code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase : Tuple = pd.read_csv("""sample_data.csv""", header=None) _lowercase : str = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase : str = df.iloc[:, 1:2] _lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) _lowercase : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) _lowercase : List[str] = 10 _lowercase : Union[str, Any] = 5 _lowercase : Dict = 20 _lowercase : List[str] = len_data - periods * look_back _lowercase : Optional[Any] = actual_data[:division] _lowercase : Dict = actual_data[division - look_back :] _lowercase , _lowercase : Dict = [], [] _lowercase , _lowercase : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase : List[str] = np.array(train_x) _lowercase : Optional[Any] = np.array(test_x) _lowercase : List[str] = np.array([list(i.ravel()) for i in train_y]) _lowercase : List[Any] = np.array([list(i.ravel()) for i in test_y]) _lowercase : List[str] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") _lowercase : List[str] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _lowercase : Union[str, Any] = model.predict(x_test)
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' from typing import Any import numpy as np def lowerCamelCase__ ( A : np.ndarray ): '''simple docstring''' return np.array_equal(snake_case__ , matrix.conjugate().T ) def lowerCamelCase__ ( A : np.ndarray , A : np.ndarray ): '''simple docstring''' UpperCAmelCase = v.conjugate().T UpperCAmelCase = v_star.dot(snake_case__ ) assert isinstance(snake_case__ , np.ndarray ) return (v_star_dot.dot(snake_case__ )) / (v_star.dot(snake_case__ )) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case__ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case__ , snake_case__ ) ) UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case__ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case__ , snake_case__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _lowercase : int = logging.getLogger(__name__) class UpperCamelCase__: def __init__( self : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase = False def a__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" if not self.initialized: UpperCAmelCase = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) UpperCAmelCase = True def a__( self : Dict )-> Optional[Any]: """simple docstring""" self.retriever.index.init_index() def a__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : int )-> str: """simple docstring""" UpperCAmelCase = self.retriever._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any]=None )-> Optional[Any]: """simple docstring""" if index is not None and index.is_initialized() and len(UpperCAmelCase__ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) UpperCAmelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for worker in self.retrieval_workers ] ) def a__( self : List[Any] )-> int: """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def a__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] )-> Any: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase = ray.get(random_worker.retrieve.remote(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: UpperCAmelCase = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) @classmethod def a__( cls : Dict , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : str )-> Dict: """simple docstring""" return super(UpperCAmelCase__ , cls ).get_tokenizers(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def a__( cls : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = kwargs.pop('''config''' , UpperCAmelCase__ ) or RagConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = RagTokenizer.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) UpperCAmelCase = rag_tokenizer.question_encoder UpperCAmelCase = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase = '''custom''' UpperCAmelCase = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase__ ) else: UpperCAmelCase = cls._build_index(UpperCAmelCase__ ) return cls( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , retrieval_workers=UpperCAmelCase__ , index=UpperCAmelCase__ , )
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCamelCase__( SCREAMING_SNAKE_CASE__ ): def __init__( self : str , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type(snake_case__ ) def __call__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Dict , )-> str: """simple docstring""" if "text_queries" in kwargs: UpperCAmelCase = kwargs.pop('''text_queries''' ) if isinstance(snake_case__ , (str, Image.Image) ): UpperCAmelCase = {"image": image, "candidate_labels": candidate_labels} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(snake_case__ , **snake_case__ ) return results def a__( self : Any , **lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = {} if "threshold" in kwargs: UpperCAmelCase = kwargs["threshold"] if "top_k" in kwargs: UpperCAmelCase = kwargs["top_k"] return {}, {}, postprocess_params def a__( self : Tuple , lowerCAmelCase : int )-> Any: """simple docstring""" UpperCAmelCase = load_image(inputs['''image'''] ) UpperCAmelCase = inputs["candidate_labels"] if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = candidate_labels.split(''',''' ) UpperCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): UpperCAmelCase = self.tokenizer(snake_case__ , return_tensors=self.framework ) UpperCAmelCase = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def a__( self : Any , lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase = model_inputs.pop('''target_size''' ) UpperCAmelCase = model_inputs.pop('''candidate_label''' ) UpperCAmelCase = model_inputs.pop('''is_last''' ) UpperCAmelCase = self.model(**snake_case__ ) UpperCAmelCase = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def a__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]=None )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [] for model_output in model_outputs: UpperCAmelCase = model_output["candidate_label"] UpperCAmelCase = BaseModelOutput(snake_case__ ) UpperCAmelCase = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): UpperCAmelCase = outputs["scores"][index].item() UpperCAmelCase = self._get_bounding_box(outputs['''boxes'''][index][0] ) UpperCAmelCase = {"score": score, "label": label, "box": box} results.append(snake_case__ ) UpperCAmelCase = sorted(snake_case__ , key=lambda lowerCAmelCase : x["score"] , reverse=snake_case__ ) if top_k: UpperCAmelCase = results[:top_k] return results def a__( self : Optional[Any] , lowerCAmelCase : Optional[Any] )-> Optional[Any]: """simple docstring""" if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) UpperCAmelCase = box.int().tolist() UpperCAmelCase = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' from PIL import Image def lowerCamelCase__ ( A : Image , A : int ): UpperCAmelCase = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level)) def contrast(A : int ) -> int: return int(1_28 + factor * (c - 1_28) ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 _lowercase : Optional[Any] = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" _lowercase : int = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCAmelCase = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCAmelCase = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCAmelCase = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCAmelCase = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCAmelCase = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCAmelCase = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCAmelCase = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def lowerCamelCase__ ( A : int , A : int , A : List[str] , A : List[str] ): '''simple docstring''' UpperCAmelCase = {} import re UpperCAmelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCAmelCase = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCAmelCase = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCAmelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCAmelCase = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCAmelCase = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCAmelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCAmelCase = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCAmelCase = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A ): UpperCAmelCase = re_encoder_block_conv_in.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase = re_encoder_block_conv_in.sub(A , A ) elif re_encoder_block_resnet.fullmatch(A ): UpperCAmelCase = re_encoder_block_resnet.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_encoder_block_resnet.sub(A , A ) elif re_encoder_block_proj_out.fullmatch(A ): UpperCAmelCase = re_encoder_block_proj_out.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCAmelCase = re_encoder_block_proj_out.sub(A , A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A ): UpperCAmelCase = re_decoder_block_conv_out.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase = re_decoder_block_conv_out.sub(A , A ) elif re_decoder_block_resnet.fullmatch(A ): UpperCAmelCase = re_decoder_block_resnet.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_decoder_block_resnet.sub(A , A ) elif re_decoder_block_proj_in.fullmatch(A ): UpperCAmelCase = re_decoder_block_proj_in.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCAmelCase = re_decoder_block_proj_in.sub(A , A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A ): UpperCAmelCase = re_prior_cond_conv_out.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase = re_prior_cond_conv_out.sub(A , A ) elif re_prior_cond_resnet.fullmatch(A ): UpperCAmelCase = re_prior_cond_resnet.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCAmelCase = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase = prefix + resnet_block UpperCAmelCase = re_prior_cond_resnet.sub(A , A ) elif re_prior_cond_proj_in.fullmatch(A ): UpperCAmelCase = re_prior_cond_proj_in.match(A ) UpperCAmelCase = regex_match.groups() UpperCAmelCase = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCAmelCase = re_prior_cond_proj_in.sub(A , A ) # keep original key else: UpperCAmelCase = original_key UpperCAmelCase = replace_key(A ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCAmelCase = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCAmelCase = original_key UpperCAmelCase = original_key UpperCAmelCase = value return new_dict @torch.no_grad() def lowerCamelCase__ ( A : int=None , A : Tuple=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCAmelCase = requests.get(f"""{PREFIX}{file}""" , allow_redirects=A ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=A ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) UpperCAmelCase = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCAmelCase = JukeboxConfig.from_pretrained(A ) UpperCAmelCase = JukeboxModel(A ) UpperCAmelCase = [] UpperCAmelCase = {} for i, dict_name in enumerate(A ): UpperCAmelCase = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCAmelCase = old_dic[k] elif k.endswith('''.w''' ): UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase = old_dic[k] else: UpperCAmelCase = old_dic[k] UpperCAmelCase = "vqvae" if i == 0 else f"""priors.{3 - i}""" UpperCAmelCase = fix_jukebox_keys(A , model.state_dict() , A , A ) weight_dict.append(A ) UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(A ) for i in range(len(A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A ).mkdir(exist_ok=A ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(A , A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) return weight_dict if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) _lowercase : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__( lowercase__ , unittest.TestCase ): __magic_name__ : str = KandinskyVaaControlnetImgaImgPipeline __magic_name__ : int = ["image_embeds", "negative_image_embeds", "image", "hint"] __magic_name__ : List[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] __magic_name__ : Optional[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ : str = False @property def a__( self : List[Any] )-> List[str]: """simple docstring""" return 32 @property def a__( self : Tuple )-> Optional[Any]: """simple docstring""" return 32 @property def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" return self.time_input_dim @property def a__( self : str )-> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def a__( self : List[str] )-> int: """simple docstring""" return 100 @property def a__( self : Tuple )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**UpperCAmelCase__ ) return model @property def a__( self : List[str] )-> Tuple: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__( self : Tuple )-> Any: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**UpperCAmelCase__ ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any=0 )-> Dict: """simple docstring""" UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase__ ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if str(UpperCAmelCase__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: UpperCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**UpperCAmelCase__ ) UpperCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) UpperCAmelCase = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = init_image.resize((512, 512) ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase = torch.from_numpy(np.array(UpperCAmelCase__ ) ).float() / 255.0 UpperCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase = '''A robot, 4k photo''' UpperCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase__ ) UpperCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(UpperCAmelCase__ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase__ ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.85 , generator=UpperCAmelCase__ , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : int ): '''simple docstring''' if len(_lowerCAmelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _lowercase : str = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' _lowercase : Tuple = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' _lowercase : int = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCamelCase__ ( A : List[str] , A : Dict ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCamelCase__ ( A : List[Any] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase = float(fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( A : List[Any] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = float(pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] ) UpperCAmelCase = float(spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : int )-> Union[str, Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def a__( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : str )-> Tuple: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase , __lowerCamelCase )} elif self.config_name == "stsb": return pearson_and_spearman(__lowerCamelCase , __lowerCamelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__lowerCamelCase , __lowerCamelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__lowerCamelCase , __lowerCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( UpperCAmelCase_ ): __magic_name__ : Tuple = "ClapFeatureExtractor" __magic_name__ : Optional[int] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" super().