code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "blip_text_model" def __init__( self : Union[str, Any] , lowerCAmelCase : Dict=30524 , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : List[str]=3072 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : str=12 , lowerCAmelCase : Optional[Any]=8 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[int]=1E-12 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Tuple=30522 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Union[str, Any]=102 , lowerCAmelCase : int=True , lowerCAmelCase : Union[str, Any]=True , **lowerCAmelCase : int , )-> List[Any]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , sep_token_id=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = encoder_hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = projection_dim UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = is_decoder UpperCAmelCase = use_cache @classmethod def a__( cls : Tuple , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Any )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : int = "blip_vision_model" def __init__( self : Optional[Any] , lowerCAmelCase : Tuple=768 , lowerCAmelCase : str=3072 , lowerCAmelCase : Dict=512 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : int=12 , lowerCAmelCase : List[str]=384 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Dict=1E-5 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Optional[Any]=1E-10 , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = projection_dim UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = patch_size UpperCAmelCase = image_size UpperCAmelCase = initializer_range UpperCAmelCase = attention_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = hidden_act @classmethod def a__( cls : Any , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : int )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "blip" __magic_name__ : int = True def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=512 , lowerCAmelCase : str=2.6592 , lowerCAmelCase : str=256 , **lowerCAmelCase : List[Any] , )-> Any: """simple docstring""" super().__init__(**lowerCAmelCase ) if text_config is None: UpperCAmelCase = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) UpperCAmelCase = BlipTextConfig(**lowerCAmelCase ) UpperCAmelCase = BlipVisionConfig(**lowerCAmelCase ) UpperCAmelCase = self.vision_config.hidden_size UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = 1.0 UpperCAmelCase = 0.02 UpperCAmelCase = image_text_hidden_size @classmethod def a__( cls : Union[str, Any] , lowerCAmelCase : BlipTextConfig , lowerCAmelCase : BlipVisionConfig , **lowerCAmelCase : int )-> str: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase ) def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__: def __init__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=13 , lowerCAmelCase : Union[str, Any]=30 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : int=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Any=32 , lowerCAmelCase : Union[str, Any]=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=10 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Dict=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def a__( self : Tuple )-> Any: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : str )-> Union[str, Any]: """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] )-> Any: """simple docstring""" UpperCAmelCase = ViTMSNModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = ViTMSNForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' ) print('''Labels: {labels}''' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = ViTMSNForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __magic_name__ : Tuple = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) __magic_name__ : List[str] = False __magic_name__ : int = False __magic_name__ : Optional[Any] = False __magic_name__ : Any = False def a__( self : Optional[int] )-> int: """simple docstring""" UpperCAmelCase = ViTMSNModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def a__( self : Dict )-> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMSN does not use inputs_embeds''' ) def a__( self : str )-> int: """simple docstring""" pass def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def a__( self : Optional[Any] )-> Tuple: """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ViTMSNModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : str )-> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None @slow def a__( self : Tuple )-> Optional[Any]: """simple docstring""" torch.manual_seed(2 ) UpperCAmelCase = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowercase : List[str] = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : int = ["input_features", "attention_mask"] def __init__( self : int , lowerCAmelCase : List[str]=80 , lowerCAmelCase : Any=16000 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Any=10 , lowerCAmelCase : Optional[int]=25 , lowerCAmelCase : List[Any]="hamming_window" , lowerCAmelCase : List[str]=32768.0 , lowerCAmelCase : Any=0.97 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=True , lowerCAmelCase : Dict=False , **lowerCAmelCase : Any , )-> List[str]: """simple docstring""" super().__init__(feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = feature_size UpperCAmelCase = sampling_rate UpperCAmelCase = padding_value UpperCAmelCase = hop_length UpperCAmelCase = win_length UpperCAmelCase = frame_signal_scale UpperCAmelCase = preemphasis_coeff UpperCAmelCase = mel_floor UpperCAmelCase = normalize_means UpperCAmelCase = normalize_vars UpperCAmelCase = win_function UpperCAmelCase = return_attention_mask UpperCAmelCase = win_length * sampling_rate // 1000 UpperCAmelCase = hop_length * sampling_rate // 1000 UpperCAmelCase = optimal_fft_length(self.sample_size ) UpperCAmelCase = (self.n_fft // 2) + 1 def a__( self : int , lowerCAmelCase : np.array )-> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": UpperCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase ) else: UpperCAmelCase = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCAmelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCAmelCase , preemphasis=self.preemphasis_coeff , mel_filters=lowerCAmelCase , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" if self.normalize_means: UpperCAmelCase = x[:input_length].mean(axis=0 ) UpperCAmelCase = np.subtract(lowerCAmelCase , lowerCAmelCase ) if self.normalize_vars: UpperCAmelCase = x[:input_length].std(axis=0 ) UpperCAmelCase = np.divide(lowerCAmelCase , lowerCAmelCase ) if input_length < x.shape[0]: UpperCAmelCase = padding_value # make sure array is in float32 UpperCAmelCase = x.astype(np.floataa ) return x def a__( self : Optional[int] , lowerCAmelCase : List[np.ndarray] , lowerCAmelCase : Optional[np.ndarray] = None )-> List[np.ndarray]: """simple docstring""" UpperCAmelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCAmelCase , lowerCAmelCase , self.padding_value ) for x, n in zip(lowerCAmelCase , lowerCAmelCase )] def __call__( self : List[Any] , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[int] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [raw_speech] # extract fbank features UpperCAmelCase = [self._extract_mfsc_features(lowerCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase = BatchFeature({'''input_features''': features} ) UpperCAmelCase = self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) # make sure list is in array format UpperCAmelCase = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowerCAmelCase ): UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] UpperCAmelCase = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase = ( np.array(lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase , max_length=lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowerCAmelCase ) if return_tensors is not None: UpperCAmelCase = padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowercase : Dict = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _lowercase : Any = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _lowercase : Optional[Any] = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : Any )-> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def a__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]="binary" , lowerCAmelCase : str=None )-> int: """simple docstring""" UpperCAmelCase = fa_score( lowerCAmelCase , lowerCAmelCase , labels=lowerCAmelCase , pos_label=lowerCAmelCase , average=lowerCAmelCase , sample_weight=lowerCAmelCase ) return {"f1": float(lowerCAmelCase ) if score.size == 1 else score}
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int = 10_00 ): '''simple docstring''' return sum(e for e in range(3 , A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' from math import sqrt def lowerCamelCase__ ( A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' from PIL import Image def lowerCamelCase__ ( A : Image , A : float ): '''simple docstring''' def brightness(A : int ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(A ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _lowercase : int = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = (DEISMultistepScheduler,) __magic_name__ : List[str] = (("num_inference_steps", 25),) def a__( self : int , **lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowerCAmelCase ) return config def a__( self : Dict , lowerCAmelCase : int=0 , **lowerCAmelCase : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) UpperCAmelCase = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase , UpperCAmelCase = sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__( self : Optional[Any] )-> Dict: """simple docstring""" pass def a__( self : Optional[int] , lowerCAmelCase : Dict=0 , **lowerCAmelCase : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) UpperCAmelCase = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__( self : Union[str, Any] , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" if scheduler is None: UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) UpperCAmelCase = self.full_loop(scheduler=lowerCAmelCase ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase = self.full_loop(scheduler=lowerCAmelCase ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type='''deis''' , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def a__( self : Tuple )-> int: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : Dict )-> Optional[Any]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) UpperCAmelCase = self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def a__( self : int )-> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int , A : List[Any] ): '''simple docstring''' UpperCAmelCase = (boundary[1] - boundary[0]) / steps UpperCAmelCase = boundary[0] UpperCAmelCase = boundary[1] UpperCAmelCase = make_points(A , A , A ) UpperCAmelCase = 0.0 y += (h / 2.0) * f(A ) for i in x_i: # print(i) y += h * f(A ) y += (h / 2.0) * f(A ) return y def lowerCamelCase__ ( A : str , A : Union[str, Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = a + h while x < (b - h): yield x UpperCAmelCase = x + h def lowerCamelCase__ ( A : List[Any] ): # enter your function here '''simple docstring''' UpperCAmelCase = (x - 0) * (x - 0) return y def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = 0.0 # Lower bound of integration UpperCAmelCase = 1.0 # Upper bound of integration UpperCAmelCase = 10.0 # define number of steps or resolution UpperCAmelCase = [a, b] # define boundary of integration UpperCAmelCase = method_a(A , A ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCAmelCase = 1 UpperCAmelCase = 1 while repunit: UpperCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase__ ( A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(A ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = [] for line in lines: UpperCAmelCase = re.sub(R'''#.*''' , '''''' , A ) # remove comments if line: filtered_lines.append(A ) UpperCAmelCase = '''\n'''.join(A ) # Make a hash from all this code UpperCAmelCase = full_str.encode('''utf-8''' ) return shaaaa(A ).hexdigest() # get importable module names and hash for caching _lowercase : Union[str, Any] = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _lowercase : str = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _lowercase : Dict = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name _lowercase : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "beit" def __init__( self : List[Any] , lowerCAmelCase : str=8192 , lowerCAmelCase : Dict=768 , lowerCAmelCase : int=12 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Optional[Any]=224 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : str=3 , lowerCAmelCase : str=False , lowerCAmelCase : str=False , lowerCAmelCase : int=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : int=True , lowerCAmelCase : Any=[3, 5, 7, 11] , lowerCAmelCase : Union[str, Any]=[1, 2, 3, 6] , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=0.4 , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Any=False , lowerCAmelCase : Any=255 , **lowerCAmelCase : Optional[Any] , )-> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = version.parse("1.11" ) @property def a__( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__( self : Optional[int] )-> float: """simple docstring""" return 1E-4
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : str , A : list[str] | None = None ): '''simple docstring''' UpperCAmelCase = word_bank or [] # create a table UpperCAmelCase = len(A ) + 1 UpperCAmelCase = [] for _ in range(A ): table.append([] ) # seed value UpperCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(A )] == word: UpperCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(A )]: combination.reverse() return table[len(A )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Optional[Any] = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "mra" def __init__( self : str , lowerCAmelCase : List[Any]=50265 , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : int=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Dict=512 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]="absolute" , lowerCAmelCase : Any=4 , lowerCAmelCase : Union[str, Any]="full" , lowerCAmelCase : Any=0 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=1 , lowerCAmelCase : Any=0 , lowerCAmelCase : Dict=2 , **lowerCAmelCase : List[Any] , )-> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = block_per_row UpperCAmelCase = approx_mode UpperCAmelCase = initial_prior_first_n_blocks UpperCAmelCase = initial_prior_diagonal_n_blocks
