=2.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[str]=1.0 , _lowerCAmelCase : Tuple="1conv" , _lowerCAmelCase : List[Any]="pixelshuffle" , **_lowerCAmelCase : str , ) -> str: """simple docstring""" super().__init__(**UpperCamelCase__ ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(UpperCamelCase__ ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = False, False, False @dataclass class __UpperCamelCase : __snake_case :Optional[int] = None __snake_case :bool = True __snake_case :bool = True __snake_case :Optional[str] = None # Automatically constructed __snake_case :ClassVar[str] = "dict" __snake_case :ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __snake_case :str = field(default='Audio' , init=lowerCAmelCase__ , repr=lowerCAmelCase__ ) def __call__( self : Dict ) -> Optional[int]: """simple docstring""" return self.pa_type def _a ( self : Tuple , _lowerCAmelCase : Optional[Any] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install \'soundfile\'.""" ) from err if isinstance(_lowerCamelCase , _lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowercase = BytesIO() sf.write(_lowerCamelCase , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a \'sampling_rate\' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowercase = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __lowercase = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2767 __lowercase = BytesIO(bytes() ) sf.write(_lowerCamelCase , _lowerCamelCase , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def _a ( self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Dict = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) __lowercase , __lowercase = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install \'librosa\' and \'soundfile\'.""" ) from err __lowercase = xsplitext(_lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: __lowercase = token_per_repo_id or {} __lowercase = path.split("""::""" )[-1] try: __lowercase = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL )["""repo_id"""] __lowercase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowercase = None with xopen(_lowerCamelCase , """rb""" , use_auth_token=_lowerCamelCase ) as f: __lowercase , __lowercase = sf.read(_lowerCamelCase ) else: __lowercase , __lowercase = sf.read(_lowerCamelCase ) __lowercase = array.T if self.mono: __lowercase = librosa.to_mono(_lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowercase = librosa.resample(_lowerCamelCase , orig_sr=_lowerCamelCase , target_sr=self.sampling_rate ) __lowercase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _a ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _a ( self : Tuple , _lowerCAmelCase : Any ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): __lowercase = pa.array([Audio().encode_example(_lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __lowercase = storage.field("""bytes""" ) else: __lowercase = pa.array([None] * len(_lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __lowercase = storage.field("""path""" ) else: __lowercase = pa.array([None] * len(_lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(_lowerCamelCase , self.pa_type ) def _a ( self : List[Any] , _lowerCAmelCase : Union[str, Any] ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_lowerCAmelCase : Optional[Any] ): with xopen(_lowerCamelCase , """rb""" ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase = pa.array( [os.path.basename(_lowerCamelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(_lowerCamelCase , self.pa_type )
711
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Any = logging.get_logger(__name__) @dataclass class __UpperCamelCase : __snake_case :str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) __snake_case :str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) __snake_case :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _a ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.task_name.lower() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Optional[int] = 'train' __snake_case :int = 'dev' __snake_case :Any = 'test' class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :GlueDataTrainingArguments __snake_case :str __snake_case :List[InputFeatures] def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ) -> List[Any]: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowerCAmelCase , ) __lowercase = args __lowercase = glue_processors[args.task_name]() __lowercase = glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __lowercase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowercase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) __lowercase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase = label_list[2], label_list[1] __lowercase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase = cached_features_file + """.lock""" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __lowercase = time.time() __lowercase = torch.load(_lowerCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: __lowercase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowercase = self.processor.get_test_examples(args.data_dir ) else: __lowercase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowercase = examples[:limit_length] __lowercase = glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase = time.time() torch.save(self.features , _lowerCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , _lowerCAmelCase : Optional[int] ) -> InputFeatures: """simple docstring""" return self.features[i] def _a ( self : str ) -> int: """simple docstring""" return self.label_list
53
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=7 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Tuple=18 , _lowerCAmelCase : Union[str, Any]=30 , _lowerCAmelCase : List[Any]=400 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=32 , _lowerCAmelCase : str=True , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size_divisor __lowercase = do_rescale def _a ( self : int ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __UpperCamelCase ( _A , unittest.TestCase ): __snake_case :Union[str, Any] = GLPNImageProcessor if is_vision_available() else None def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = GLPNImageProcessingTester(self ) @property def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size_divisor""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """resample""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_rescale""" ) ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
712