__init__(_lowercase , _lowercase ) def __call__( self : Optional[int] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if audios is not None: UpperCAmelCase = self.feature_extractor( _lowercase , sampling_rate=_lowercase , return_tensors=_lowercase , **_lowercase ) if text is not None and audios is not None: UpperCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def a__( self : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int] )-> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def a__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar _lowercase : Any = TypeVar("""T""") _lowercase : Optional[Any] = TypeVar("""U""") class UpperCamelCase__( Generic[T, U] ): def __init__( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] )-> Any: """simple docstring""" UpperCAmelCase = key UpperCAmelCase = val UpperCAmelCase = None UpperCAmelCase = None def __repr__( self : List[str] )-> Tuple: """simple docstring""" return ( F"""Node: key: {self.key}, val: {self.val}, """ F"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class UpperCamelCase__( Generic[T, U] ): def __init__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = DoubleLinkedListNode(lowercase_ , lowercase_ ) UpperCAmelCase = DoubleLinkedListNode(lowercase_ , lowercase_ ) UpperCAmelCase = self.rear, self.head def __repr__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = ["DoubleLinkedList"] UpperCAmelCase = self.head while node.next is not None: rep.append(str(lowercase_ ) ) UpperCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def a__( self : Union[str, Any] , lowerCAmelCase : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None UpperCAmelCase = node UpperCAmelCase = previous UpperCAmelCase = node UpperCAmelCase = self.rear def a__( self : Optional[int] , lowerCAmelCase : Any )-> List[Any]: """simple docstring""" if node.prev is None or node.next is None: return None UpperCAmelCase = node.next UpperCAmelCase = node.prev UpperCAmelCase = None UpperCAmelCase = None return node class UpperCamelCase__( Generic[T, U] ): __magic_name__ : str = {} def __init__( self : Optional[Any] , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = DoubleLinkedList() UpperCAmelCase = capacity UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = {} def __repr__( self : List[str] )-> int: """simple docstring""" return ( F"""CacheInfo(hits={self.hits}, misses={self.miss}, """ F"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Union[str, Any] , lowerCAmelCase : List[Any] )-> Any: """simple docstring""" return key in self.cache def a__( self : Tuple , lowerCAmelCase : Optional[int] )-> str: """simple docstring""" if key in self.cache: self.hits += 1 UpperCAmelCase = self.cache[key] UpperCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def a__( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity UpperCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 UpperCAmelCase = DoubleLinkedListNode(lowercase_ , lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value UpperCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list UpperCAmelCase = value self.list.add(lowercase_ ) @classmethod def a__( cls : Dict , lowerCAmelCase : List[Any] = 128 )-> Optional[int]: """simple docstring""" def cache_decorator_inner(lowerCAmelCase : Optional[int] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCAmelCase : Optional[int] ) -> U: if func not in cls.decorator_function_to_instance_map: UpperCAmelCase = LRUCache(lowercase_ ) UpperCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: UpperCAmelCase = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] , lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ , '''cache_info''' , lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class UpperCamelCase__( _UpperCAmelCase ): __magic_name__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : List[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class UpperCamelCase__( __lowercase ): __magic_name__ : List[Any] = "distilbert" __magic_name__ : Optional[Any] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self : Tuple , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : int=6 , lowerCAmelCase : Any=12 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Optional[int]=4 * 768 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=0.2 , lowerCAmelCase : List[Any]=0 , **lowerCAmelCase : List[Any] , )-> Tuple: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = sinusoidal_pos_embds UpperCAmelCase = n_layers UpperCAmelCase = n_heads UpperCAmelCase = dim UpperCAmelCase = hidden_dim UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation UpperCAmelCase = initializer_range UpperCAmelCase = qa_dropout UpperCAmelCase = seq_classif_dropout super().__init__(**lowerCAmelCase , pad_token_id=lowerCAmelCase ) class UpperCamelCase__( __lowercase ): @property def a__( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml _lowercase : str = NewType("""DataClass""", Any) _lowercase : int = NewType("""DataClassType""", Any) def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowerCamelCase__ ( A : list ): '''simple docstring''' UpperCAmelCase = {str(_SCREAMING_SNAKE_CASE ): choice for choice in choices} return lambda A : str_to_choice.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( *, A : Union[str, List[str]] = None , A : str = None , A : Any = dataclasses.MISSING , A : Callable[[], Any] = dataclasses.MISSING , A : dict = None , **A : Union[str, Any] , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCAmelCase = {} if aliases is not None: UpperCAmelCase = aliases if help is not None: UpperCAmelCase = help return dataclasses.field(metadata=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , default_factory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = 42 def __init__( self : Dict , lowerCAmelCase : Union[DataClassType, Iterable[DataClassType]] , **lowerCAmelCase : str )-> List[str]: """simple docstring""" if "formatter_class" not in kwargs: UpperCAmelCase = ArgumentDefaultsHelpFormatter super().__init__(**__UpperCamelCase ) if dataclasses.is_dataclass(__UpperCamelCase ): UpperCAmelCase = [dataclass_types] UpperCAmelCase = list(__UpperCamelCase ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__UpperCamelCase ) @staticmethod def a__( lowerCAmelCase : ArgumentParser , lowerCAmelCase : dataclasses.Field )-> List[str]: """simple docstring""" UpperCAmelCase = F"""--{field.name}""" UpperCAmelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __UpperCamelCase ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) UpperCAmelCase = kwargs.pop('''aliases''' , [] ) if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase = [aliases] UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(__UpperCamelCase , '''UnionType''' ) and isinstance(__UpperCamelCase , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__UpperCamelCase ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F""" Problem encountered in field \'{field.name}\'.""" ) if type(__UpperCamelCase ) not in field.type.__args__: # filter `str` in Union UpperCAmelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCAmelCase = ( field.type.__args__[0] if isinstance(__UpperCamelCase , field.type.__args__[1] ) else field.type.__args__[1] ) UpperCAmelCase = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCAmelCase = {} if origin_type is Literal or (isinstance(field.type , __UpperCamelCase ) and issubclass(field.type , __UpperCamelCase )): if origin_type is Literal: UpperCAmelCase = field.type.__args__ else: UpperCAmelCase = [x.value for x in field.type] UpperCAmelCase = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default else: UpperCAmelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCAmelCase = copy(__UpperCamelCase ) # Hack because type=bool in argparse does not behave as we want. UpperCAmelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCAmelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCAmelCase = default # This tells argparse we accept 0 or 1 value after --field_name UpperCAmelCase = '''?''' # This is the value that will get picked if we do --field_name (without value) UpperCAmelCase = True elif isclass(__UpperCamelCase ) and issubclass(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase = field.type.__args__[0] UpperCAmelCase = '''+''' if field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() elif field.default is dataclasses.MISSING: UpperCAmelCase = True else: UpperCAmelCase = field.type if field.default is not dataclasses.MISSING: UpperCAmelCase = field.default elif field.default_factory is not dataclasses.MISSING: UpperCAmelCase = field.default_factory() else: UpperCAmelCase = True parser.add_argument(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCAmelCase = False parser.add_argument(F"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **__UpperCamelCase ) def a__( self : Optional[Any] , lowerCAmelCase : DataClassType )-> List[str]: """simple docstring""" if hasattr(__UpperCamelCase , '''_argument_group_name''' ): UpperCAmelCase = self.add_argument_group(dtype._argument_group_name ) else: UpperCAmelCase = self try: UpperCAmelCase = get_type_hints(__UpperCamelCase ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__UpperCamelCase ): UpperCAmelCase = '''.'''.join(map(__UpperCamelCase , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(__UpperCamelCase ): if not field.init: continue UpperCAmelCase = type_hints[field.name] self._parse_dataclass_field(__UpperCamelCase , __UpperCamelCase ) def a__( self : Dict , lowerCAmelCase : Tuple=None , lowerCAmelCase : int=False , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=None , lowerCAmelCase : int=None , )-> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): UpperCAmelCase = [] if args_filename: args_files.append(Path(__UpperCamelCase ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCAmelCase = ArgumentParser() args_file_parser.add_argument(__UpperCamelCase , type=__UpperCamelCase , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) UpperCAmelCase , UpperCAmelCase = args_file_parser.parse_known_args(args=__UpperCamelCase ) UpperCAmelCase = vars(__UpperCamelCase ).get(args_file_flag.lstrip('''-''' ) , __UpperCamelCase ) if cmd_args_file_paths: args_files.extend([Path(__UpperCamelCase ) for p in cmd_args_file_paths] ) UpperCAmelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCAmelCase = file_args + args if args is not None else file_args + sys.argv[1:] UpperCAmelCase , UpperCAmelCase = self.parse_known_args(args=__UpperCamelCase ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(__UpperCamelCase ) if f.init} UpperCAmelCase = {k: v for k, v in vars(__UpperCamelCase ).items() if k in keys} for k in keys: delattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = dtype(**__UpperCamelCase ) outputs.append(__UpperCamelCase ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__UpperCamelCase ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def a__( self : Any , lowerCAmelCase : Dict[str, Any] , lowerCAmelCase : bool = False )-> Tuple[DataClass, ...]: """simple docstring""" UpperCAmelCase = set(args.keys() ) UpperCAmelCase = [] for dtype in self.dataclass_types: UpperCAmelCase = {f.name for f in dataclasses.fields(__UpperCamelCase ) if f.init} UpperCAmelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) UpperCAmelCase = dtype(**__UpperCamelCase ) outputs.append(__UpperCamelCase ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__UpperCamelCase )}""" ) return tuple(__UpperCamelCase ) def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : bool = False )-> Tuple[DataClass, ...]: """simple docstring""" with open(Path(__UpperCamelCase ) , encoding='''utf-8''' ) as open_json_file: UpperCAmelCase = json.loads(open_json_file.read() ) UpperCAmelCase = self.parse_dict(__UpperCamelCase , allow_extra_keys=__UpperCamelCase ) return tuple(__UpperCamelCase ) def a__( self : Any , lowerCAmelCase : str , lowerCAmelCase : bool = False )-> Tuple[DataClass, ...]: """simple docstring""" UpperCAmelCase = self.parse_dict(yaml.safe_load(Path(__UpperCamelCase ).read_text() ) , allow_extra_keys=__UpperCamelCase ) return tuple(__UpperCamelCase )
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Dict=True )-> List[Any]: """simple docstring""" UpperCAmelCase = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]=True )-> str: """simple docstring""" UpperCAmelCase = () for resnet in self.resnets: UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> str: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Any=True )-> Tuple: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple=True )-> List[Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCAmelCase = [] for _ in range(self.num_layers ): UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions def __call__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : int=True )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.resnets[0](lowerCAmelCase , lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) return hidden_states