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _lowercase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = ["pixel_values"] def __init__( self : Dict , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : str , )-> None: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = size if size is not None else {'''shortest_edge''': 256} UpperCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase = get_size_dict(lowerCAmelCase , param_name='''crop_size''' ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , )-> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[int] , )-> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase , **lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Optional[Any] )-> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Union[str, Any] , )-> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase : List[Any] , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(lowerCAmelCase , param_name='''crop_size''' ) UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Tuple] = None )-> List[Any]: """simple docstring""" UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase ): UpperCAmelCase = target_sizes.numpy() UpperCAmelCase = [] for idx in range(len(lowerCAmelCase ) ): UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase ) UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase ) else: UpperCAmelCase = logits.argmax(dim=1 ) UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCamelCase__ ( A : str ): '''simple docstring''' for char in word: UpperCAmelCase = ord(A ) if not _is_chinese_char(A ): return 0 return 1 def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = set() for token in tokens: UpperCAmelCase = len(A ) > 1 and is_chinese(A ) if chinese_word: word_set.add(A ) UpperCAmelCase = list(A ) return word_list def lowerCamelCase__ ( A : List[str] , A : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCAmelCase = max([len(A ) for w in chinese_word_set] ) UpperCAmelCase = bert_tokens UpperCAmelCase , UpperCAmelCase = 0, len(A ) while start < end: UpperCAmelCase = True if is_chinese(bert_word[start] ): UpperCAmelCase = min(end - start , A ) for i in range(A , 1 , -1 ): UpperCAmelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase = '''##''' + bert_word[j] UpperCAmelCase = start + i UpperCAmelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( A : List[str] , A : LTP , A : BertTokenizer ): '''simple docstring''' UpperCAmelCase = [] for i in range(0 , len(A ) , 1_00 ): UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws UpperCAmelCase = [get_chinese_word(A ) for r in res] ltp_res.extend(A ) assert len(A ) == len(A ) UpperCAmelCase = [] for i in range(0 , len(A ) , 1_00 ): UpperCAmelCase = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=A , truncation=A , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(A ) == len(A ) UpperCAmelCase = [] for input_ids, chinese_word in zip(A , A ): UpperCAmelCase = [] for id in input_ids: UpperCAmelCase = bert_tokenizer._convert_id_to_token(A ) input_tokens.append(A ) UpperCAmelCase = add_sub_symbol(A , A ) UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A ): if token[:2] == "##": UpperCAmelCase = token[2:] # save chinese tokens' pos if len(A ) == 1 and _is_chinese_char(ord(A ) ): ref_id.append(A ) ref_ids.append(A ) assert len(A ) == len(A ) return ref_ids def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [line.strip() for line in data if len(A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase = LTP(args.ltp ) # faster in GPU device UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase = prepare_ref(A , A , A ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = [json.dumps(A ) + '''\n''' for ref in ref_ids] f.writelines(A ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _lowercase : Optional[int] = parser.parse_args() main(args)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__( lowerCAmelCase ): def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , '''num_attention_heads''' ) ) class UpperCamelCase__: def __init__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : str=640 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Optional[int]="silu" , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Any=32 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Any=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Dict=10 , lowerCAmelCase : List[str]=None , )-> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = last_hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = conv_kernel_size UpperCAmelCase = output_stride UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = use_labels UpperCAmelCase = is_training UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = scope def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def a__( self : List[Any] )-> List[str]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def a__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = MobileViTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__( self : str , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ : List[str] = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ : str = False __magic_name__ : int = False __magic_name__ : Any = False __magic_name__ : Optional[int] = False def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MobileViTModelTester(self ) UpperCAmelCase = MobileViTConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : int )-> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def a__( self : List[str] )-> Tuple: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def a__( self : Dict )-> Dict: """simple docstring""" pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" pass def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__( self : List[str] )-> Tuple: """simple docstring""" pass def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ): UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 5 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase = 2 for i in range(len(lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @slow def a__( self : Any )-> Tuple: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = MobileViTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : str )-> int: """simple docstring""" return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase = model.to(lowerCAmelCase ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase = model.to(lowerCAmelCase ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) UpperCAmelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase )
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[Any] = RobertaTokenizer __magic_name__ : Union[str, Any] = RobertaTokenizerFast __magic_name__ : Union[str, Any] = True __magic_name__ : Tuple = {"cls_token": "<s>"} def a__( self : int )-> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def a__( self : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : Union[str, Any] , **lowerCAmelCase : List[Any] )-> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : str , lowerCAmelCase : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = '''lower newer''' UpperCAmelCase = '''lower newer''' return input_text, output_text def a__( self : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def a__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=lowerCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=lowerCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = '''Encode this sequence.''' UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) # Testing spaces after special tokens UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase )} ) # mask token has a left space UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = '''Encode <mask> sequence''' UpperCAmelCase = '''Encode <mask>sequence''' UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = encoded.index(lowerCAmelCase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = encoded.index(lowerCAmelCase ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : List[Any] )-> int: """simple docstring""" pass def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase = tokenizer_r.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) UpperCAmelCase = tokenizer_p.encode_plus(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_token_type_ids=lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( lowerCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def a__( self : Dict )-> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , lowerCAmelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , lowerCAmelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , lowerCAmelCase ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase = F"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ), len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ), len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = F""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ), 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase ) UpperCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ), 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = 3_84 if "tiny" in model_name: UpperCAmelCase = [3, 3, 9, 3] UpperCAmelCase = [96, 1_92, 3_84, 7_68] if "small" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [96, 1_92, 3_84, 7_68] if "base" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [1_28, 2_56, 5_12, 10_24] UpperCAmelCase = 5_12 if "large" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [1_92, 3_84, 7_68, 15_36] UpperCAmelCase = 7_68 if "xlarge" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [2_56, 5_12, 10_24, 20_48] UpperCAmelCase = 10_24 # set label information UpperCAmelCase = 1_50 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = ConvNextConfig( depths=A , hidden_sizes=A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( A : Optional[Any] , A : List[Any] , A : Any ): '''simple docstring''' UpperCAmelCase = dct.pop(A ) UpperCAmelCase = val def lowerCamelCase__ ( A : Union[str, Any] , A : Union[str, Any] , A : str ): '''simple docstring''' UpperCAmelCase = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase = get_upernet_config(A ) UpperCAmelCase = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(A ) if "bn" in key: UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase = val # rename keys UpperCAmelCase = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) model.load_state_dict(A ) # verify on image UpperCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' ) UpperCAmelCase = SegformerImageProcessor() UpperCAmelCase = processor(A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase = model(A ) if model_name == "upernet-convnext-tiny": UpperCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(A ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple , lowerCAmelCase : str )-> Optional[int]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowerCAmelCase ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , only_pretrain_model=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , torchscript=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , fpaa=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) # set architectures equal to `None` UpperCAmelCase = None UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCAmelCase , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : Dict )-> str: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tinier_bart''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = '''sshleifer/tinier_bart''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , save_to_csv=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(lowerCAmelCase , '''env.csv''' ) , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''env.csv''' ) ).exists() ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(lowerCAmelCase : Optional[Any] ): self.assertTrue(hasattr(lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCAmelCase , '''log.txt''' ) , log_print=lowerCAmelCase , trace_memory_line_by_line=lowerCAmelCase , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''log.txt''' ) ).exists() )
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : int = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = "focalnet" def __init__( self : List[Any] , lowerCAmelCase : Any=224 , lowerCAmelCase : Any=4 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : str=96 , lowerCAmelCase : List[str]=False , lowerCAmelCase : int=[192, 384, 768, 768] , lowerCAmelCase : List[Any]=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : str=4.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[int]=1E-4 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Dict=32 , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = use_conv_embed UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = focal_levels UpperCAmelCase = focal_windows UpperCAmelCase = hidden_act UpperCAmelCase = mlp_ratio UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = use_layerscale UpperCAmelCase = layerscale_value UpperCAmelCase = use_post_layernorm UpperCAmelCase = use_post_layernorm_in_modulation UpperCAmelCase = normalize_modulator UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = encoder_stride UpperCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def lowerCamelCase__ ( A : List[str] , A : str , A : Any , A : List[Any] ): '''simple docstring''' UpperCAmelCase = sorted(zip(A , A ) , key=lambda A : x[0] / x[1] , reverse=A ) UpperCAmelCase , UpperCAmelCase = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase = list(accumulate(A ) ) UpperCAmelCase = bisect(A , A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' class UpperCamelCase__: def __init__( self : List[str] , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = size UpperCAmelCase = [0] * size UpperCAmelCase = [0] * size @staticmethod def a__( lowerCAmelCase : int )-> int: """simple docstring""" return index | (index + 1) @staticmethod def a__( lowerCAmelCase : int )-> int: """simple docstring""" return (index & (index + 1)) - 1 def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = value while index < self.size: UpperCAmelCase = self.get_prev(lowerCAmelCase ) + 1 if current_left_border == index: UpperCAmelCase = value else: UpperCAmelCase = max(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_next(lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int )-> int: """simple docstring""" right -= 1 # Because of right is exclusive UpperCAmelCase = 0 while left <= right: UpperCAmelCase = self.get_prev(lowerCAmelCase ) if left <= current_left: UpperCAmelCase = max(lowerCAmelCase , self.tree[right] ) UpperCAmelCase = current_left else: UpperCAmelCase = max(lowerCAmelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int , A : int ): '''simple docstring''' UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase__ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' import math _lowercase : Optional[int] = 10 _lowercase : Optional[int] = 7 _lowercase : str = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( A : int = 20 ): '''simple docstring''' UpperCAmelCase = math.comb(A , A ) UpperCAmelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , A ) UpperCAmelCase = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = image.size UpperCAmelCase , UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = torch.from_numpy(A ) return 2.0 * image - 1.0 class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Tuple , lowerCAmelCase : VQModel , lowerCAmelCase : UNetaDModel , lowerCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , )-> Any: """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : Optional[int] = 100 , lowerCAmelCase : Optional[float] = 0.0 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , )-> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase = 1 elif isinstance(lowerCAmelCase , torch.Tensor ): UpperCAmelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase )}""" ) if isinstance(lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase = preprocess(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase = next(self.unet.parameters() ).dtype UpperCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) UpperCAmelCase = image.to(device=self.device , dtype=lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for t in self.progress_bar(lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase = torch.cat([latents, image] , dim=1 ) UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase = self.vqvae.decode(lowerCAmelCase ).sample UpperCAmelCase = torch.clamp(lowerCAmelCase , -1.0 , 1.0 ) UpperCAmelCase = image / 2 + 0.5 UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowercase : str = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] )-> None: """simple docstring""" warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _lowercase : Dict = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowerCamelCase__ ( A : str ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") _lowercase : int = parser.parse_args() if args.check_lib: _lowercase : List[Any] = importlib.import_module("""transformers""") _lowercase : Dict = Path(transformers_module.