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase : str = logging.getLogger(__name__) class __UpperCamelCase ( __lowercase ): __snake_case :int = 'sequence-classification' def __init__( self : List[Any] , _lowerCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if type(__A ) == dict: __lowercase = Namespace(**__A ) __lowercase = glue_output_modes[hparams.task] __lowercase = glue_tasks_num_labels[hparams.task] super().__init__(__A , __A , self.mode ) def _a ( self : int , **_lowerCAmelCase : Dict ) -> Any: """simple docstring""" return self.model(**__A ) def _a ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowercase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowercase = self(**__A ) __lowercase = outputs[0] __lowercase = self.trainer.lr_schedulers[0]["""scheduler"""] __lowercase = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _a ( self : str ) -> Any: """simple docstring""" __lowercase = self.hparams __lowercase = processors[args.task]() __lowercase = processor.get_labels() for mode in ["train", "dev"]: __lowercase = self._feature_file(__A ) if os.path.exists(__A ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __A ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) __lowercase = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) __lowercase = convert_examples_to_features( __A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , __A ) torch.save(__A , __A ) def _a ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Any = False ) -> DataLoader: """simple docstring""" __lowercase = """dev""" if mode == """test""" else mode __lowercase = self._feature_file(__A ) logger.info("""Loading features from cached file %s""" , __A ) __lowercase = torch.load(__A ) __lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __lowercase = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __lowercase = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , ) def _a ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __lowercase = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None __lowercase = self(**__A ) __lowercase , __lowercase = outputs[:2] __lowercase = logits.detach().cpu().numpy() __lowercase = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _a ( self : List[str] , _lowerCAmelCase : List[str] ) -> tuple: """simple docstring""" __lowercase = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() __lowercase = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __lowercase = np.argmax(__A , axis=1 ) elif self.hparams.glue_output_mode == "regression": __lowercase = np.squeeze(__A ) __lowercase = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) __lowercase = [[] for _ in range(out_label_ids.shape[0] )] __lowercase = [[] for _ in range(out_label_ids.shape[0] )] __lowercase = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )} __lowercase = dict(results.items() ) __lowercase = results return ret, preds_list, out_label_list def _a ( self : Tuple , _lowerCAmelCase : Tuple ) -> dict: """simple docstring""" __lowercase , __lowercase , __lowercase = self._eval_end(__A ) __lowercase = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _a ( self : Tuple , _lowerCAmelCase : Union[str, Any] ) -> dict: """simple docstring""" __lowercase , __lowercase , __lowercase = self._eval_end(__A ) __lowercase = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _a ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Any: """simple docstring""" BaseTransformer.add_model_specific_args(__A , __A ) parser.add_argument( """--max_seq_length""" , default=128 , type=__A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=__A , required=__A , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=__A , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case ( ): '''simple docstring''' __lowercase = argparse.ArgumentParser() add_generic_args(a__ , os.getcwd() ) __lowercase = GLUETransformer.add_model_specific_args(a__ , os.getcwd() ) __lowercase = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __lowercase = os.path.join( """./results""" , F'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}' , ) os.makedirs(args.output_dir ) __lowercase = GLUETransformer(a__ ) __lowercase = generic_train(a__ , a__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __lowercase = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=a__ ) ) __lowercase = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(a__ ) if __name__ == "__main__": main()
713
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( UpperCamelCase__ , unittest.TestCase ): __snake_case :Optional[int] = RobertaTokenizer __snake_case :str = RobertaTokenizerFast __snake_case :Dict = True __snake_case :Dict = {'cls_token': '<s>'} def _a ( self : List[str] ) -> Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase = dict(zip(__A , range(len(__A ) ) ) ) __lowercase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase = {"""unk_token""": """<unk>"""} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__A ) ) def _a ( self : List[str] , **_lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A ) def _a ( self : Union[str, Any] , **_lowerCAmelCase : int ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__A ) def _a ( self : str , _lowerCAmelCase : Dict ) -> Any: """simple docstring""" __lowercase = """lower newer""" __lowercase = """lower newer""" return input_text, output_text def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = """lower newer""" __lowercase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase = tokenizer.tokenize(__A ) # , add_prefix_space=True) self.assertListEqual(__A , __A ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def _a ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__A ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def _a ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""roberta-base""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) __lowercase = tokenizer.encode( """sequence builders""" , add_special_tokens=__A , add_prefix_space=__A ) __lowercase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__A , add_prefix_space=__A ) __lowercase = tokenizer.build_inputs_with_special_tokens(__A ) __lowercase = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _a ( self : Any ) -> Tuple: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = """Encode this sequence.""" __lowercase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowercase = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) __lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__A , __A ) __lowercase = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A ) __lowercase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__A , __A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowercase = tokenizer.encode(__A , add_special_tokens=__A ) __lowercase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__A , __A ) # Testing spaces after special tokens __lowercase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__A , lstrip=__A , rstrip=__A )} ) # mask token has a left space __lowercase = tokenizer.convert_tokens_to_ids(__A ) __lowercase = """Encode <mask> sequence""" __lowercase = """Encode <mask>sequence""" __lowercase = tokenizer.encode(__A ) __lowercase = encoded.index(__A ) __lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__A , __A ) __lowercase = tokenizer.encode(__A ) __lowercase = encoded.index(__A ) __lowercase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__A , __A ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" pass def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase = self.rust_tokenizer_class.from_pretrained(__A , **__A ) __lowercase = self.tokenizer_class.from_pretrained(__A , **__A ) __lowercase = """A, <mask> AllenNLP sentence.""" __lowercase = tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) __lowercase = tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowercase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowercase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __A ) self.assertEqual(post_processor_state["""trim_offsets"""] , __A ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowercase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase = F'{text_of_1_token} {text_of_1_token}' __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , ) __lowercase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) , ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , ) __lowercase = self.rust_tokenizer_class.from_pretrained( __A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A ) __lowercase = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , )