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class UpperCamelCase__( __A , unittest.TestCase ): __magic_name__ : List[Any] = RoFormerTokenizer __magic_name__ : List[Any] = RoFormerTokenizerFast __magic_name__ : Optional[int] = True __magic_name__ : Union[str, Any] = True def a__( self : Dict )-> Tuple: """simple docstring""" super().setUp() def a__( self : Union[str, Any] , **lowerCAmelCase : Any )-> Any: """simple docstring""" return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **UpperCamelCase__ ) def a__( self : Any , **lowerCAmelCase : str )-> Union[str, Any]: """simple docstring""" return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **UpperCamelCase__ ) def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = '永和服装饰品有限公司,今天天气非常好' UpperCAmelCase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_chinese_input_output_texts() UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = self.get_chinese_input_output_texts() UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def a__( self : Optional[int] )-> Any: """simple docstring""" pass def a__( self : Tuple )-> Optional[int]: """simple docstring""" pass def a__( self : str )-> Optional[Any]: """simple docstring""" pass
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( a__ ): __magic_name__ : Dict = ["image_processor", "tokenizer"] __magic_name__ : Any = "ChineseCLIPImageProcessor" __magic_name__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Dict )-> Any: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase_ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase = self.image_processor def __call__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : int )-> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def a__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any] )-> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def a__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any] )-> Any: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__( self : int )-> List[str]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase_ , ) return self.image_processor_class
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowercase : Optional[int] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowercase : Optional[int] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) _lowercase : List[Any] = """|""".join(sys.argv[1:]) _lowercase : Dict = re.compile(rF"""^({joined_dirs}).*?\.py$""") _lowercase : List[Any] = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path _lowercase : str = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def lowerCamelCase__ ( A : int=True ): '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class UpperCamelCase__( __UpperCAmelCase ): __magic_name__ : str = None __magic_name__ : str = None def a__( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Dict: """simple docstring""" with TemporaryDirectory() as tmp_dir: UpperCAmelCase = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) UpperCAmelCase = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) UpperCAmelCase = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) UpperCAmelCase = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' UpperCAmelCase = dataset_module_factory('''wikipedia''' , cache_dir=__lowerCAmelCase ) UpperCAmelCase = import_main_class(dataset_module.module_path ) UpperCAmelCase = builder_cls( cache_dir=__lowerCAmelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase = None builder_instance.download_and_prepare() UpperCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = dataset_module_factory('''wikipedia''' , cache_dir=__lowerCAmelCase ) UpperCAmelCase = import_main_class(dataset_module.module_path , dataset=__lowerCAmelCase ) UpperCAmelCase = builder_cls( cache_dir=__lowerCAmelCase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) UpperCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert "train" in ds assert isinstance(ds['''train'''] , __lowerCAmelCase ) assert next(iter(ds['''train'''] ) )
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import re from filelock import FileLock try: import nltk _lowercase : List[str] = True except (ImportError, ModuleNotFoundError): _lowercase : Tuple = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowerCamelCase__ ( A : str ): '''simple docstring''' re.sub('''<n>''' , '''''' , a_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(a_ ) )
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : int = logging.get_logger(__name__) @add_end_docstrings(_a ) class lowerCamelCase_( _a ): def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Any )-> List[str]: """simple docstring""" super().__init__(*_A , **_A ) requires_backends(self , '''decord''' ) self.check_model_type(_A ) def a__( self : int , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=None )-> Dict: """simple docstring""" UpperCAmelCase = {} if frame_sampling_rate is not None: UpperCAmelCase = frame_sampling_rate if num_frames is not None: UpperCAmelCase = num_frames UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , lowerCAmelCase : List[Any] , **lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" return super().__call__(_A , **_A ) def a__( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : str=None , lowerCAmelCase : Dict=1 )-> Any: """simple docstring""" if num_frames is None: UpperCAmelCase = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): UpperCAmelCase = BytesIO(requests.get(_A ).content ) UpperCAmelCase = VideoReader(_A ) videoreader.seek(0 ) UpperCAmelCase = 0 UpperCAmelCase = num_frames * frame_sampling_rate - 1 UpperCAmelCase = np.linspace(_A , _A , num=_A , dtype=np.intaa ) UpperCAmelCase = videoreader.get_batch(_A ).asnumpy() UpperCAmelCase = list(_A ) UpperCAmelCase = self.image_processor(_A , return_tensors=self.framework ) return model_inputs def a__( self : Tuple , lowerCAmelCase : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model(**_A ) return model_outputs def a__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=5 )-> Tuple: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase , UpperCAmelCase = probs.topk(_A ) else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_A , _A )]
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import torch from torch import nn class UpperCamelCase__( nn.Module ): def __init__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : Any=False )-> Dict: """simple docstring""" super().__init__() UpperCAmelCase = n_token UpperCAmelCase = d_embed UpperCAmelCase = d_proj UpperCAmelCase = cutoffs + [n_token] UpperCAmelCase = [0] + self.cutoffs UpperCAmelCase = div_val UpperCAmelCase = self.cutoffs[0] UpperCAmelCase = len(self.cutoffs ) - 1 UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase = nn.ModuleList() UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) else: self.out_projs.append(__UpperCamelCase ) self.out_layers.append(nn.Linear(__UpperCamelCase , __UpperCamelCase ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) self.out_layers.append(nn.Linear(__UpperCamelCase , r_idx - l_idx ) ) UpperCAmelCase = keep_order def a__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" if proj is None: UpperCAmelCase = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase = nn.functional.linear(__UpperCamelCase , proj.t().contiguous() ) UpperCAmelCase = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def a__( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=False )-> Any: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase = hidden[..., :-1, :].contiguous() UpperCAmelCase = labels[..., 1:].contiguous() UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase = labels != -100 UpperCAmelCase = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase = ( -nn.functional.log_softmax(__UpperCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase = self.out_layers[i].weight UpperCAmelCase = self.out_layers[i].bias if i == 0: UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[0], biases[0], self.out_projs[0] UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) if labels is None: UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase = 0 UpperCAmelCase = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): UpperCAmelCase , UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase = labels.index_select(0 , __UpperCamelCase ) - l_idx UpperCAmelCase = head_logprob.index_select(0 , __UpperCamelCase ) UpperCAmelCase = hidden.index_select(0 , __UpperCamelCase ) else: UpperCAmelCase = hidden if i == 0: if labels is not None: UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[i], biases[i], self.out_projs[i] UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , __UpperCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def a__( self : Optional[int] , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" if self.n_clusters == 0: UpperCAmelCase = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase = self.out_layers[i].weight UpperCAmelCase = self.out_layers[i].bias if i == 0: UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[0], biases[0], self.out_projs[0] UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCAmelCase = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): UpperCAmelCase , UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[i], biases[i], self.out_projs[i] UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase = logprob_i return out
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowercase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowercase : Union[str, Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( A : Vector , A : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_UpperCamelCase ) - np.asarray(_UpperCamelCase )) ** 2 ) ) def lowerCamelCase__ ( A : Vector , A : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_UpperCamelCase , _UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' from __future__ import annotations _lowercase : int = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__: def __init__( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase ) UpperCAmelCase = vertex queue.append(lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : List[Any] )-> Union[str, Any]: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(lowerCAmelCase ) if target_vertex_parent is None: UpperCAmelCase = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowerCAmelCase ) return self.shortest_path(lowerCAmelCase ) + F"""->{target_vertex}""" if __name__ == "__main__": _lowercase : Tuple = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 3 class UpperCamelCase__( __lowerCAmelCase ): pass def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' for shard in shards: for i in range(A ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = int(os.environ['''RANK'''] ) UpperCAmelCase = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=A ) parser.add_argument('''--local_rank''' , type=A ) parser.add_argument('''--num_workers''' , type=A , default=0 ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.streaming UpperCAmelCase = args.num_workers UpperCAmelCase = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(A )]} UpperCAmelCase = IterableDataset.from_generator(A , gen_kwargs=A ) if not streaming: UpperCAmelCase = Dataset.from_list(list(A ) ) UpperCAmelCase = split_dataset_by_node(A , rank=A , world_size=A ) UpperCAmelCase = torch.utils.data.DataLoader(A , num_workers=A ) UpperCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = ['LayoutLMv2FeatureExtractor'] _lowercase : int = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) class UpperCamelCase__( lowercase_ ): __magic_name__ : int = '''encoder-decoder''' __magic_name__ : Dict = True def __init__( self : List[Any] , **lowerCAmelCase : Dict )-> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase = kwargs.pop('''encoder''' ) UpperCAmelCase = encoder_config.pop('''model_type''' ) UpperCAmelCase = kwargs.pop('''decoder''' ) UpperCAmelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = True @classmethod def a__( cls : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple )-> Tuple: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase = True UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase ) def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.encoder.to_dict() UpperCAmelCase = self.decoder.to_dict() UpperCAmelCase = self.__class__.model_type return output