__file__).parent else: _lowercase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : str = logging.get_logger(__name__) class UpperCamelCase__( enum.Enum ): __magic_name__ : int = 0 __magic_name__ : Optional[int] = 1 @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "generated" def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a__( self : Tuple , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , **lowerCAmelCase : int , )-> List[str]: """simple docstring""" UpperCAmelCase = {} if truncation is not None: UpperCAmelCase = truncation UpperCAmelCase = generate_kwargs UpperCAmelCase = {} if return_tensors is not None and return_type is None: UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Dict: """simple docstring""" return True def a__( self : Any , *lowerCAmelCase : Dict , lowerCAmelCase : int )-> Dict: """simple docstring""" UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase = ([prefix + arg for arg in args[0]],) UpperCAmelCase = True elif isinstance(args[0] , lowerCAmelCase ): UpperCAmelCase = (prefix + args[0],) UpperCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase = self.tokenizer(*lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[int] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) if ( isinstance(args[0] , lowerCAmelCase ) and all(isinstance(lowerCAmelCase , lowerCAmelCase ) for el in args[0] ) and all(len(lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def a__( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self._parse_and_tokenize(lowerCAmelCase , truncation=lowerCAmelCase , **lowerCAmelCase ) return inputs def a__( self : str , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple )-> Any: """simple docstring""" if self.framework == "pt": UpperCAmelCase , UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase , UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(lowerCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase = output_ids.reshape(lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=ReturnType.TEXT , lowerCAmelCase : List[str]=False )-> List[Any]: """simple docstring""" UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "summary" def __call__( self : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "translation" def a__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a__( self : int , *lowerCAmelCase : Optional[Any] , lowerCAmelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase : Any=None , lowerCAmelCase : List[Any]=None )-> int: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *lowerCAmelCase , return_tensors=self.framework , truncation=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase ) else: return super()._parse_and_tokenize(*lowerCAmelCase , truncation=lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = super()._sanitize_parameters(**lowerCAmelCase ) if src_lang is not None: UpperCAmelCase = src_lang if tgt_lang is not None: UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase = kwargs.get('''task''' , self.task ) UpperCAmelCase = task.split('''_''' ) if task and len(lowerCAmelCase ) == 4: # translation, XX, to YY UpperCAmelCase = items[1] UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCAmelCase ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCAmelCase ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase = TextIteratorStreamer(lowerCAmelCase ) UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCAmelCase ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) UpperCAmelCase = model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowerCAmelCase , skip_prompt=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowerCAmelCase ) UpperCAmelCase = -1 UpperCAmelCase = torch.ones((1, 5) , device=lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=1 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase = cs.out[:-1] # Remove the final "\n" UpperCAmelCase = tokenizer(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCAmelCase ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) UpperCAmelCase = TextIteratorStreamer(lowerCAmelCase , timeout=0.001 ) UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase ): UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : str = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : Tuple = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } _lowercase : List[Any] = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } _lowercase : str = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Tuple = ["input_ids", "attention_mask"] __magic_name__ : Any = DistilBertTokenizer def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=None , lowerCAmelCase : int=True , lowerCAmelCase : int="[UNK]" , lowerCAmelCase : Union[str, Any]="[SEP]" , lowerCAmelCase : Any="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : Tuple="[MASK]" , lowerCAmelCase : int=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : List[str] , )-> Dict: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=None )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = (DDIMParallelScheduler,) __magic_name__ : Optional[int] = (("eta", 0.0), ("num_inference_steps", 50)) def a__( self : str , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCAmelCase ) return config def a__( self : Dict , **lowerCAmelCase : int )-> int: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = 10, 0.0 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def a__( self : Dict )-> Tuple: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : int )-> List[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__( self : Dict )-> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def a__( self : int )-> List[str]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def a__( self : Any )-> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def a__( self : Dict )-> Any: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase ) def a__( self : Optional[int] )-> str: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase ) def a__( self : str )-> int: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = self.dummy_sample_deter + 0.1 UpperCAmelCase = self.dummy_sample_deter - 0.1 UpperCAmelCase = samplea.shape[0] UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase = torch.arange(lowerCAmelCase )[0:3, None].repeat(1 , lowerCAmelCase ) UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowercase : int = """true""" def lowerCamelCase__ ( A : Union[str, Any] , A : Union[str, Any]=82 , A : Optional[int]=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase = RegressionModel() UpperCAmelCase = deepcopy(A ) UpperCAmelCase = RegressionDataset(length=A ) UpperCAmelCase = DataLoader(A , batch_size=A ) model.to(accelerator.device ) UpperCAmelCase , UpperCAmelCase = accelerator.prepare(A , A ) return model, ddp_model, dataloader def lowerCamelCase__ ( A : Accelerator , A : Tuple=False ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A : Any ): UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs with accelerator.main_process_first(): UpperCAmelCase = dataset.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : Tuple ): if use_longest: return tokenizer.pad(A , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A , shuffle=A , collate_fn=A , batch_size=16 ) def lowerCamelCase__ ( A : Any , A : List[Any] ): '''simple docstring''' UpperCAmelCase = Accelerator(dispatch_batches=A , split_batches=A ) UpperCAmelCase = get_dataloader(A , not dispatch_batches ) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A ) UpperCAmelCase , UpperCAmelCase = accelerator.prepare(A , A ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( A : str , A : List[Any] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] for batch in dataloader: UpperCAmelCase , UpperCAmelCase = batch.values() with torch.no_grad(): UpperCAmelCase = model(A ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase , UpperCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(A ) targs.append(A ) UpperCAmelCase , UpperCAmelCase = torch.cat(A ), torch.cat(A ) return logits, targs def lowerCamelCase__ ( A : Accelerator , A : Dict=82 , A : Dict=False , A : Dict=False , A : List[Any]=16 ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_basic_setup(A , A , A ) UpperCAmelCase , UpperCAmelCase = generate_predictions(A , A , A ) assert ( len(A ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A )}""" def lowerCamelCase__ ( A : bool = False , A : bool = False ): '''simple docstring''' UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase , UpperCAmelCase = get_mrpc_setup(A , A ) # First do baseline UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = setup['''no'''] model.to(A ) model.eval() for batch in dataloader: batch.to(A ) with torch.inference_mode(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A , references=batch['''labels'''] ) UpperCAmelCase = metric.compute() # Then do distributed UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase = batch['''labels'''] UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A , references=A ) UpperCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(A , A ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(A , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase = Accelerator() test_torch_metrics(A , 5_12 ) accelerator.state._reset_state() def lowerCamelCase__ ( A : Any ): '''simple docstring''' main() if __name__ == "__main__": main()
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' def lowerCamelCase__ ( A : list , A : list , A : int , A : int , A : int ): '''simple docstring''' if index == number_of_items: return 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = knapsack(A , A , A , A , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase = values[index] + knapsack( A , A , A , max_weight - weights[index] , index + 1 ) return max(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowercase : List[str] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _lowercase : Dict = {"""facebook/blenderbot-3B""": 128} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : Tuple = BlenderbotTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int="replace" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Tuple="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Tuple=False , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : int , )-> Dict: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space UpperCAmelCase = '''post_processor''' UpperCAmelCase = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) if tokenizer_component_instance: UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase = tuple(state['''cls'''] ) UpperCAmelCase = False if state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = add_prefix_space UpperCAmelCase = True if state.get('''trim_offsets''' , lowerCAmelCase ) != trim_offsets: UpperCAmelCase = trim_offsets UpperCAmelCase = True if changes_to_apply: UpperCAmelCase = getattr(lowerCAmelCase , state.pop('''type''' ) ) UpperCAmelCase = component_class(**lowerCAmelCase ) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def a__( self : int )-> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def a__( self : Union[str, Any] , lowerCAmelCase : Dict )-> str: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else value UpperCAmelCase = value def a__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Any )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__( self : Optional[int] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase ) UpperCAmelCase = ''' '''.join(lowerCAmelCase ) UpperCAmelCase = self.encode(lowerCAmelCase ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[Any] = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "cvt" def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : int=[7, 3, 3] , lowerCAmelCase : Optional[Any]=[4, 2, 2] , lowerCAmelCase : int=[2, 1, 1] , lowerCAmelCase : str=[64, 192, 384] , lowerCAmelCase : Union[str, Any]=[1, 3, 6] , lowerCAmelCase : Dict=[1, 2, 10] , lowerCAmelCase : List[str]=[4.0, 4.0, 4.0] , lowerCAmelCase : int=[0.0, 0.0, 0.0] , lowerCAmelCase : Optional[Any]=[0.0, 0.0, 0.0] , lowerCAmelCase : Any=[0.0, 0.0, 0.1] , lowerCAmelCase : int=[True, True, True] , lowerCAmelCase : Any=[False, False, True] , lowerCAmelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase : int=[3, 3, 3] , lowerCAmelCase : List[Any]=[1, 1, 1] , lowerCAmelCase : List[Any]=[2, 2, 2] , lowerCAmelCase : Any=[1, 1, 1] , lowerCAmelCase : List[str]=[1, 1, 1] , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Optional[int]=1E-12 , **lowerCAmelCase : str , )-> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = num_channels UpperCAmelCase = patch_sizes UpperCAmelCase = patch_stride UpperCAmelCase = patch_padding UpperCAmelCase = embed_dim UpperCAmelCase = num_heads UpperCAmelCase = depth UpperCAmelCase = mlp_ratio UpperCAmelCase = attention_drop_rate UpperCAmelCase = drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = qkv_bias UpperCAmelCase = cls_token UpperCAmelCase = qkv_projection_method UpperCAmelCase = kernel_qkv UpperCAmelCase = padding_kv UpperCAmelCase = stride_kv UpperCAmelCase = padding_q UpperCAmelCase = stride_q UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import os from pathlib import Path def lowerCamelCase__ ( ): '''simple docstring''' from torch.utils.cpp_extension import load UpperCAmelCase = Path(A ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' UpperCAmelCase = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' from __future__ import annotations _lowercase : Union[str, Any] = 10 def lowerCamelCase__ ( A : list[int] ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = max(A ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase = [[] for _ in range(A )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(A ) # put each buckets' contents into list_of_ints UpperCAmelCase = 0 for b in range(A ): for i in buckets[b]: UpperCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = {"""vocab_file""": """vocab.txt"""} _lowercase : Optional[int] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _lowercase : Optional[int] = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } _lowercase : Optional[int] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_INIT_CONFIGURATION __magic_name__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = ConvBertTokenizer def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : str="[UNK]" , lowerCAmelCase : Any="[SEP]" , lowerCAmelCase : List[str]="[PAD]" , lowerCAmelCase : Any="[CLS]" , lowerCAmelCase : Optional[int]="[MASK]" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=None , **lowerCAmelCase : List[str] , )-> Any: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict=None )-> str: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase__ ( A : str , A : str = "cpu" , A : Union[str, None] = None ): '''simple docstring''' UpperCAmelCase = torch.load(A , map_location=A ) for k, v in tqdm(state_dict.items() ): if not isinstance(A , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) UpperCAmelCase = v.half() if save_path is None: # overwrite src_path UpperCAmelCase = src_path torch.save(A , A ) if __name__ == "__main__": fire.Fire(convert)