714
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __UpperCamelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=7 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : List[Any]=18 , _lowerCAmelCase : Optional[Any]=30 , _lowerCAmelCase : int=400 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : str=None , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : str=True , _lowerCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , _lowerCAmelCase : Any=[0.5, 0.5, 0.5] , _lowerCAmelCase : List[str]=False , ) -> List[str]: """simple docstring""" __lowercase = size if size is not None else {"""height""": 20, """width""": 20} __lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_normalize __lowercase = image_mean __lowercase = image_std __lowercase = do_reduce_labels def _a ( self : str ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def snake_case ( ): '''simple docstring''' __lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __lowercase = Image.open(dataset[0]["""file"""] ) __lowercase = Image.open(dataset[1]["""file"""] ) return image, map def snake_case ( ): '''simple docstring''' __lowercase = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) __lowercase = Image.open(ds[0]["""file"""] ) __lowercase = Image.open(ds[1]["""file"""] ) __lowercase = Image.open(ds[2]["""file"""] ) __lowercase = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __UpperCamelCase ( __UpperCAmelCase , unittest.TestCase ): __snake_case :Union[str, Any] = BeitImageProcessor if is_vision_available() else None def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = BeitImageProcessingTester(self ) @property def _a ( self : int ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE ) __lowercase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , __SCREAMING_SNAKE_CASE ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : Tuple ) -> Dict: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : int ) -> str: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) __lowercase = [] for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __lowercase = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched __lowercase = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) __lowercase , __lowercase = prepare_semantic_single_inputs() __lowercase = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) __lowercase , __lowercase = prepare_semantic_batch_inputs() __lowercase = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def _a ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __lowercase , __lowercase = prepare_semantic_single_inputs() __lowercase = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) __lowercase = True __lowercase = image_processing(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
715
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict __lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase , filename="""pytorch_model.bin""" ) ) __lowercase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): __lowercase = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue __lowercase = tensor_value __lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase , config=lowerCamelCase , state_dict=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) # convert tokenizer __lowercase = AutoTokenizer.from_pretrained(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Dict = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) __UpperCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def snake_case ( lowerCamelCase ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowercase = model_type_to_module_name(lowerCamelCase ) __lowercase = importlib.import_module(F'.{module_name}' , """transformers.models""" ) try: return getattr(lowerCamelCase , lowerCamelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase , """__name__""" , lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowercase = importlib.import_module("""transformers""" ) if hasattr(lowerCamelCase , lowerCamelCase ): return getattr(lowerCamelCase , lowerCamelCase ) return None def snake_case ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , **lowerCamelCase , ): '''simple docstring''' __lowercase = get_file_from_repo( lowerCamelCase , lowerCamelCase , cache_dir=lowerCamelCase , force_download=lowerCamelCase , resume_download=lowerCamelCase , proxies=lowerCamelCase , use_auth_token=lowerCamelCase , revision=lowerCamelCase , local_files_only=lowerCamelCase , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(lowerCamelCase , encoding="""utf-8""" ) as reader: return json.load(lowerCamelCase ) class __UpperCamelCase : def __init__( self : Dict ) -> Dict: """simple docstring""" raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__a ) def _a ( cls : Optional[int] , _lowerCAmelCase : int , **_lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" __lowercase = kwargs.pop("""config""" , __a ) __lowercase = kwargs.pop("""trust_remote_code""" , __a ) __lowercase = True __lowercase = FeatureExtractionMixin.get_feature_extractor_dict(__a , **__a ) __lowercase = config_dict.get("""feature_extractor_type""" , __a ) __lowercase = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): __lowercase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__a , __a ): __lowercase = AutoConfig.from_pretrained(__a , **__a ) # It could be in `config.feature_extractor_type`` __lowercase = getattr(__a , """feature_extractor_type""" , __a ) if hasattr(__a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: __lowercase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: __lowercase = feature_extractor_class_from_name(__a ) __lowercase = feature_extractor_auto_map is not None __lowercase = feature_extractor_class is not None or type(__a ) in FEATURE_EXTRACTOR_MAPPING __lowercase = resolve_trust_remote_code( __a , __a , __a , __a ) if has_remote_code and trust_remote_code: __lowercase = get_class_from_dynamic_module( __a , __a , **__a ) __lowercase = kwargs.pop("""code_revision""" , __a ) if os.path.isdir(__a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__a , **__a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__a , **__a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__a ) in FEATURE_EXTRACTOR_MAPPING: __lowercase = FEATURE_EXTRACTOR_MAPPING[type(__a )] return feature_extractor_class.from_dict(__a , **__a ) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _a ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(__a , __a )
716
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCamelCase ): for x in range(lowerCamelCase ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __UpperCamelCase : List[Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __UpperCamelCase : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __UpperCamelCase : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __UpperCamelCase : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __UpperCamelCase : List[str] = out / out.max() * 255 __UpperCamelCase : List[str] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
53
0