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCamelCase__( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Any , lowerCAmelCase : float , lowerCAmelCase : Callable , lowerCAmelCase : int , lowerCAmelCase : float = 1.0 , lowerCAmelCase : str = None , )-> int: """simple docstring""" super().__init__() UpperCAmelCase = initial_learning_rate UpperCAmelCase = warmup_steps UpperCAmelCase = power UpperCAmelCase = decay_schedule_fn UpperCAmelCase = name def __call__( self : Optional[Any] , lowerCAmelCase : List[str] )-> str: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCAmelCase = tf.cast(lowerCAmelCase , tf.floataa ) UpperCAmelCase = tf.cast(self.warmup_steps , tf.floataa ) UpperCAmelCase = global_step_float / warmup_steps_float UpperCAmelCase = self.initial_learning_rate * tf.math.pow(lowerCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCAmelCase , ) def a__( self : int )-> Optional[int]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowerCamelCase__ ( A : Optional[Any] , A : List[str] , A : Tuple , A : str = 0.0 , A : Optional[int] = 0.9 , A : Union[str, Any] = 0.999 , A : List[Any] = 1E-8 , A : str = None , A : Optional[int] = None , A : Tuple = 0.0 , A : Any = 1.0 , A : List[str] = None , ): '''simple docstring''' UpperCAmelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowerCamelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowerCamelCase__ , ) if num_warmup_steps: UpperCAmelCase = WarmUp( initial_learning_rate=lowerCamelCase__ , decay_schedule_fn=lowerCamelCase__ , warmup_steps=lowerCamelCase__ , ) if weight_decay_rate > 0.0: UpperCAmelCase = AdamWeightDecay( learning_rate=lowerCamelCase__ , weight_decay_rate=lowerCamelCase__ , beta_a=lowerCamelCase__ , beta_a=lowerCamelCase__ , epsilon=lowerCamelCase__ , clipnorm=lowerCamelCase__ , global_clipnorm=lowerCamelCase__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=lowerCamelCase__ , ) else: UpperCAmelCase = tf.keras.optimizers.Adam( learning_rate=lowerCamelCase__ , beta_a=lowerCamelCase__ , beta_a=lowerCamelCase__ , epsilon=lowerCamelCase__ , clipnorm=lowerCamelCase__ , global_clipnorm=lowerCamelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCAmelCase : float = 0.9 , lowerCAmelCase : float = 0.999 , lowerCAmelCase : float = 1E-7 , lowerCAmelCase : bool = False , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "AdamWeightDecay" , **lowerCAmelCase : Union[str, Any] , )-> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = weight_decay_rate UpperCAmelCase = include_in_weight_decay UpperCAmelCase = exclude_from_weight_decay @classmethod def a__( cls : Any , lowerCAmelCase : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = {'''WarmUp''': WarmUp} return super(lowerCAmelCase , cls ).from_config(lowerCAmelCase , custom_objects=lowerCAmelCase ) def a__( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" super(lowerCAmelCase , self )._prepare_local(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def a__( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Dict )-> Any: """simple docstring""" UpperCAmelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def a__( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict=None , **lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = list(zip(*lowerCAmelCase ) ) return super(lowerCAmelCase , self ).apply_gradients(zip(lowerCAmelCase , lowerCAmelCase ) , name=lowerCAmelCase , **lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] )-> int: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCAmelCase = apply_state or {} UpperCAmelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCAmelCase = self._fallback_apply_state(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def a__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : str=None )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase ) UpperCAmelCase = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase , self )._resource_apply_dense(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any=None )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_lr(var.device , var.dtype.base_dtype , lowerCAmelCase ) UpperCAmelCase = self._decay_weights_op(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with tf.control_dependencies([decay] ): return super(lowerCAmelCase , self )._resource_apply_sparse(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[Any] )-> str: """simple docstring""" UpperCAmelCase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def a__( self : Dict , lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCAmelCase , lowerCAmelCase ) is not None: return False return True class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any )-> int: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = None @property def a__( self : List[Any] )-> Optional[int]: """simple docstring""" if self._accum_steps is None: UpperCAmelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def a__( self : Any )-> Optional[int]: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Tuple , lowerCAmelCase : List[str] )-> Dict: """simple docstring""" if not self._gradients: UpperCAmelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCAmelCase ) , trainable=lowerCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCAmelCase ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(lowerCAmelCase )}""" ) for accum_gradient, gradient in zip(self._gradients , lowerCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCAmelCase ) self._accum_steps.assign_add(1 ) def a__( self : Dict )-> str: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCAmelCase ) )
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' from __future__ import annotations from typing import Any class UpperCamelCase__: def __init__( self : Tuple , lowerCAmelCase : int = 6 )-> None: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = None self.create_linked_list(_SCREAMING_SNAKE_CASE ) def a__( self : Optional[Any] , lowerCAmelCase : int )-> None: """simple docstring""" UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = current_node UpperCAmelCase = current_node for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCAmelCase = Node() UpperCAmelCase = current_node UpperCAmelCase = previous_node UpperCAmelCase = current_node UpperCAmelCase = self.front UpperCAmelCase = previous_node def a__( self : Optional[int] )-> bool: """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def a__( self : Optional[Any] )-> Any | None: """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def a__( self : Optional[Any] , lowerCAmelCase : Any )-> None: """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase = self.rear.next if self.rear: UpperCAmelCase = data def a__( self : Dict )-> Any: """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase = self.front.data UpperCAmelCase = None return data UpperCAmelCase = self.front UpperCAmelCase = old_front.next UpperCAmelCase = old_front.data UpperCAmelCase = None return data def a__( self : str )-> None: """simple docstring""" if self.is_empty(): raise Exception('''Empty Queue''' ) def a__( self : List[Any] )-> None: """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCamelCase__: def __init__( self : List[Any] )-> None: """simple docstring""" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( A : Dict , A : Any ): '''simple docstring''' UpperCAmelCase = [] for part_id in partition_order: UpperCAmelCase = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(A ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(1_00 ).repartition(1 ) UpperCAmelCase = Spark(A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(10 ).repartition(2 ) UpperCAmelCase = [1, 0] UpperCAmelCase = _generate_iterable_examples(A , A ) # Reverse the partitions. UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(10 ).repartition(1 ) UpperCAmelCase = SparkExamplesIterable(A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(A ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: UpperCAmelCase = lambda A : x.reverse() UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [2, 1, 0] ) UpperCAmelCase = SparkExamplesIterable(A ).shuffle_data_sources(A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [0, 2] ) for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase = SparkExamplesIterable(A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [1, 3] ) for i, (row_id, row_dict) in enumerate(A ): UpperCAmelCase , UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase = spark.range(1_00 ).repartition(1 ) UpperCAmelCase = Spark(A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCAmelCase = 1 UpperCAmelCase = 1 while repunit: UpperCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def lowerCamelCase__ ( A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(A ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
def lowerCamelCase__ ( A : int = 10_00 ): '''simple docstring''' return sum(e for e in range(3 , A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : int = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "codegen" __magic_name__ : Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , lowerCAmelCase : Optional[int]=50400 , lowerCAmelCase : Tuple=2048 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : Optional[int]=4096 , lowerCAmelCase : str=28 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Dict=None , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Union[str, Any]=50256 , lowerCAmelCase : str=50256 , lowerCAmelCase : List[Any]=False , **lowerCAmelCase : Union[str, Any] , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = n_ctx UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = rotary_dim UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = use_cache UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" , lowerCAmelCase : List[PatchingSpec] = None , lowerCAmelCase : bool = False , )-> Optional[Any]: """simple docstring""" super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , '''pad_token_id''' , lowerCAmelCase ): # TODO: how to do that better? UpperCAmelCase = 0 @property def a__( self : Any )-> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='''inputs''' ) UpperCAmelCase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return self._config.n_layer @property def a__( self : int )-> int: """simple docstring""" return self._config.n_head def a__( self : Dict , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() UpperCAmelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] UpperCAmelCase = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def a__( self : Dict )-> int: """simple docstring""" return 13
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = (EulerDiscreteScheduler,) __magic_name__ : str = 10 def a__( self : List[str] , **lowerCAmelCase : Any )-> Any: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowerCAmelCase ) return config def a__( self : Optional[int] )-> Any: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase , use_karras_sigmas=lowerCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1E-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1E-3
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _lowercase : Dict = logging.get_logger(__name__) enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = UNetaDModel __magic_name__ : Union[str, Any] = "sample" @property def a__( self : Dict )-> Any: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] ).to(lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" return (3, 32, 32) @property def a__( self : int )-> str: """simple docstring""" return (3, 32, 32) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = UNetaDModel __magic_name__ : str = "sample" @property def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 4 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] ).to(lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : List[Any] )-> List[Any]: """simple docstring""" return (4, 32, 32) @property def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" return (4, 32, 32) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a__( self : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCAmelCase ) UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) model.to(lowerCAmelCase ) UpperCAmelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase ) model_accelerate.to(lowerCAmelCase ) model_accelerate.eval() UpperCAmelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase = noise.to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase ) UpperCAmelCase = model_accelerate(lowerCAmelCase , lowerCAmelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=lowerCAmelCase , low_cpu_mem_usage=lowerCAmelCase ) model_normal_load.to(lowerCAmelCase ) model_normal_load.eval() UpperCAmelCase = model_normal_load(lowerCAmelCase , lowerCAmelCase )['''sample'''] assert torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(lowerCAmelCase ) UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase = noise.to(lowerCAmelCase ) UpperCAmelCase = torch.tensor([10] * noise.shape[0] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) ) class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : int = UNetaDModel __magic_name__ : List[Any] = "sample" @property def a__( self : Any , lowerCAmelCase : Union[str, Any]=(32, 32) )-> Optional[Any]: """simple docstring""" UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=lowerCAmelCase ) return {"sample": noise, "timestep": time_step} @property def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" return (3, 32, 32) @property def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" return (3, 32, 32) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict @slow def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCAmelCase ) UpperCAmelCase = self.dummy_input UpperCAmelCase = floats_tensor((4, 3) + (256, 256) ).to(lowerCAmelCase ) UpperCAmelCase = noise UpperCAmelCase = model(**lowerCAmelCase ) assert image is not None, "Make sure output is not None" @slow def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(lowerCAmelCase ) UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (256, 256) UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(lowerCAmelCase ) UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = torch.ones((batch_size, num_channels) + sizes ).to(lowerCAmelCase ) UpperCAmelCase = torch.tensor(batch_size * [1E-4] ).to(lowerCAmelCase ) with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ).sample UpperCAmelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" pass