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase__( lowerCAmelCase ): def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , '''width_multiplier''' ) ) class UpperCamelCase__: def __init__( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : Union[str, Any]=64 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[Any]="swish" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Any=32 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Any=True , lowerCAmelCase : List[str]=10 , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=0.25 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Tuple=0.0 , )-> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase = hidden_act UpperCAmelCase = conv_kernel_size UpperCAmelCase = output_stride UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = use_labels UpperCAmelCase = is_training UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = width_multiplier UpperCAmelCase = ffn_dropout UpperCAmelCase = attn_dropout def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def a__( self : int )-> Dict: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a__( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : int )-> Tuple: """simple docstring""" UpperCAmelCase = MobileViTVaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTVaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileViTVaForSemanticSegmentation(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __magic_name__ : Optional[Any] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ : Optional[Any] = False __magic_name__ : Dict = False __magic_name__ : int = False __magic_name__ : Any = False def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = MobileViTVaModelTester(self ) UpperCAmelCase = MobileViTVaConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : str )-> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def a__( self : Union[str, Any] )-> int: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__( self : str )-> List[Any]: """simple docstring""" pass def a__( self : List[Any] )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : int )-> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : List[str] )-> Tuple: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 5 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase = 2 for i in range(len(lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase ) @slow def a__( self : Tuple )-> List[Any]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = MobileViTVaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : int )-> Union[str, Any]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase = model.to(lowerCAmelCase ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase = model.to(lowerCAmelCase ) UpperCAmelCase = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.detach().cpu() UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase ) UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase ) UpperCAmelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase )
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Tuple = DebertaTokenizer __magic_name__ : str = True __magic_name__ : Any = DebertaTokenizerFast def a__( self : int )-> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''[UNK]'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def a__( self : List[str] , **lowerCAmelCase : Dict )-> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : Any )-> Dict: """simple docstring""" UpperCAmelCase = '''lower newer''' UpperCAmelCase = '''lower newer''' return input_text, output_text def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = '''lower newer''' UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = tokenizer('''Hello''' , '''World''' ) UpperCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , lowerCAmelCase ) @slow def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a__( self : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase = tokenizer(lowerCAmelCase , padding=lowerCAmelCase ) UpperCAmelCase = [tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , lowerCAmelCase ) for expected, decoded in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(lowerCAmelCase , lowerCAmelCase )
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Tuple = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "data2vec-vision" def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Dict=False , lowerCAmelCase : str=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=[3, 5, 7, 11] , lowerCAmelCase : Optional[Any]=[1, 2, 3, 6] , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=0.4 , lowerCAmelCase : Tuple=256 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Union[str, Any]=255 , **lowerCAmelCase : Any , )-> Any: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = version.parse("1.11" ) @property def a__( self : Dict )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__( self : List[str] )-> float: """simple docstring""" return 1E-4
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__: def __init__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : Tuple=7 , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : int=99 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[Any]=5 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=512 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Any=None , )-> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__( self : Optional[Any] )-> int: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase , ) def a__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Any )-> int: """simple docstring""" UpperCAmelCase = OpenLlamaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = OpenLlamaModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : int , )-> List[str]: """simple docstring""" UpperCAmelCase = OpenLlamaForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Tuple , )-> Optional[int]: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = OpenLlamaForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # first forward pass UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['''hidden_states'''][0] UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['''hidden_states'''][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : int = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ : int = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ : Tuple = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ : Dict = False __magic_name__ : str = False def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = OpenLlamaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = OpenLlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__( self : List[str] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''single_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = OpenLlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''multi_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase = OpenLlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__( self : Optional[int] )-> str: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__( self : List[str] , lowerCAmelCase : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = OpenLlamaModel(lowerCAmelCase ) original_model.to(lowerCAmelCase ) original_model.eval() UpperCAmelCase = original_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase = original_model(lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = {'''type''': scaling_type, '''factor''': 10.0} UpperCAmelCase = OpenLlamaModel(lowerCAmelCase ) scaled_model.to(lowerCAmelCase ) scaled_model.eval() UpperCAmelCase = scaled_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase = scaled_model(lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) )
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' import os _lowercase : List[str] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 while index < len(A ) - 1: UpperCAmelCase = SYMBOLS[numerals[index]] UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = '''''' UpperCAmelCase = num // 10_00 numerals += m_count * "M" num %= 10_00 UpperCAmelCase = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCamelCase__ ( A : str = "/p089_roman.txt" ): '''simple docstring''' UpperCAmelCase = 0 with open(os.path.dirname(A ) + roman_numerals_filename ) as filea: UpperCAmelCase = filea.readlines() for line in lines: UpperCAmelCase = line.strip() UpperCAmelCase = parse_roman_numerals(A ) UpperCAmelCase = generate_roman_numerals(A ) savings += len(A ) - len(A ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' def lowerCamelCase__ ( A : list[int] , A : int ): '''simple docstring''' UpperCAmelCase = len(A ) UpperCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : int , A : Optional[int] ): '''simple docstring''' if isinstance(A , A ): UpperCAmelCase = np.full((len(A ), sequence_length, 2) , A ) else: UpperCAmelCase = np.full((len(A ), sequence_length) , A ) for i, tensor in enumerate(A ): if padding_side == "right": if isinstance(A , A ): UpperCAmelCase = tensor[:sequence_length] else: UpperCAmelCase = tensor[:sequence_length] else: if isinstance(A , A ): UpperCAmelCase = tensor[:sequence_length] else: UpperCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = ord(A ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True UpperCAmelCase = unicodedata.category(A ) if cat.startswith('''P''' ): return True return False @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : PreTrainedTokenizerBase __magic_name__ : Union[bool, str, PaddingStrategy] = True __magic_name__ : Optional[int] = None __magic_name__ : Optional[int] = None __magic_name__ : int = -100 __magic_name__ : str = "pt" def a__( self : Any , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" import torch UpperCAmelCase = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase = self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch UpperCAmelCase = torch.tensor(batch['''entity_ids'''] ).shape[1] UpperCAmelCase = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase = [ list(lowerCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase )) for label in labels ] else: UpperCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(lowerCAmelCase )) + list(lowerCAmelCase ) for label in labels ] UpperCAmelCase = [feature['''ner_tags'''] for feature in features] UpperCAmelCase = padding_tensor(lowerCAmelCase , -1 , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = [feature['''original_entity_spans'''] for feature in features] UpperCAmelCase = padding_tensor(lowerCAmelCase , (-1, -1) , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {k: torch.tensor(lowerCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' class UpperCamelCase__: def __init__( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = name UpperCAmelCase = val def __str__( self : Tuple )-> Union[str, Any]: """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Optional[int] , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" return self.val < other.val class UpperCamelCase__: def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = {} UpperCAmelCase = self.build_heap(lowerCAmelCase ) def __getitem__( self : Union[str, Any] , lowerCAmelCase : int )-> Tuple: """simple docstring""" return self.get_value(lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" return (idx - 1) // 2 def a__( self : Tuple , lowerCAmelCase : Dict )-> List[Any]: """simple docstring""" return idx * 2 + 1 def a__( self : int , lowerCAmelCase : List[str] )-> Union[str, Any]: """simple docstring""" return idx * 2 + 2 def a__( self : int , lowerCAmelCase : Any )-> Tuple: """simple docstring""" return self.heap_dict[key] def a__( self : Optional[Any] , lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase = len(lowerCAmelCase ) - 1 UpperCAmelCase = self.get_parent_idx(lowerCAmelCase ) for idx, i in enumerate(lowerCAmelCase ): UpperCAmelCase = idx UpperCAmelCase = i.val for i in range(lowerCAmelCase , -1 , -1 ): self.sift_down(lowerCAmelCase , lowerCAmelCase ) return array def a__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict )-> int: """simple docstring""" while True: UpperCAmelCase = self.get_left_child_idx(lowerCAmelCase ) # noqa: E741 UpperCAmelCase = self.get_right_child_idx(lowerCAmelCase ) UpperCAmelCase = idx if l < len(lowerCAmelCase ) and array[l] < array[idx]: UpperCAmelCase = l if r < len(lowerCAmelCase ) and array[r] < array[smallest]: UpperCAmelCase = r if smallest != idx: UpperCAmelCase , UpperCAmelCase = array[smallest], array[idx] ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCAmelCase = smallest else: break def a__( self : Tuple , lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_parent_idx(lowerCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCAmelCase , UpperCAmelCase = self.heap[idx], self.heap[p] UpperCAmelCase , UpperCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCAmelCase = p UpperCAmelCase = self.get_parent_idx(lowerCAmelCase ) def a__( self : List[str] )-> Optional[int]: """simple docstring""" return self.heap[0] def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.heap[-1], self.heap[0] UpperCAmelCase , UpperCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def a__( self : Union[str, Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" self.heap.append(lowerCAmelCase ) UpperCAmelCase = len(self.heap ) - 1 UpperCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def a__( self : Optional[Any] )-> str: """simple docstring""" return len(self.heap ) == 0 def a__( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] )-> Dict: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCAmelCase = new_value UpperCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) _lowercase : str = Node("""R""", -1) _lowercase : Optional[int] = Node("""B""", 6) _lowercase : Dict = Node("""A""", 3) _lowercase : Union[str, Any] = Node("""X""", 1) _lowercase : Any = Node("""E""", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowercase : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("""Min Heap - before decrease key""") for i in my_min_heap.heap: print(i) print("""Min Heap - After decrease key of node [B -> -17]""") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = (UnCLIPScheduler,) def a__( self : Optional[int] , **lowerCAmelCase : int )-> int: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**lowerCAmelCase ) return config def a__( self : Dict )-> Optional[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : Dict )-> str: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase ) def a__( self : str )-> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def a__( self : List[str] )-> str: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : List[Any] )-> Dict: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase , prev_timestep=lowerCAmelCase ) def a__( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(variance_type='''fixed_small_log''' ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(variance_type='''learned_range''' ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase ) - -0.0010011 < 1E-5 def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = scheduler.timesteps UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase ): # 1. predict noise residual UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ).prev_sample UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(25 ) UpperCAmelCase = scheduler.timesteps UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase ): # 1. predict noise residual UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) if i + 1 == timesteps.shape[0]: UpperCAmelCase = None else: UpperCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase = scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , prev_timestep=lowerCAmelCase , generator=lowerCAmelCase ).prev_sample UpperCAmelCase = pred_prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def a__( self : Dict )-> Union[str, Any]: """simple docstring""" pass def a__( self : List[str] )-> Optional[int]: """simple docstring""" pass