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = """▁""" _lowercase = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = ["image_processor", "tokenizer"] __magic_name__ : Union[str, Any] = "LayoutLMv3ImageProcessor" __magic_name__ : List[str] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Optional[int] , )-> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowerCAmelCase , return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['''words'''] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) # add pixel values UpperCAmelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowerCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase = images return encoded_inputs def a__( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(lowerCAmelCase )} and {len(lowerCAmelCase )}""" ) return images_with_overflow def a__( self : List[str] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple )-> Dict: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Dict: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a__( self : int )-> Tuple: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import socket def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''' , '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(A ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : int=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : str=[1, 2, 1] , lowerCAmelCase : int=[2, 2, 4] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Dict=2.0 , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Tuple=False , lowerCAmelCase : int=True , lowerCAmelCase : str=0.02 , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Optional[Any]=8 , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = patch_norm UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = is_training UpperCAmelCase = scope UpperCAmelCase = use_labels UpperCAmelCase = type_sequence_label_size UpperCAmelCase = encoder_stride def a__( self : str )-> str: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : Optional[int] )-> int: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = SwinvaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Any )-> Any: """simple docstring""" UpperCAmelCase = SwinvaForMaskedImageModeling(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = SwinvaForMaskedImageModeling(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = SwinvaForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[str] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __magic_name__ : List[str] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) __magic_name__ : Optional[int] = False __magic_name__ : List[Any] = False __magic_name__ : List[str] = False __magic_name__ : List[str] = False def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase = SwinvaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37 ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def a__( self : Any )-> Any: """simple docstring""" pass def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions UpperCAmelCase = len(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase = True UpperCAmelCase = config.window_size**2 UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase = len(lowerCAmelCase ) # Check attention is always last and order is fine UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): UpperCAmelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase ) ) UpperCAmelCase = outputs.attentions self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Any )-> Dict: """simple docstring""" UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # Swinv2 has a different seq_length UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = reshaped_hidden_states[0].shape UpperCAmelCase = ( reshaped_hidden_states[0].view(lowerCAmelCase , lowerCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def a__( self : Any )-> List[Any]: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = SwinvaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = _config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : List[Any] )-> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : BigBirdConfig __magic_name__ : jnp.dtype = jnp.floataa __magic_name__ : bool = True def a__( self : Union[str, Any] )-> str: """simple docstring""" super().setup() UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = FlaxBigBirdForNaturalQuestionsModule def lowerCamelCase__ ( A : str , A : Any , A : int , A : str , A : List[str] , A : List[Any] ): '''simple docstring''' def cross_entropy(A : Optional[int] , A : Tuple , A : int=None ): UpperCAmelCase = logits.shape[-1] UpperCAmelCase = (labels[..., None] == jnp.arange(A )[None]).astype('''f4''' ) UpperCAmelCase = jax.nn.log_softmax(A , axis=-1 ) UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase = reduction(A ) return loss UpperCAmelCase = partial(A , reduction=jnp.mean ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase__: __magic_name__ : str = "google/bigbird-roberta-base" __magic_name__ : int = 3000 __magic_name__ : int = 1_0500 __magic_name__ : int = 128 __magic_name__ : int = 3 __magic_name__ : int = 1 __magic_name__ : int = 5 # tx_args __magic_name__ : float = 3e-5 __magic_name__ : float = 0.0 __magic_name__ : int = 2_0000 __magic_name__ : float = 0.0_0_9_5 __magic_name__ : str = "bigbird-roberta-natural-questions" __magic_name__ : str = "training-expt" __magic_name__ : str = "data/nq-training.jsonl" __magic_name__ : str = "data/nq-validation.jsonl" def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase ) UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : int = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.collate_fn(lowerCAmelCase ) UpperCAmelCase = jax.tree_util.tree_map(lowerCAmelCase , lowerCAmelCase ) return batch def a__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.fetch_inputs(features['''input_ids'''] ) UpperCAmelCase = { '''input_ids''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def a__( self : Tuple , lowerCAmelCase : list )-> int: """simple docstring""" UpperCAmelCase = [self._fetch_inputs(lowerCAmelCase ) for ids in input_ids] return zip(*lowerCAmelCase ) def a__( self : Dict , lowerCAmelCase : list )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [1 for _ in range(len(lowerCAmelCase ) )] while len(lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCamelCase__ ( A : str , A : Optional[Any] , A : List[str]=None ): '''simple docstring''' if seed is not None: UpperCAmelCase = dataset.shuffle(seed=A ) for i in range(len(A ) // batch_size ): UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A ) @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , A : Optional[int] , **A : int ): '''simple docstring''' def loss_fn(A : Dict ): UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=A , dropout_rng=A , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs return state.loss_fn( A , A , A , A , A , A , ) UpperCAmelCase , UpperCAmelCase = jax.random.split(A ) UpperCAmelCase = jax.value_and_grad(A ) UpperCAmelCase , UpperCAmelCase = grad_fn(state.params ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) UpperCAmelCase = jax.lax.pmean(A , '''batch''' ) UpperCAmelCase = state.apply_gradients(grads=A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , **A : List[str] ): '''simple docstring''' UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=state.params , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs UpperCAmelCase = state.loss_fn(A , A , A , A , A , A ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase__( train_state.TrainState ): __magic_name__ : Callable = struct.field(pytree_node=lowerCAmelCase ) @dataclass class UpperCamelCase__: __magic_name__ : Args __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : wandb __magic_name__ : Callable = None def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=None )-> Tuple: """simple docstring""" UpperCAmelCase = model.params UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , loss_fn=lowerCAmelCase , ) if ckpt_dir is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = restore_checkpoint(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } UpperCAmelCase , UpperCAmelCase = build_tx(**lowerCAmelCase ) UpperCAmelCase = train_state.TrainState( step=lowerCAmelCase , apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , opt_state=lowerCAmelCase , ) UpperCAmelCase = args UpperCAmelCase = data_collator UpperCAmelCase = lr UpperCAmelCase = params UpperCAmelCase = jax_utils.replicate(lowerCAmelCase ) return state def a__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.args UpperCAmelCase = len(lowerCAmelCase ) // args.batch_size UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = get_batched_dataset(lowerCAmelCase , args.batch_size , seed=lowerCAmelCase ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.train_step_fn(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase = jax_utils.unreplicate(state.step ) UpperCAmelCase = running_loss.item() / i UpperCAmelCase = self.scheduler_fn(state_step - 1 ) UpperCAmelCase = self.evaluate(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase ) ) self.logger.log(lowerCAmelCase , commit=lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple )-> Any: """simple docstring""" UpperCAmelCase = get_batched_dataset(lowerCAmelCase , self.args.batch_size ) UpperCAmelCase = len(lowerCAmelCase ) // self.args.batch_size UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc='''Evaluating ... ''' ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase = self.val_step_fn(lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def a__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = jax_utils.unreplicate(lowerCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase , params=state.params ) with open(os.path.join(lowerCAmelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase ) print('''DONE''' ) def lowerCamelCase__ ( A : Tuple , A : Dict ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(A , '''flax_model.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(A , '''opt_state.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.opt_state , f.read() ) UpperCAmelCase = joblib.load(os.path.join(A , '''args.joblib''' ) ) UpperCAmelCase = joblib.load(os.path.join(A , '''data_collator.joblib''' ) ) with open(os.path.join(A , '''training_state.json''' ) , '''r''' ) as f: UpperCAmelCase = json.load(A ) UpperCAmelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def lowerCamelCase__ ( A : Any , A : Any , A : Union[str, Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = num_train_steps - warmup_steps UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=A , transition_steps=A ) UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=1E-7 , transition_steps=A ) UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCamelCase__ ( A : List[Any] , A : Optional[Any] , A : str , A : Optional[Any] , A : Any ): '''simple docstring''' def weight_decay_mask(A : List[str] ): UpperCAmelCase = traverse_util.flatten_dict(A ) UpperCAmelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(A ) UpperCAmelCase = scheduler_fn(A , A , A , A ) UpperCAmelCase = optax.adamw(learning_rate=A , weight_decay=A , mask=A ) return tx, lr
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__: __magic_name__ : CommonSchedulerState # setable values __magic_name__ : jnp.ndarray __magic_name__ : jnp.ndarray __magic_name__ : Optional[int] = None @classmethod def a__( cls : str , lowerCAmelCase : CommonSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray )-> List[str]: """simple docstring""" return cls(common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase ) @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : DDPMSchedulerState class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] __magic_name__ : jnp.dtype @property def a__( self : str )-> str: """simple docstring""" return True @register_to_config def __init__( self : List[Any] , lowerCAmelCase : int = 1000 , lowerCAmelCase : float = 0.0001 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : str = "linear" , lowerCAmelCase : Optional[jnp.ndarray] = None , lowerCAmelCase : str = "fixed_small" , lowerCAmelCase : bool = True , lowerCAmelCase : str = "epsilon" , lowerCAmelCase : jnp.dtype = jnp.floataa , )-> Tuple: """simple docstring""" UpperCAmelCase = dtype def a__( self : Union[str, Any] , lowerCAmelCase : Optional[CommonSchedulerState] = None )-> DDPMSchedulerState: """simple docstring""" if common is None: UpperCAmelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[int] = None )-> jnp.ndarray: """simple docstring""" return sample def a__( self : str , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : int , lowerCAmelCase : Tuple = () )-> DDPMSchedulerState: """simple docstring""" UpperCAmelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase = (jnp.arange(0 , lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Any , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : str , lowerCAmelCase : Any=None , lowerCAmelCase : Any=None )-> Optional[int]: """simple docstring""" UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase = jnp.clip(lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase = jnp.log(jnp.clip(lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase = variance UpperCAmelCase = state.common.betas[t] UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def a__( self : List[str] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : int , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[jax.random.KeyArray] = None , lowerCAmelCase : bool = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase = timestep if key is None: UpperCAmelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase , UpperCAmelCase = jnp.split(lowerCAmelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = jnp.clip(lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase = jax.random.split(lowerCAmelCase , num=1 ) UpperCAmelCase = jax.random.normal(lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCAmelCase , lowerCAmelCase , predicted_variance=lowerCAmelCase ) ** 0.5) * noise UpperCAmelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase , state=lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __len__( self : str )-> str: """simple docstring""" return self.config.num_train_timesteps
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' from statistics import mean import numpy as np def lowerCamelCase__ ( A : list , A : list , A : list , A : int ): '''simple docstring''' UpperCAmelCase = 0 # Number of processes finished UpperCAmelCase = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. UpperCAmelCase = [0] * no_of_process # List to include calculation results UpperCAmelCase = [0] * no_of_process # Sort by arrival time. UpperCAmelCase = [burst_time[i] for i in np.argsort(A )] UpperCAmelCase = [process_name[i] for i in np.argsort(A )] arrival_time.sort() while no_of_process > finished_process_count: UpperCAmelCase = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: UpperCAmelCase = arrival_time[i] UpperCAmelCase = 0 # Index showing the location of the process being performed UpperCAmelCase = 0 # Saves the current response ratio. UpperCAmelCase = 0 for i in range(0 , A ): if finished_process[i] == 0 and arrival_time[i] <= current_time: UpperCAmelCase = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: UpperCAmelCase = temp UpperCAmelCase = i # Calculate the turn around time UpperCAmelCase = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. UpperCAmelCase = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def lowerCamelCase__ ( A : list , A : list , A : list , A : int ): '''simple docstring''' UpperCAmelCase = [0] * no_of_process for i in range(0 , A ): UpperCAmelCase = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowercase : int = 5 _lowercase : List[str] = ["""A""", """B""", """C""", """D""", """E"""] _lowercase : Tuple = [1, 2, 3, 4, 5] _lowercase : Union[str, Any] = [1, 2, 3, 4, 5] _lowercase : int = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowercase : List[str] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 UpperCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. UpperCAmelCase = min(A , A ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def a__( self : int )-> Tuple: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase ) as mock_head: UpperCAmelCase = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def a__( self : str )-> Optional[Any]: """simple docstring""" try: UpperCAmelCase = tempfile.mktemp() with open(lowerCAmelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , lowerCAmelCase ) UpperCAmelCase = AlbertTokenizer.from_pretrained(lowerCAmelCase ) finally: os.remove(lowerCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , lowerCAmelCase ) UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class UpperCamelCase__( unittest.TestCase ): __magic_name__ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def a__( cls : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def a__( cls : Optional[Any] )-> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def a__( self : Optional[Any] )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase , repo_id='''test-tokenizer''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizer(lowerCAmelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCAmelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) UpperCAmelCase = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def a__( self : int )-> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = CustomTokenizer(lowerCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = os.path.join(lowerCAmelCase , '''vocab.txt''' ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) UpperCAmelCase = BertTokenizerFast.from_pretrained(lowerCAmelCase ) bert_tokenizer.save_pretrained(lowerCAmelCase ) UpperCAmelCase = CustomTokenizerFast.from_pretrained(lowerCAmelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) UpperCAmelCase = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) UpperCAmelCase = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=lowerCAmelCase , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = Trie() UpperCAmelCase = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCAmelCase , ['''AB''', '''C'''] )
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple , lowerCAmelCase : str )-> Optional[int]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): UpperCAmelCase = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(lowerCAmelCase ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = '''sgugger/tiny-distilbert-classification''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , only_pretrain_model=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , torchscript=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , fpaa=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) # set architectures equal to `None` UpperCAmelCase = None UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCAmelCase , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : Dict )-> str: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tinier_bart''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = '''sshleifer/tinier_bart''' UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase , configs=[config] ) UpperCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , save_to_csv=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCAmelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(lowerCAmelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(lowerCAmelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(lowerCAmelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(lowerCAmelCase , '''env.csv''' ) , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCAmelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''env.csv''' ) ).exists() ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(lowerCAmelCase : Optional[Any] ): self.assertTrue(hasattr(lowerCAmelCase , '''sequential''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''cumulative''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''current''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCAmelCase , inference=lowerCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCAmelCase , '''log.txt''' ) , log_print=lowerCAmelCase , trace_memory_line_by_line=lowerCAmelCase , multi_process=lowerCAmelCase , ) UpperCAmelCase = PyTorchBenchmark(lowerCAmelCase ) UpperCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCAmelCase , '''log.txt''' ) ).exists() )
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = (DDIMParallelScheduler,) __magic_name__ : Optional[int] = (("eta", 0.0), ("num_inference_steps", 50)) def a__( self : str , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**lowerCAmelCase ) return config def a__( self : Dict , **lowerCAmelCase : int )-> int: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = 10, 0.0 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def a__( self : Dict )-> Tuple: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def a__( self : int )-> List[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase ) UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def a__( self : Dict )-> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase ) def a__( self : int )-> List[str]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase ) def a__( self : Any )-> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase ) def a__( self : Dict )-> Any: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase ) def a__( self : Optional[int] )-> str: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase ) def a__( self : str )-> int: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter UpperCAmelCase = self.dummy_sample_deter + 0.1 UpperCAmelCase = self.dummy_sample_deter - 0.1 UpperCAmelCase = samplea.shape[0] UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase = torch.arange(lowerCAmelCase )[0:3, None].repeat(1 , lowerCAmelCase ) UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCAmelCase ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01 ) UpperCAmelCase = torch.sum(torch.abs(lowerCAmelCase ) ) UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import argparse from collections import defaultdict import yaml _lowercase : Dict = """docs/source/en/_toctree.yml""" def lowerCamelCase__ ( A : Any ): UpperCAmelCase = defaultdict(A ) UpperCAmelCase = [] UpperCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(A ) UpperCAmelCase = new_doc_list UpperCAmelCase = [key for key, value in counts.items() if value > 1] UpperCAmelCase = [] for duplicate_key in duplicates: UpperCAmelCase = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(A ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) UpperCAmelCase = sorted(A , key=lambda A : s["title"].lower() ) # "overview" gets special treatment and is always first if len(A ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(A ) # Sort return overview_doc def lowerCamelCase__ ( A : Tuple=False ): with open(A , encoding='''utf-8''' ) as f: UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCAmelCase = api_doc[scheduler_idx]['''sections'''] UpperCAmelCase = clean_doc_toc(A ) UpperCAmelCase = False if new_scheduler_doc != scheduler_doc: UpperCAmelCase = True if overwrite: UpperCAmelCase = new_scheduler_doc if diff: if overwrite: UpperCAmelCase = api_doc with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(A , allow_unicode=A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def lowerCamelCase__ ( A : Optional[Any]=False ): with open(A , encoding='''utf-8''' ) as f: UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCAmelCase = content[api_idx]['''sections'''] # Then to the model doc UpperCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCAmelCase = False UpperCAmelCase = api_doc[pipeline_idx]['''sections'''] UpperCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCAmelCase = pipeline_doc['''section'''] UpperCAmelCase = clean_doc_toc(A ) if overwrite: UpperCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(A ) # sort overall pipeline doc UpperCAmelCase = clean_doc_toc(A ) if new_pipeline_docs != pipeline_docs: UpperCAmelCase = True if overwrite: UpperCAmelCase = new_pipeline_docs if diff: if overwrite: UpperCAmelCase = api_doc with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(A , allow_unicode=A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _lowercase : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) _lowercase : List[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowercase : List[str] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) _lowercase : Tuple = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) _lowercase : int = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) _lowercase : str = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) _lowercase : Dict = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) _lowercase : Optional[int] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) _lowercase : Optional[int] = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) _lowercase : Dict = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) _lowercase : List[str] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) _lowercase : Optional[Any] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) _lowercase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _lowercase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _lowercase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _lowercase : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _lowercase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _lowercase : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _lowercase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _lowercase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _lowercase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _lowercase : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _lowercase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _lowercase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _lowercase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _lowercase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_MAPPING _lowercase : Optional[int] = auto_class_update(FlaxAutoModel) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Dict = FLAX_MODEL_FOR_PRETRAINING_MAPPING _lowercase : Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _lowercase : Optional[int] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : str = FLAX_MODEL_FOR_MASKED_LM_MAPPING _lowercase : Tuple = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : Dict = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _lowercase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Dict = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _lowercase : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _lowercase : Union[str, Any] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _lowercase : Optional[int] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Any = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : Tuple = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : List[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCamelCase__( _BaseAutoModelClass ): __magic_name__ : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _lowercase : List[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : str , A : list[str] | None = None ): '''simple docstring''' UpperCAmelCase = word_bank or [] # create a table UpperCAmelCase = len(A ) + 1 UpperCAmelCase = [] for _ in range(A ): table.append([] ) # seed value UpperCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(A )] == word: UpperCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(A )]: combination.reverse() return table[len(A )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = int(A ) if decimal in (0, 1): # Exit cases for the recursion return str(A ) UpperCAmelCase , UpperCAmelCase = divmod(A , 2 ) return binary_recursive(A ) + str(A ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = str(A ).strip() if not number: raise ValueError('''No input value was provided''' ) UpperCAmelCase = '''-''' if number.startswith('''-''' ) else '''''' UpperCAmelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(A ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } _lowercase : List[str] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } _lowercase : Dict = {"""facebook/blenderbot-3B""": 128} class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : int = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = ["input_ids", "attention_mask"] __magic_name__ : Tuple = BlenderbotTokenizer def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : int="replace" , lowerCAmelCase : List[Any]="<s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Tuple="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Tuple=False , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : int , )-> Dict: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = getattr(lowerCAmelCase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**lowerCAmelCase ) UpperCAmelCase = add_prefix_space UpperCAmelCase = '''post_processor''' UpperCAmelCase = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) if tokenizer_component_instance: UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase = tuple(state['''cls'''] ) UpperCAmelCase = False if state.get('''add_prefix_space''' , lowerCAmelCase ) != add_prefix_space: UpperCAmelCase = add_prefix_space UpperCAmelCase = True if state.get('''trim_offsets''' , lowerCAmelCase ) != trim_offsets: UpperCAmelCase = trim_offsets UpperCAmelCase = True if changes_to_apply: UpperCAmelCase = getattr(lowerCAmelCase , state.pop('''type''' ) ) UpperCAmelCase = component_class(**lowerCAmelCase ) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def a__( self : int )-> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def a__( self : Union[str, Any] , lowerCAmelCase : Dict )-> str: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else value UpperCAmelCase = value def a__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Any )-> BatchEncoding: """simple docstring""" UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def a__( self : Optional[int] , lowerCAmelCase : "Conversation" )-> List[int]: """simple docstring""" UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase ) UpperCAmelCase = ''' '''.join(lowerCAmelCase ) UpperCAmelCase = self.encode(lowerCAmelCase ) if len(lowerCAmelCase ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' if len(A ) != len(A ): raise ValueError('''String lengths must match!''' ) UpperCAmelCase = 0 for chara, chara in zip(A , A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A : str = "AAPL" ): '''simple docstring''' UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCAmelCase = BeautifulSoup(requests.get(A ).text , '''html.parser''' ) UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): @property def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=lowerCAmelCase )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''google/ddpm-cifar10-32''' UpperCAmelCase = UNetaDModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , output_type='''numpy''' ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def lowerCamelCase__ ( A : list[int] ): '''simple docstring''' UpperCAmelCase = [] if len(A ) == 1: return [nums.copy()] for _ in range(len(A ) ): UpperCAmelCase = nums.pop(0 ) UpperCAmelCase = permute(A ) for perm in permutations: perm.append(A ) result.extend(A ) nums.append(A ) return result def lowerCamelCase__ ( A : int ): '''simple docstring''' def backtrack(A : Union[str, Any] ): if start == len(A ) - 1: output.append(nums[:] ) else: for i in range(A , len(A ) ): UpperCAmelCase , UpperCAmelCase = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase , UpperCAmelCase = nums[i], nums[start] # backtrack UpperCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _lowercase : Optional[int] = permutea([1, 2, 3]) print(res) doctest.testmod()
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = 3_84 if "tiny" in model_name: UpperCAmelCase = [3, 3, 9, 3] UpperCAmelCase = [96, 1_92, 3_84, 7_68] if "small" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [96, 1_92, 3_84, 7_68] if "base" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [1_28, 2_56, 5_12, 10_24] UpperCAmelCase = 5_12 if "large" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [1_92, 3_84, 7_68, 15_36] UpperCAmelCase = 7_68 if "xlarge" in model_name: UpperCAmelCase = [3, 3, 27, 3] UpperCAmelCase = [2_56, 5_12, 10_24, 20_48] UpperCAmelCase = 10_24 # set label information UpperCAmelCase = 1_50 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = ConvNextConfig( depths=A , hidden_sizes=A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( A : Optional[Any] , A : List[Any] , A : Any ): '''simple docstring''' UpperCAmelCase = dct.pop(A ) UpperCAmelCase = val def lowerCamelCase__ ( A : Union[str, Any] , A : Union[str, Any] , A : str ): '''simple docstring''' UpperCAmelCase = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase = get_upernet_config(A ) UpperCAmelCase = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(A ) if "bn" in key: UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase = val # rename keys UpperCAmelCase = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) model.load_state_dict(A ) # verify on image UpperCAmelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' ) UpperCAmelCase = SegformerImageProcessor() UpperCAmelCase = processor(A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase = model(A ) if model_name == "upernet-convnext-tiny": UpperCAmelCase = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(A ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[F"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowercase : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase__( lowerCAmelCase ): def a__( self : List[Any] , lowerCAmelCase : float )-> float: """simple docstring""" return 0.0 def lowerCamelCase__ ( A : np.ndarray , A : int ): '''simple docstring''' UpperCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) UpperCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase__ ( A : FilterType , A : int ): '''simple docstring''' UpperCAmelCase = 5_12 UpperCAmelCase = [1] + [0] * (size - 1) UpperCAmelCase = [filter_type.process(A ) for item in inputs] UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase = np.abs(np.fft.fft(A ) ) UpperCAmelCase = 20 * np.logaa(A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds UpperCAmelCase = get_bounds(A , A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(A ) plt.show() def lowerCamelCase__ ( A : FilterType , A : int ): '''simple docstring''' UpperCAmelCase = 5_12 UpperCAmelCase = [1] + [0] * (size - 1) UpperCAmelCase = [filter_type.process(A ) for item in inputs] UpperCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler UpperCAmelCase = np.angle(np.fft.fft(A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(A , -2 * pi ) ) plt.show()
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) # TODO Update this _lowercase : int = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "esm" def __init__( self : Optional[Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Dict=12 , lowerCAmelCase : List[Any]=3072 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=1026 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Optional[int]=1E-12 , lowerCAmelCase : List[str]="absolute" , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Optional[int] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , mask_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = emb_layer_norm_before UpperCAmelCase = token_dropout UpperCAmelCase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) UpperCAmelCase = EsmFoldConfig() elif isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = EsmFoldConfig(**lowerCAmelCase ) UpperCAmelCase = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) UpperCAmelCase = get_default_vocab_list() else: UpperCAmelCase = vocab_list else: UpperCAmelCase = None UpperCAmelCase = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , lowerCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase ): UpperCAmelCase = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : str = None __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : float = 0 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : int = 128 __magic_name__ : "TrunkConfig" = None def a__( self : Any )-> Optional[int]: """simple docstring""" if self.trunk is None: UpperCAmelCase = TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase ): UpperCAmelCase = TrunkConfig(**self.trunk ) def a__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = asdict(self ) UpperCAmelCase = self.trunk.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : int = 48 __magic_name__ : int = 1024 __magic_name__ : int = 128 __magic_name__ : int = 32 __magic_name__ : int = 32 __magic_name__ : int = 32 __magic_name__ : float = 0 __magic_name__ : float = 0 __magic_name__ : bool = False __magic_name__ : int = 4 __magic_name__ : Optional[int] = 128 __magic_name__ : "StructureModuleConfig" = None def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" if self.structure_module is None: UpperCAmelCase = StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase ): UpperCAmelCase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) UpperCAmelCase = self.sequence_state_dim // self.sequence_head_width UpperCAmelCase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = asdict(self ) UpperCAmelCase = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__: __magic_name__ : int = 384 __magic_name__ : int = 128 __magic_name__ : int = 16 __magic_name__ : int = 128 __magic_name__ : int = 12 __magic_name__ : int = 4 __magic_name__ : int = 8 __magic_name__ : float = 0.1 __magic_name__ : int = 8 __magic_name__ : int = 1 __magic_name__ : int = 2 __magic_name__ : int = 7 __magic_name__ : int = 10 __magic_name__ : float = 1e-8 __magic_name__ : float = 1e5 def a__( self : Any )-> Optional[Any]: """simple docstring""" return asdict(self ) def lowerCamelCase__ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowercase : Optional[int] = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "rag" __magic_name__ : Any = True def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=" / " , lowerCAmelCase : Dict=" // " , lowerCAmelCase : int=5 , lowerCAmelCase : Optional[Any]=300 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Optional[Any]=8 , lowerCAmelCase : int="wiki_dpr" , lowerCAmelCase : Optional[int]="train" , lowerCAmelCase : Any="compressed" , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=False , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Any=False , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Optional[Any] , )-> int: """simple docstring""" super().__init__( bos_token_id=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , prefix=lowerCAmelCase , vocab_size=lowerCAmelCase , **lowerCAmelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase = kwargs.pop('''question_encoder''' ) UpperCAmelCase = question_encoder_config.pop('''model_type''' ) UpperCAmelCase = kwargs.pop('''generator''' ) UpperCAmelCase = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = reduce_loss UpperCAmelCase = label_smoothing UpperCAmelCase = exclude_bos_score UpperCAmelCase = do_marginalize UpperCAmelCase = title_sep UpperCAmelCase = doc_sep UpperCAmelCase = n_docs UpperCAmelCase = max_combined_length UpperCAmelCase = dataset UpperCAmelCase = dataset_split UpperCAmelCase = index_name UpperCAmelCase = retrieval_vector_size UpperCAmelCase = retrieval_batch_size UpperCAmelCase = passages_path UpperCAmelCase = index_path UpperCAmelCase = use_dummy_dataset UpperCAmelCase = output_retrieved UpperCAmelCase = do_deduplication UpperCAmelCase = use_cache if self.forced_eos_token_id is None: UpperCAmelCase = getattr(self.generator , '''forced_eos_token_id''' , lowerCAmelCase ) @classmethod def a__( cls : Any , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : Optional[int] )-> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **lowerCAmelCase ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.question_encoder.to_dict() UpperCAmelCase = self.generator.to_dict() UpperCAmelCase = self.__class__.model_type return output
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : Any , A : Dict , A : str , A : Optional[Any]=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) UpperCAmelCase = torch.load(A , map_location='''cpu''' ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) UpperCAmelCase = convert_pytorch_state_dict_to_flax(A , A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files UpperCAmelCase = convert_pytorch_sharded_state_dict_to_flax(A , A ) return flax_state_dict def lowerCamelCase__ ( A : Tuple[str] , A : np.ndarray , A : Dict[str, jnp.ndarray] , A : str , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(A : Tuple[str] ) -> bool: return len(set(A ) & {key, (model_prefix,) + key} ) > 0 # layer norm UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean UpperCAmelCase = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var UpperCAmelCase = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # embedding UpperCAmelCase = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(A ): return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(A ): UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 UpperCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): UpperCAmelCase = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): UpperCAmelCase = pt_tuple_key[-2] + '''_v''' if name is not None: UpperCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(A ) UpperCAmelCase = {} UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : Optional[int] , A : str ): '''simple docstring''' import torch # Load the index UpperCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils UpperCAmelCase = torch.load(A ) UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} UpperCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: UpperCAmelCase = flax_model.params['''params'''] UpperCAmelCase = flatten_dict(A ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: UpperCAmelCase = flax_model.params UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) UpperCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary UpperCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor( A , A , A , A ) # add model prefix if necessary UpperCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue if "var" in flax_key[-1]: UpperCAmelCase = jnp.asarray(A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(A , A ) continue # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) else: # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A ) def lowerCamelCase__ ( A : List[str] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = os.path.abspath(A ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class UpperCAmelCase = getattr(A , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(A , '''rb''' ) as state_f: try: UpperCAmelCase = from_bytes(A , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(A , A ) def lowerCamelCase__ ( A : Tuple , A : List[Any] ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights UpperCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda A : x.dtype == jnp.bfloataa , A ) ).values() if any(A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) UpperCAmelCase = jax.tree_util.tree_map( lambda A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A ) UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = pt_model.state_dict() UpperCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) UpperCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys UpperCAmelCase = [] UpperCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): UpperCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix UpperCAmelCase = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: UpperCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: UpperCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(A ) not in pt_model_dict: # conv layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = jnp.transpose(A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(A ) not in pt_model_dict: # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: UpperCAmelCase = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: UpperCAmelCase = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: UpperCAmelCase = '''.'''