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : str=3 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Optional[int]=[8, 16, 32, 64] , lowerCAmelCase : Tuple=[1, 1, 2, 1] , lowerCAmelCase : str=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]="relu" , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase : List[Any]=[2, 3, 4] , lowerCAmelCase : int=1 , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = num_groups def a__( self : str )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : List[Any] )-> int: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = BitModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = BitForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BitBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = BitBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __magic_name__ : Tuple = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __magic_name__ : Union[str, Any] = False __magic_name__ : Any = False __magic_name__ : Any = False __magic_name__ : int = False __magic_name__ : List[str] = False def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = BitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : Tuple )-> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def a__( self : int )-> Any: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def a__( self : List[str] )-> Dict: """simple docstring""" pass def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a__( self : List[str] )-> str: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str ): UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase = layer_type UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" pass def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def a__( self : Union[str, Any] )-> str: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BitModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : List[Any] )-> List[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__( self : Optional[Any] )-> str: """simple docstring""" UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[Any] = (BitBackbone,) if is_torch_available() else () __magic_name__ : int = BitConfig __magic_name__ : Union[str, Any] = False def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = BitModelTester(self )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' import os def lowerCamelCase__ ( A : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(A ) , A ) ) as input_file: UpperCAmelCase = [ [int(A ) for element in line.split(''',''' )] for line in input_file.readlines() ] UpperCAmelCase = len(A ) UpperCAmelCase = len(matrix[0] ) UpperCAmelCase = [[-1 for _ in range(A )] for _ in range(A )] for i in range(A ): UpperCAmelCase = matrix[i][0] for j in range(1 , A ): for i in range(A ): UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A ): UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> str: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=lowerCAmelCase , ) assert hasattr(self , '''env''' ) def a__( self : int , lowerCAmelCase : Any )-> Any: """simple docstring""" UpperCAmelCase = { '''enabled''': True, '''processes_per_host''': 8, } UpperCAmelCase = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } UpperCAmelCase = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} UpperCAmelCase = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase , py_version='''py36''' , ) def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] )-> Any: """simple docstring""" TrainingJobAnalytics(lowerCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def a__( self : str , lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , lowerCAmelCase )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu _lowercase : Union[str, Any] = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def lowerCamelCase__ ( A : Union[str, Any] , A : Tuple=None , A : Any=None , A : List[Any]=None ): '''simple docstring''' UpperCAmelCase = True while ask_again: UpperCAmelCase = input(A ) try: if default is not None and len(A ) == 0: return default return convert_value(A ) if convert_value is not None else result except Exception: if error_message is not None: print(A ) def lowerCamelCase__ ( A : Dict , A : Union[str, Any]=[] , A : int=None , A : List[Any]=0 ): '''simple docstring''' UpperCAmelCase = BulletMenu(A , A ) UpperCAmelCase = menu.run(default_choice=A ) return convert_value(A ) if convert_value is not None else result def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = int(A ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowerCamelCase__ ( A : Dict ): '''simple docstring''' UpperCAmelCase = int(A ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = int(A ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = int(A ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = int(A ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class UpperCamelCase__( argparse.RawDescriptionHelpFormatter ): def a__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] )-> int: """simple docstring""" UpperCAmelCase = super()._format_usage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' import numpy as np import qiskit def lowerCamelCase__ ( A : int = 8 , A : int | None = None ): '''simple docstring''' UpperCAmelCase = np.random.default_rng(seed=A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. UpperCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. UpperCAmelCase = rng.integers(2 , size=A ) # The set of states Alice will prepare. UpperCAmelCase = rng.integers(2 , size=A ) # Measurement basis for Bob's qubits. UpperCAmelCase = rng.integers(2 , size=A ) # Quantum Circuit to simulate BB84 UpperCAmelCase = qiskit.QuantumCircuit(A , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(A ): if alice_state[index] == 1: bbaa_circ.x(A ) if alice_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(A ): if bob_basis[index] == 1: bbaa_circ.h(A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. UpperCAmelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. UpperCAmelCase = qiskit.execute(A , A , shots=1 , seed_simulator=A ) # Returns the result of measurement. UpperCAmelCase = job.result().get_counts(A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. UpperCAmelCase = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( A , A , A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. UpperCAmelCase = gen_key[:key_len] if len(A ) >= key_len else gen_key.ljust(A , '''0''' ) return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' def lowerCamelCase__ ( ): '''simple docstring''' return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] _lowercase : Optional[Any] = generate_large_matrix() _lowercase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' assert all(row == sorted(A , reverse=A ) for row in grid ) assert all(list(A ) == sorted(A , reverse=A ) for col in zip(*A ) ) def lowerCamelCase__ ( A : list[int] ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCAmelCase = (left + right) // 2 UpperCAmelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCAmelCase = mid + 1 else: UpperCAmelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(A ) def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = len(grid[0] ) for i in range(len(A ) ): UpperCAmelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(A ) * len(grid[0] )) - total def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' UpperCAmelCase = 0 for row in grid: for i, number in enumerate(A ): if number < 0: total += len(A ) - i break return total def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('''Running benchmarks''' ) UpperCAmelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCAmelCase = timeit(f"""{func}(grid=grid)""" , setup=A , number=5_00 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' _lowercase : Tuple = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} _lowercase : Any = ["""a""", """b""", """c""", """d""", """e"""] def lowerCamelCase__ ( A : Any , A : List[Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = start # add current to visited visited.append(A ) UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase = topological_sort(A , A , A ) # if all neighbors visited add current to sort sort.append(A ) # if all vertices haven't been visited select a new one to visit if len(A ) != len(A ): for vertice in vertices: if vertice not in visited: UpperCAmelCase = topological_sort(A , A , A ) # return sort return sort if __name__ == "__main__": _lowercase : Union[str, Any] = topological_sort("""a""", [], []) print(sort)
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Tuple = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : str )-> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : str )-> List[Any]: """simple docstring""" UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) sd_pipe.set_scheduler('''sample_euler''' ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=lowerCAmelCase , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' import json import sys def lowerCamelCase__ ( A : Optional[Any] , A : Dict ): '''simple docstring''' with open(A , encoding='''utf-8''' ) as f: UpperCAmelCase = json.load(A ) UpperCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(A ): UpperCAmelCase = results[benchmark_name] UpperCAmelCase = benchmark_name.split('''/''' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase = '''| metric |''' UpperCAmelCase = '''|--------|''' UpperCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(A ): UpperCAmelCase = benchmark_res[metric_name] UpperCAmelCase = metric_vals['''new'''] UpperCAmelCase = metric_vals.get('''old''' , A ) UpperCAmelCase = metric_vals.get('''diff''' , A ) UpperCAmelCase = f""" {new_val:f}""" if isinstance(A , (int, float) ) else '''None''' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(A , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(A , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(A ) ) if __name__ == "__main__": _lowercase : Tuple = sys.argv[1] _lowercase : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : int=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : str=[1, 2, 1] , lowerCAmelCase : int=[2, 2, 4] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Dict=2.0 , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Tuple=False , lowerCAmelCase : int=True , lowerCAmelCase : str=0.02 , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Optional[Any]=8 , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = patch_norm UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = is_training UpperCAmelCase = scope UpperCAmelCase = use_labels UpperCAmelCase = type_sequence_label_size UpperCAmelCase = encoder_stride def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : Optional[int] )-> int: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = SwinvaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Any )-> Any: """simple docstring""" UpperCAmelCase = SwinvaForMaskedImageModeling(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = SwinvaForMaskedImageModeling(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = SwinvaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __magic_name__ : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) __magic_name__ : Optional[int] = False __magic_name__ : List[Any] = False __magic_name__ : List[str] = False __magic_name__ : List[str] = False def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase = SwinvaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37 ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def a__( self : Any )-> Any: """simple docstring""" pass def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = config.window_size**2 UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase = len(lowerCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Any )-> Dict: """simple docstring""" UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # Swinv2 has a different seq_length UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = reshaped_hidden_states[0].shape UpperCAmelCase = ( reshaped_hidden_states[0].view(lowerCAmelCase , lowerCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def a__( self : Any )-> List[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SwinvaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : List[Any] )-> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : Tuple = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[str, Any] = "marian" __magic_name__ : List[Any] = ["past_key_values"] __magic_name__ : List[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , lowerCAmelCase : Optional[int]=58101 , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=1024 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Dict=4096 , lowerCAmelCase : str=16 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : List[Any]=16 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : int=True , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=1024 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : Optional[Any]=58100 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Any=58100 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : Optional[Any] , )-> Optional[int]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class UpperCamelCase__( lowerCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def a__( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowerCAmelCase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def a__( self : Dict )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowerCAmelCase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowerCAmelCase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a__( self : Any , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def a__( self : List[str] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def a__( self : str , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowerCAmelCase ) UpperCAmelCase = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def a__( self : Optional[int] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def a__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase = super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @property def a__( self : int )-> float: """simple docstring""" return 1E-4
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _lowercase : List[Any] = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _lowercase : Any = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ _lowercase : Union[str, Any] = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : List[Any] )-> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = 0.0 for i, j in zip(lowerCAmelCase , lowerCAmelCase ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase , lowerCAmelCase ) else 0.0 UpperCAmelCase = n_correct / len(lowerCAmelCase ) return { "accuracy": accuracy, }
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class UpperCamelCase__: __magic_name__ : Any = LEDConfig __magic_name__ : int = {} __magic_name__ : List[Any] = "gelu" def __init__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : int=13 , lowerCAmelCase : Any=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Optional[int]=32 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=20 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : str=0 , lowerCAmelCase : int=4 , )-> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id UpperCAmelCase = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase = prepare_led_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tf.concat( [tf.zeros_like(lowerCAmelCase )[:, :-1], tf.ones_like(lowerCAmelCase )[:, -1:]] , axis=-1 , ) UpperCAmelCase = global_attention_mask return config, inputs_dict def a__( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = TFLEDModel(config=lowerCAmelCase ).get_decoder() UpperCAmelCase = inputs_dict['''input_ids'''] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) def lowerCamelCase__ ( A : int , A : Tuple , A : Any , A : Optional[int]=None , A : List[str]=None , A : int=None , A : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[str] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __magic_name__ : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () __magic_name__ : Optional[Any] = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__ : Any = True __magic_name__ : Union[str, Any] = False __magic_name__ : List[str] = False __magic_name__ : str = False def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = TFLEDModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase = 2 UpperCAmelCase = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase = True UpperCAmelCase = self.model_tester.seq_length UpperCAmelCase = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase : Tuple ): UpperCAmelCase = outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase : List[str] ): UpperCAmelCase = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" pass def a__( self : Optional[int] )-> List[Any]: """simple docstring""" pass def lowerCamelCase__ ( A : str ): '''simple docstring''' return tf.constant(A , dtype=tf.intaa ) _lowercase : Dict = 1E-4 @slow @require_tf class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(**lowerCAmelCase )[0] UpperCAmelCase = (1, 1024, 768) self.assertEqual(output.shape , lowerCAmelCase ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3 ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(**lowerCAmelCase )[0] UpperCAmelCase = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase ) # change to expected output here UpperCAmelCase = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3 , rtol=1E-3 )
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = ProphetNetTokenizer __magic_name__ : List[str] = False def a__( self : Dict )-> Union[str, Any]: """simple docstring""" super().setUp() UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def a__( self : Tuple , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = '''unwanted, running''' return input_text, output_text def a__( self : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer_class(self.vocab_file ) UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(lowerCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Any )-> int: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): UpperCAmelCase = i UpperCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] UpperCAmelCase = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__( self : int )-> Tuple: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a__( self : str )-> int: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a__( self : Tuple )-> Any: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def a__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _lowercase : List[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowercase : List[str] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowercase : Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _lowercase : int = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _lowercase : str = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _lowercase : Dict = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _lowercase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _lowercase : Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _lowercase : Dict = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _lowercase : List[str] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _lowercase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowercase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowercase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowercase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowercase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowercase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowercase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowercase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowercase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowercase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowercase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowercase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowercase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowercase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_MAPPING _lowercase : Optional[int] = auto_class_update(FlaxAutoModel) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowercase : Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowercase : Optional[int] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowercase : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowercase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Dict = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowercase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowercase : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowercase : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Any = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : List[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowercase : Tuple = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def lowerCamelCase__ ( A : Dict , A : Optional[Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase = value else: UpperCAmelCase = value return new_state_dict def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' UpperCAmelCase = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:2_56, :] UpperCAmelCase = in_proj_bias[:2_56] UpperCAmelCase = in_proj_weight[2_56:5_12, :] UpperCAmelCase = in_proj_bias[2_56:5_12] UpperCAmelCase = in_proj_weight[-2_56:, :] UpperCAmelCase = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:2_56, :] UpperCAmelCase = in_proj_bias[:2_56] UpperCAmelCase = in_proj_weight[2_56:5_12, :] UpperCAmelCase = in_proj_bias[2_56:5_12] UpperCAmelCase = in_proj_weight[-2_56:, :] UpperCAmelCase = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase = in_proj_weight_cross_attn[:2_56, :] UpperCAmelCase = in_proj_bias_cross_attn[:2_56] UpperCAmelCase = in_proj_weight_cross_attn[2_56:5_12, :] UpperCAmelCase = in_proj_bias_cross_attn[2_56:5_12] UpperCAmelCase = in_proj_weight_cross_attn[-2_56:, :] UpperCAmelCase = in_proj_bias_cross_attn[-2_56:] def lowerCamelCase__ ( A : Optional[int] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = image.size UpperCAmelCase = max(A , A ) UpperCAmelCase = 8_00 if '''detection''' in checkpoint_url else 10_00 UpperCAmelCase = target_max_size / current_max_size UpperCAmelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase__ ( A : Dict ): '''simple docstring''' UpperCAmelCase = F.to_tensor(A ) UpperCAmelCase = F.normalize(A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase__ ( A : str , A : Optional[Any] , A : List[Any] ): '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict UpperCAmelCase = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(A , A , A ) UpperCAmelCase = rename_backbone_keys(A ) # query, key and value matrices need special treatment read_in_q_k_v(A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val # create HuggingFace model and load state dict UpperCAmelCase = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase = 15 UpperCAmelCase = 2 UpperCAmelCase = {0: '''table''', 1: '''table rotated'''} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} else: UpperCAmelCase = 1_25 UpperCAmelCase = 6 UpperCAmelCase = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) UpperCAmelCase = TableTransformerForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion UpperCAmelCase = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' UpperCAmelCase = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=A ) UpperCAmelCase = Image.open(A ).convert('''RGB''' ) UpperCAmelCase = normalize(resize(A , A ) ).unsqueeze(0 ) UpperCAmelCase = model(A ) if "detection" in checkpoint_url: UpperCAmelCase = (1, 15, 3) UpperCAmelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCAmelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCAmelCase = (1, 1_25, 7) UpperCAmelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCAmelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) UpperCAmelCase = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(A ) image_processor.push_to_hub(A ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase : Optional[Any] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' from __future__ import annotations _lowercase : List[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCamelCase__ ( A : list[list[int]] , A : list[int] , A : list[int] , A : int , A : list[list[int]] , ): '''simple docstring''' UpperCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A ) ) ] # the reference grid UpperCAmelCase = 1 UpperCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A ) ) ] # the action grid UpperCAmelCase = init[0] UpperCAmelCase = init[1] UpperCAmelCase = 0 UpperCAmelCase = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase = [[f, g, x, y]] UpperCAmelCase = False # flag that is set when search is complete UpperCAmelCase = False # flag set if we can't find expand while not found and not resign: if len(A ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase = cell.pop() UpperCAmelCase = next_cell[2] UpperCAmelCase = next_cell[3] UpperCAmelCase = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase = True else: for i in range(len(A ) ): # to try out different valid actions UpperCAmelCase = x + DIRECTIONS[i][0] UpperCAmelCase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(A ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase = g + cost UpperCAmelCase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase = 1 UpperCAmelCase = i UpperCAmelCase = [] UpperCAmelCase = goal[0] UpperCAmelCase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase = xa UpperCAmelCase = ya invpath.append([x, y] ) UpperCAmelCase = [] for i in range(len(A ) ): path.append(invpath[len(A ) - 1 - i] ) return path, action if __name__ == "__main__": _lowercase : Tuple = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowercase : Optional[Any] = [0, 0] # all coordinates are given in format [y,x] _lowercase : Any = [len(grid) - 1, len(grid[0]) - 1] _lowercase : str = 1 # the cost map which pushes the path closer to the goal _lowercase : Optional[int] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowercase : Optional[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowercase : str = 99 _lowercase , _lowercase : int = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCamelCase__ ( A : List[str] , A : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase = None if token is not None: UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" UpperCAmelCase = requests.get(A , headers=A ).json() UpperCAmelCase = {} try: job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) UpperCAmelCase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(A ): UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" , headers=A ).json() job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( A : Tuple , A : Optional[int]=None ): '''simple docstring''' UpperCAmelCase = None if token is not None: UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} UpperCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" UpperCAmelCase = requests.get(A , headers=A ).json() UpperCAmelCase = {} try: artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) UpperCAmelCase = math.ceil((result['''total_count'''] - 1_00) / 1_00 ) for i in range(A ): UpperCAmelCase = requests.get(url + f"""&page={i + 2}""" , headers=A ).json() artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def lowerCamelCase__ ( A : Optional[Any] , A : Any , A : str , A : Dict ): '''simple docstring''' UpperCAmelCase = None if token is not None: UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""} UpperCAmelCase = requests.get(A , headers=A , allow_redirects=A ) UpperCAmelCase = result.headers['''Location'''] UpperCAmelCase = requests.get(A , allow_redirects=A ) UpperCAmelCase = os.path.join(A , f"""{artifact_name}.zip""" ) with open(A , '''wb''' ) as fp: fp.write(response.content ) def lowerCamelCase__ ( A : Dict , A : List[str]=None ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = None with zipfile.ZipFile(A ) as z: for filename in z.namelist(): if not os.path.isdir(A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A ) as f: for line in f: UpperCAmelCase = line.decode('''UTF-8''' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCAmelCase = line[: line.index(''': ''' )] UpperCAmelCase = line[line.index(''': ''' ) + len(''': ''' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ): # `test` is the test method that failed UpperCAmelCase = line[len('''FAILED ''' ) :] failed_tests.append(A ) elif filename == "job_name.txt": UpperCAmelCase = line if len(A ) != len(A ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(A )} for `errors` """ f"""and {len(A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" ''' problem.''' ) UpperCAmelCase = None if job_name and job_links: UpperCAmelCase = job_links.get(A , A ) # A list with elements of the form (line of error, error, failed test) UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(A , A )] return result def lowerCamelCase__ ( A : Tuple , A : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = [os.path.join(A , A ) for p in os.listdir(A ) if p.endswith('''.zip''' )] for p in paths: errors.extend(get_errors_from_single_artifact(A , job_links=A ) ) return errors def lowerCamelCase__ ( A : List[str] , A : Tuple=None ): '''simple docstring''' UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) UpperCAmelCase = counter.most_common() UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCAmelCase = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCAmelCase = dict(sorted(r.items() , key=lambda A : item[1]["count"] , reverse=A ) ) return r def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' UpperCAmelCase = test.split('''::''' )[0] if test.startswith('''tests/models/''' ): UpperCAmelCase = test.split('''/''' )[2] else: UpperCAmelCase = None return test def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCAmelCase = [x for x in logs if x[2] is not None] UpperCAmelCase = {x[2] for x in logs} UpperCAmelCase = {} for test in tests: UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCAmelCase = counter.most_common() UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: UpperCAmelCase = {'''count''': n_errors, '''errors''': error_counts} UpperCAmelCase = dict(sorted(r.items() , key=lambda A : item[1]["count"] , reverse=A ) ) return r def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = '''| no. | error | status |''' UpperCAmelCase = '''|-:|:-|:-|''' UpperCAmelCase = [header, sep] for error in reduced_by_error: UpperCAmelCase = reduced_by_error[error]['''count'''] UpperCAmelCase = f"""| {count} | {error[:1_00]} | |""" lines.append(A ) return "\n".join(A ) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = '''| model | no. of errors | major error | count |''' UpperCAmelCase = '''|-:|-:|-:|-:|''' UpperCAmelCase = [header, sep] for model in reduced_by_model: UpperCAmelCase = reduced_by_model[model]['''count'''] UpperCAmelCase , UpperCAmelCase = list(reduced_by_model[model]['''errors'''].items() )[0] UpperCAmelCase = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(A ) return "\n".join(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _lowercase : Optional[int] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowercase : Optional[Any] = get_job_links(args.workflow_run_id, token=args.token) _lowercase : Any = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowercase : List[str] = k.find(""" / """) _lowercase : str = k[index + len(""" / """) :] _lowercase : Optional[Any] = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowercase : List[Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowercase : Dict = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowercase : List[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowercase : Optional[int] = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowercase : Optional[int] = reduce_by_error(errors) _lowercase : Optional[Any] = reduce_by_model(errors) _lowercase : Tuple = make_github_table(reduced_by_error) _lowercase : Union[str, Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowercase : List[Any] = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = ["input_features", "is_longer"] def __init__( self : Union[str, Any] , lowerCAmelCase : int=64 , lowerCAmelCase : int=48000 , lowerCAmelCase : int=480 , lowerCAmelCase : List[Any]=10 , lowerCAmelCase : Dict=1024 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Dict=False , lowerCAmelCase : float = 0 , lowerCAmelCase : float = 14000 , lowerCAmelCase : int = None , lowerCAmelCase : str = "fusion" , lowerCAmelCase : str = "repeatpad" , **lowerCAmelCase : str , )-> int: """simple docstring""" super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = top_db UpperCAmelCase = truncation UpperCAmelCase = padding UpperCAmelCase = fft_window_size UpperCAmelCase = (fft_window_size >> 1) + 1 UpperCAmelCase = hop_length UpperCAmelCase = max_length_s UpperCAmelCase = max_length_s * sampling_rate UpperCAmelCase = sampling_rate UpperCAmelCase = frequency_min UpperCAmelCase = frequency_max UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase , min_frequency=lowerCAmelCase , max_frequency=lowerCAmelCase , sampling_rate=lowerCAmelCase , norm=lowerCAmelCase , mel_scale='''htk''' , ) UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase , min_frequency=lowerCAmelCase , max_frequency=lowerCAmelCase , sampling_rate=lowerCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ) def a__( self : Optional[int] )-> Dict[str, Any]: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a__( self : List[str] , lowerCAmelCase : np.array , lowerCAmelCase : Optional[np.array] = None )-> np.ndarray: """simple docstring""" UpperCAmelCase = spectrogram( lowerCAmelCase , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase , log_mel='''dB''' , ) return log_mel_spectrogram.T def a__( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase = [0] # randomly choose index for each part UpperCAmelCase = np.random.choice(ranges[0] ) UpperCAmelCase = np.random.choice(ranges[1] ) UpperCAmelCase = np.random.choice(ranges[2] ) UpperCAmelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCAmelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCAmelCase = torch.tensor(mel[None, None, :] ) UpperCAmelCase = torch.nn.functional.interpolate( lowerCAmelCase , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowerCAmelCase ) UpperCAmelCase = mel_shrink[0][0].numpy() UpperCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a__( self : List[Any] , lowerCAmelCase : np.array , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any )-> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCAmelCase = len(lowerCAmelCase ) - max_length UpperCAmelCase = np.random.randint(0 , overflow + 1 ) UpperCAmelCase = waveform[idx : idx + max_length] UpperCAmelCase = self._np_extract_fbank_features(lowerCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCAmelCase = self._np_extract_fbank_features(lowerCAmelCase , self.mel_filters ) UpperCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCAmelCase = False else: UpperCAmelCase = self._random_mel_fusion(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: UpperCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCAmelCase = int(max_length / len(lowerCAmelCase ) ) UpperCAmelCase = np.stack(np.tile(lowerCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCAmelCase = int(max_length / len(lowerCAmelCase ) ) UpperCAmelCase = np.stack(np.tile(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = np.pad(lowerCAmelCase , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": UpperCAmelCase = self._np_extract_fbank_features(lowerCAmelCase , self.mel_filters ) UpperCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCAmelCase = self._np_extract_fbank_features(lowerCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : str = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : str , )-> BatchFeature: """simple docstring""" UpperCAmelCase = truncation if truncation is not None else self.truncation UpperCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [np.asarray(lowerCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. UpperCAmelCase = [ self._get_input_mel(lowerCAmelCase , max_length if max_length else self.nb_max_samples , lowerCAmelCase , lowerCAmelCase ) for waveform in raw_speech ] UpperCAmelCase = [] UpperCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase ) is_longer.append(lowerCAmelCase ) if truncation == "fusion" and sum(lowerCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCAmelCase = np.random.randint(0 , len(lowerCAmelCase ) ) UpperCAmelCase = True if isinstance(input_mel[0] , lowerCAmelCase ): UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCAmelCase = [[longer] for longer in is_longer] UpperCAmelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCAmelCase = BatchFeature(lowerCAmelCase ) if return_tensors is not None: UpperCAmelCase = input_features.convert_to_tensors(lowerCAmelCase ) return input_features
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _lowercase : Optional[int] = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : str = None , lowerCAmelCase : list = None )-> Optional[int]: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) UpperCAmelCase = os.path.abspath('''examples''' ) for item in os.listdir(lowerCAmelCase ): if item not in EXCLUDE_EXAMPLES: UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase , feature_script=lowerCAmelCase , tested_section='''main()''' if parser_only else '''training_function()''' , ): UpperCAmelCase = compare_against_test( os.path.join(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = '''\n'''.join(lowerCAmelCase ) if special_strings is not None: for string in special_strings: UpperCAmelCase = diff.replace(lowerCAmelCase , '''''' ) self.assertEqual(lowerCAmelCase , '''''' ) def a__( self : Tuple )-> List[Any]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase ) self.one_complete_example('''complete_nlp_example.py''' , lowerCAmelCase ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) UpperCAmelCase = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.one_complete_example('''complete_cv_example.py''' , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = False @classmethod def a__( cls : int )-> int: """simple docstring""" super().setUpClass() UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) UpperCAmelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def a__( cls : Optional[Any] )-> List[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() UpperCAmelCase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def a__( self : Any )-> Dict: """simple docstring""" UpperCAmelCase = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} """.split() UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) self.assertNotIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} """.split() UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) if torch.cuda.is_available(): UpperCAmelCase = torch.cuda.device_count() else: UpperCAmelCase = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) else: self.assertIn('''epoch 0:''' , lowerCAmelCase ) self.assertIn('''epoch 1:''' , lowerCAmelCase ) @slow def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): UpperCAmelCase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase ) UpperCAmelCase = re.findall('''({.+})''' , lowerCAmelCase ) UpperCAmelCase = [r for r in results if '''accuracy''' in r][-1] UpperCAmelCase = ast.literal_eval(lowerCAmelCase ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def a__( self : Tuple )-> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: UpperCAmelCase = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , '''tracking''' ) ) ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = '''ZinengTang/tvlt-base''' UpperCAmelCase = tempfile.mkdtemp() def a__( self : List[str] , **lowerCAmelCase : Dict )-> List[str]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCAmelCase ) def a__( self : Optional[Any] , **lowerCAmelCase : Union[str, Any] )-> Optional[int]: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase ) def a__( self : Dict )-> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase ) self.assertIsInstance(processor.image_processor , lowerCAmelCase ) def a__( self : List[str] )-> int: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase ) UpperCAmelCase = np.ones([12000] ) UpperCAmelCase = feature_extractor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(audio=lowerCAmelCase , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : Tuple )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase ) UpperCAmelCase = np.ones([3, 224, 224] ) UpperCAmelCase = image_processor(lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = processor(images=lowerCAmelCase , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase ) UpperCAmelCase = np.ones([12000] ) UpperCAmelCase = np.ones([3, 224, 224] ) UpperCAmelCase = processor(audio=lowerCAmelCase , images=lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase ): processor() def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = TvltProcessor(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _lowercase : List[str] = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCamelCase__ ( A : Dict , A : str ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' UpperCAmelCase = _TestCommandArgs(dataset=A , all_configs=A , save_infos=A ) UpperCAmelCase = TestCommand(*A ) test_command.run() UpperCAmelCase = os.path.join(A , '''README.md''' ) assert os.path.exists(A ) UpperCAmelCase = DatasetInfosDict.from_directory(A ) UpperCAmelCase = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase , UpperCAmelCase = getattr(dataset_infos['''default'''] , A ), getattr(expected_dataset_infos['''default'''] , A ) if key == "num_bytes": assert is_apercent_close(A , A ) elif key == "splits": assert list(A ) == list(A ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowercase : Any = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=lowerCAmelCase , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : str , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : str , *lowerCAmelCase : Optional[int] , )-> Optional[int]: """simple docstring""" UpperCAmelCase = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"""Loading model {model_type}""" ) UpperCAmelCase = model_type UpperCAmelCase = tf_checkpoint UpperCAmelCase = pytorch_dump_output UpperCAmelCase = config UpperCAmelCase = finetuning_task_name def a__( self : Dict )-> Union[str, Any]: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' else: UpperCAmelCase = self._tf_checkpoint UpperCAmelCase = '''''' convert_transfo_xl_checkpoint_to_pytorch( lowerCAmelCase , self._config , self._pytorch_dump_output , lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : Optional[int]=32 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Union[str, Any]=[1, 2, 1] , lowerCAmelCase : List[str]=[2, 2, 4] , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : str=2.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=None , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : str=["stage1", "stage2", "stage3"] , lowerCAmelCase : str=[1, 2, 3] , )-> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = patch_norm UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = is_training UpperCAmelCase = scope UpperCAmelCase = use_labels UpperCAmelCase = type_sequence_label_size UpperCAmelCase = encoder_stride UpperCAmelCase = out_features UpperCAmelCase = out_indices def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : str )-> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = MaskFormerSwinModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCAmelCase ): UpperCAmelCase = ['''stem'''] UpperCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __magic_name__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __magic_name__ : Any = False __magic_name__ : Optional[int] = False __magic_name__ : Dict = False __magic_name__ : str = False __magic_name__ : Tuple = False def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = MaskFormerSwinModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" pass def a__( self : Dict )-> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Optional[Any] )-> List[str]: """simple docstring""" return def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a__( self : Dict )-> List[Any]: """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a__( self : Any )-> Optional[Any]: """simple docstring""" pass def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a__( self : Optional[int] )-> Dict: """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" pass def a__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # Swin has a different seq_length UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a__( self : List[str] )-> List[Any]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a__( self : List[str] )-> Optional[int]: """simple docstring""" pass def a__( self : int )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase : Tuple ): UpperCAmelCase = 0 return t def check_equivalence(lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]={} ): with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase ).to_tuple() def recursive_check(lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] ): if isinstance(lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase , lowerCAmelCase ): recursive_check(lowerCAmelCase , lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCAmelCase , lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase ) , set_nan_tensor_to_zero(lowerCAmelCase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(lowerCAmelCase ).any()} and `inf`: {torch.isinf(lowerCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(lowerCAmelCase ).any()} and `inf`: {torch.isinf(lowerCAmelCase )}.""" ) , ) recursive_check(lowerCAmelCase , lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'''output_hidden_states''': True} ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'''output_hidden_states''': True} ) @require_torch class UpperCamelCase__( unittest.TestCase , lowerCAmelCase ): __magic_name__ : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () __magic_name__ : str = MaskFormerSwinConfig def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = MaskFormerSwinModelTester(self ) def a__( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase = backbone_class(lowerCAmelCase ) backbone.to(lowerCAmelCase ) backbone.eval() UpperCAmelCase = backbone(**lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase = backbone(**lowerCAmelCase , output_hidden_states=lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase = backbone(**lowerCAmelCase , output_attentions=lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowercase : Tuple = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = ["audio_values", "audio_mask"] def __init__( self : Tuple , lowerCAmelCase : str=2048 , lowerCAmelCase : str=1 , lowerCAmelCase : Any=[16, 16] , lowerCAmelCase : List[str]=128 , lowerCAmelCase : Tuple=44100 , lowerCAmelCase : Dict=86 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : int=0.0 , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = spectrogram_length UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = feature_size // self.patch_size[1] UpperCAmelCase = n_fft UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate UpperCAmelCase = sampling_rate UpperCAmelCase = padding_value UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=lowerCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T def a__( self : Optional[int] , lowerCAmelCase : np.array )-> np.ndarray: """simple docstring""" UpperCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) UpperCAmelCase = log_spec[:, :-1] UpperCAmelCase = log_spec - 20.0 UpperCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Optional[int] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): UpperCAmelCase = audio_features[i] UpperCAmelCase = feature # return as BatchFeature if return_attention_mask: UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: UpperCAmelCase = {'''audio_values''': padded_audio_features} UpperCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase__( lowerCAmelCase ): def a__( self : List[Any] , lowerCAmelCase : float )-> float: """simple docstring""" return 0.0 def lowerCamelCase__ ( A : np.ndarray , A : int ): '''simple docstring''' UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase__ ( A : FilterType , A : int ): '''simple docstring''' UpperCAmelCase = 5_12 UpperCAmelCase = [1] + [0] * (size - 1) UpperCAmelCase = [filter_type.process(A ) for item in inputs] UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase = np.abs(np.fft.fft(A ) ) UpperCAmelCase = 20 * np.logaa(A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds UpperCAmelCase = get_bounds(A , A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(A ) plt.show() def lowerCamelCase__ ( A : FilterType , A : int ): '''simple docstring''' UpperCAmelCase = 5_12 UpperCAmelCase = [1] + [0] * (size - 1) UpperCAmelCase = [filter_type.process(A ) for item in inputs] UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase = np.angle(np.fft.fft(A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(A , -2 * pi ) ) plt.show()
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' import math from collections.abc import Callable def lowerCamelCase__ ( A : Callable[[float], float] , A : float , A : float ): '''simple docstring''' UpperCAmelCase = xa UpperCAmelCase = xa while True: if x_n == x_na or function(A ) == function(A ): raise ZeroDivisionError('''float division by zero, could not find root''' ) UpperCAmelCase = x_na - ( function(A ) / ((function(A ) - function(A )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCAmelCase = x_na UpperCAmelCase = x_na def lowerCamelCase__ ( A : float ): '''simple docstring''' return math.pow(A , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( A : Optional[Any] , A : int ): '''simple docstring''' assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase__ ( A : Any , A : Any , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase = ParquetDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_parquet_dataset(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase__ ( A : Optional[Any] , A : Optional[Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase = features.copy() if features else default_expected_features UpperCAmelCase = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase = ParquetDatasetReader(A , features=A , cache_dir=A ).read() _check_parquet_dataset(A , A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase__ ( A : str , A : str , A : int ): '''simple docstring''' UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase = ParquetDatasetReader(A , cache_dir=A , split=A ).read() _check_parquet_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCamelCase__ ( A : str , A : Optional[Any] , A : int ): '''simple docstring''' if issubclass(A , A ): UpperCAmelCase = parquet_path elif issubclass(A , A ): UpperCAmelCase = [parquet_path] UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase = ParquetDatasetReader(A , cache_dir=A ).read() _check_parquet_dataset(A , A ) def lowerCamelCase__ ( A : List[Any] , A : str , A : Dict=("train",) ): '''simple docstring''' assert isinstance(A , A ) for split in splits: UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase__ ( A : str , A : Optional[int] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=A , keep_in_memory=A ).read() _check_parquet_datasetdict(A , A ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase__ ( A : str , A : Any , A : int ): '''simple docstring''' UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase = features.copy() if features else default_expected_features UpperCAmelCase = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=A , cache_dir=A ).read() _check_parquet_datasetdict(A , A ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCamelCase__ ( A : Optional[Any] , A : Tuple , A : List[Any] ): '''simple docstring''' if split: UpperCAmelCase = {split: parquet_path} else: UpperCAmelCase = '''train''' UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} UpperCAmelCase = tmp_path / '''cache''' UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} UpperCAmelCase = ParquetDatasetReader(A , cache_dir=A ).read() _check_parquet_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( A : Any , A : Dict ): '''simple docstring''' UpperCAmelCase = ParquetDatasetWriter(A , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) UpperCAmelCase = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( A : Dict , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) UpperCAmelCase = {'''image''': [image_path]} UpperCAmelCase = Features({'''image''': Image()} ) UpperCAmelCase = Dataset.from_dict(A , features=A ) UpperCAmelCase = ParquetDatasetWriter(A , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=A ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' assert get_writer_batch_size(A ) == expected
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' def lowerCamelCase__ ( A : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(A , (list, tuple) ) or not all( isinstance(A , A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) UpperCAmelCase = UpperCAmelCase = UpperCAmelCase = numbers[0] for i in range(1 , len(A ) ): # update the maximum and minimum subarray products UpperCAmelCase = numbers[i] if number < 0: UpperCAmelCase , UpperCAmelCase = min_till_now, max_till_now UpperCAmelCase = max(A , max_till_now * number ) UpperCAmelCase = min(A , min_till_now * number ) # update the maximum product found till now UpperCAmelCase = max(A , A ) return max_prod
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _lowercase : Dict = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = UNetaDModel __magic_name__ : Union[str, Any] = "sample" @property def a__( self : Dict )-> Any: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] ).to(lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" return (3, 32, 32) @property def a__( self : int )-> str: """simple docstring""" return (3, 32, 32) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = UNetaDModel __magic_name__ : str = "sample" @property def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 4 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] ).to(lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : List[Any] )-> List[Any]: """simple docstring""" return (4, 32, 32) @property def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" return (4, 32, 32) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a__( self : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCAmelCase ) UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) model.to(lowerCAmelCase ) UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) model_accelerate.to(lowerCAmelCase ) model_accelerate.eval() UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase = noise.to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase ) UpperCAmelCase = model_accelerate(lowerCAmelCase , lowerCAmelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase , low_cpu_mem_usage=lowerCAmelCase ) model_normal_load.to(lowerCAmelCase ) model_normal_load.eval() UpperCAmelCase = model_normal_load(lowerCAmelCase , lowerCAmelCase )['''sample'''] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(lowerCAmelCase ) UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase = noise.to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) ) class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : int = UNetaDModel __magic_name__ : List[Any] = "sample" @property def a__( self : Any , lowerCAmelCase : Union[str, Any]=(32, 32) )-> Optional[Any]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" return (3, 32, 32) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCAmelCase ) UpperCAmelCase = self.dummy_input UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(lowerCAmelCase ) UpperCAmelCase = noise UpperCAmelCase = model(**lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(lowerCAmelCase ) UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (256, 256) UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(lowerCAmelCase ) UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" pass
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' import operator def lowerCamelCase__ ( A : list , A : bool = False , A : list | None = None ): '''simple docstring''' UpperCAmelCase = operator.lt if reverse else operator.gt UpperCAmelCase = solution or [] if not arr: return solution UpperCAmelCase = [arr.pop(0 )] for i, item in enumerate(A ): if _operator(A , sublist[-1] ): sublist.append(A ) arr.pop(A ) # merging sublist into solution list if not solution: solution.extend(A ) else: while sublist: UpperCAmelCase = sublist.pop(0 ) for i, xx in enumerate(A ): if not _operator(A , A ): solution.insert(A , A ) break else: solution.append(A ) strand_sort(A , A , A ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
50
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): @property def a__( self : Union[str, Any] )-> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = ScoreSdeVeScheduler() UpperCAmelCase = ScoreSdeVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowerCAmelCase ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowerCAmelCase , return_dict=lowerCAmelCase )[ 0 ] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = '''google/ncsnpp-church-256''' UpperCAmelCase = UNetaDModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase ) UpperCAmelCase = ScoreSdeVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowerCAmelCase ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class UpperCamelCase__( lowerCAmelCase ): def a__( self : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 8 # DPR tok UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) UpperCAmelCase = os.path.join(lowerCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) UpperCAmelCase = os.path.join(lowerCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(lowerCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase ) ) def a__( self : List[Any] )-> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def a__( self : int )-> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def a__( self : str )-> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = self.get_dummy_dataset() UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase = dataset UpperCAmelCase = RagRetriever( lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def a__( self : Optional[int] , lowerCAmelCase : bool )-> int: """simple docstring""" UpperCAmelCase = self.get_dummy_dataset() UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: UpperCAmelCase = os.path.join(self.tmpdirname , '''dataset''' ) UpperCAmelCase = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset UpperCAmelCase = RagRetriever( lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: UpperCAmelCase = RagRetriever( lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase ) , ) return retriever def a__( self : Dict )-> str: """simple docstring""" UpperCAmelCase = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) UpperCAmelCase = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) UpperCAmelCase = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowerCAmelCase , open(lowerCAmelCase , '''wb''' ) ) UpperCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) UpperCAmelCase = RagRetriever( lowerCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: UpperCAmelCase = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase ) UpperCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) UpperCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) UpperCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def a__( self : Any )-> Tuple: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_legacy_index_retriever() UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=lowerCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowerCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase ) UpperCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever.retrieve(lowerCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def a__( self : Tuple )-> List[Any]: """simple docstring""" import torch UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_canonical_hf_index_retriever() UpperCAmelCase = [[5, 7], [10, 11]] UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever(lowerCAmelCase , lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , np.ndarray ) UpperCAmelCase = retriever( lowerCAmelCase , lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase , torch.Tensor ) self.assertIsInstance(lowerCAmelCase , torch.Tensor ) self.assertIsInstance(lowerCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def a__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.get_dpr_ctx_encoder_tokenizer() UpperCAmelCase = 1 UpperCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase ) UpperCAmelCase = [[5, 7], [10, 11]] UpperCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) UpperCAmelCase = retriever(lowerCAmelCase , lowerCAmelCase , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase ) self.assertEqual( len(lowerCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowerCAmelCase ) # check for doc token related keys in dictionary.
50
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
1