.join(A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. UpperCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: UpperCAmelCase = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: UpperCAmelCase = key_components[-2] + '''_v''' if name is not None: UpperCAmelCase = key_components[:-3] + [name] UpperCAmelCase = '''.'''.join(A ) UpperCAmelCase = key if flax_key in special_pt_names: UpperCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict UpperCAmelCase = np.asarray(A ) if not isinstance(A , np.ndarray ) else flax_tensor UpperCAmelCase = torch.from_numpy(A ) # remove from missing keys missing_keys.remove(A ) else: # weight is not expected by PyTorch model unexpected_keys.append(A ) pt_model.load_state_dict(A ) # re-transform missing_keys to list UpperCAmelCase = list(A ) if len(A ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(A ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ''' use it for predictions and inference.''' ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" '''If your task is similar to the task the model of the checkpoint was trained on, ''' f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import os def lowerCamelCase__ ( A : str = "input.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(A ) , A ) ) as input_file: UpperCAmelCase = [ [int(A ) for element in line.split(''',''' )] for line in input_file.readlines() ] UpperCAmelCase = len(A ) UpperCAmelCase = len(matrix[0] ) UpperCAmelCase = [[-1 for _ in range(A )] for _ in range(A )] for i in range(A ): UpperCAmelCase = matrix[i][0] for j in range(1 , A ): for i in range(A ): UpperCAmelCase = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A ): UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowercase : List[str] = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _lowercase : Optional[Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ _lowercase : Any = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : Optional[int] )-> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def a__( self : Optional[Any] , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , )-> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase ) }
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _lowercase : Tuple = logging.get_logger(__name__) class lowerCamelCase_( lowerCAmelCase ): __magic_name__ : str = ["audio_values", "audio_mask"] def __init__( self : Tuple , lowerCAmelCase : str=2048 , lowerCAmelCase : str=1 , lowerCAmelCase : Any=[16, 16] , lowerCAmelCase : List[str]=128 , lowerCAmelCase : Tuple=44100 , lowerCAmelCase : Dict=86 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : int=0.0 , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = spectrogram_length UpperCAmelCase = num_channels UpperCAmelCase = patch_size UpperCAmelCase = feature_size // self.patch_size[1] UpperCAmelCase = n_fft UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate UpperCAmelCase = sampling_rate UpperCAmelCase = padding_value UpperCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=lowerCAmelCase , norm='''slaney''' , mel_scale='''slaney''' , ).T def a__( self : Optional[int] , lowerCAmelCase : np.array )-> np.ndarray: """simple docstring""" UpperCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) UpperCAmelCase = log_spec[:, :-1] UpperCAmelCase = log_spec - 20.0 UpperCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Optional[int] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) UpperCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): UpperCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): UpperCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): UpperCAmelCase = audio_features[i] UpperCAmelCase = feature # return as BatchFeature if return_attention_mask: UpperCAmelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: UpperCAmelCase = {'''audio_values''': padded_audio_features} UpperCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = image.size UpperCAmelCase , UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = torch.from_numpy(A ) return 2.0 * image - 1.0 class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Tuple , lowerCAmelCase : VQModel , lowerCAmelCase : UNetaDModel , lowerCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , )-> Any: """simple docstring""" super().__init__() self.register_modules(vqvae=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : Optional[int] = 100 , lowerCAmelCase : Optional[float] = 0.0 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , )-> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase = 1 elif isinstance(lowerCAmelCase , torch.Tensor ): UpperCAmelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase )}""" ) if isinstance(lowerCAmelCase , PIL.Image.Image ): UpperCAmelCase = preprocess(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase = next(self.unet.parameters() ).dtype UpperCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) UpperCAmelCase = image.to(device=self.device , dtype=lowerCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase , device=self.device ) UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for t in self.progress_bar(lowerCAmelCase ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase = torch.cat([latents, image] , dim=1 ) UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase = self.vqvae.decode(lowerCAmelCase ).sample UpperCAmelCase = torch.clamp(lowerCAmelCase , -1.0 , 1.0 ) UpperCAmelCase = image / 2 + 0.5 UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) UpperCAmelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) UpperCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase = model.generate(**lowerCAmelCase ) UpperCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase = model_reloaded.generate(**lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) UpperCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase ): model.save_pretrained(lowerCAmelCase ) UpperCAmelCase = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase )
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCamelCase__ ( A : Dict , A : Dict , A : Optional[int]=[] ): '''simple docstring''' UpperCAmelCase = size[0] - overlap_pixels * 2 UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_55 UpperCAmelCase = np.pad(A , mode='''linear_ramp''' , pad_width=A , end_values=0 ) if "l" in remove_borders: UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCamelCase__ ( A : List[Any] , A : Union[str, Any] , A : Union[str, Any] ): '''simple docstring''' return max(A , min(A , A ) ) def lowerCamelCase__ ( A : [int] , A : [int] , A : [int] ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCamelCase__ ( A : [int] , A : int , A : [int] ): '''simple docstring''' UpperCAmelCase = list(A ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase = clamp_rect(A , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCamelCase__ ( A : Tuple , A : List[str] , A : List[str] , A : Dict ): '''simple docstring''' UpperCAmelCase = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(A , (original_slice, 0) ) return result def lowerCamelCase__ ( A : str , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase = tile.crop(A ) return tile def lowerCamelCase__ ( A : Dict , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = n % d return n - divisor class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase : int = 350 , )-> List[Any]: """simple docstring""" super().__init__( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , low_res_scheduler=lowerCAmelCase , scheduler=lowerCAmelCase , max_noise_level=lowerCAmelCase , ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase = add_overlap_rect(lowerCAmelCase , lowerCAmelCase , image.size ) UpperCAmelCase = image.crop(lowerCAmelCase ) UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase = translated_slice_x - (original_image_slice / 2) UpperCAmelCase = max(0 , lowerCAmelCase ) UpperCAmelCase = squeeze_tile(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = to_input.size UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase = super(lowerCAmelCase , self ).__call__(image=lowerCAmelCase , **lowerCAmelCase ).images[0] UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase = unsqueeze_tile(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCAmelCase ) , mode='''L''' , ) final_image.paste( lowerCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCAmelCase ) @torch.no_grad() def __call__( self : str , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowerCAmelCase : int = 75 , lowerCAmelCase : float = 9.0 , lowerCAmelCase : int = 50 , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 128 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 32 , )-> List[Any]: """simple docstring""" UpperCAmelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase = math.ceil(image.size[0] / tile_size ) UpperCAmelCase = math.ceil(image.size[1] / tile_size ) UpperCAmelCase = tcx * tcy UpperCAmelCase = 0 for y in range(lowerCAmelCase ): for x in range(lowerCAmelCase ): self._process_tile( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , prompt=lowerCAmelCase , num_inference_steps=lowerCAmelCase , guidance_scale=lowerCAmelCase , noise_level=lowerCAmelCase , negative_prompt=lowerCAmelCase , num_images_per_prompt=lowerCAmelCase , eta=lowerCAmelCase , generator=lowerCAmelCase , latents=lowerCAmelCase , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(A , revision='''fp16''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to('''cuda''' ) UpperCAmelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(A : Optional[Any] ): print(f"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('''diffusers_library_progress.jpg''' ) UpperCAmelCase = pipe(image=A , prompt='''Black font, white background, vector''' , noise_level=40 , callback=A ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _lowercase : Dict = get_logger(__name__) def lowerCamelCase__ ( A : List[Any] , A : str , A : Dict , A : int , A : List[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(A , A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving model to {ckpt_dir}""" ) UpperCAmelCase = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=A , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCamelCase__ ( A : Optional[int] , A : List[str] , A : Union[str, Any] , A : Dict , A : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCAmelCase = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase = ( os.path.join(A , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) UpperCAmelCase = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=A , storage_reader=dist_cp.FileSystemReader(A ) , planner=DefaultLoadPlanner() , ) UpperCAmelCase = state_dict['''model'''] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(A ) def lowerCamelCase__ ( A : str , A : Any , A : List[Any] , A : Dict , A : int , A : Optional[Any]=0 ): '''simple docstring''' os.makedirs(A , exist_ok=A ) with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCAmelCase = FSDP.optim_state_dict(A , A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(A , A ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase = os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(A , exist_ok=A ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(A ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCamelCase__ ( A : Union[str, Any] , A : Dict , A : Union[str, Any] , A : Any , A : Tuple , A : int=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase = os.path.join(A , A ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase = torch.load(A ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase = ( os.path.join(A , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(A ) , ) UpperCAmelCase = optim_state['''optimizer'''] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase = FSDP.optim_state_dict_to_load(A , A , A ) optimizer.load_state_dict(A )
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _lowercase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : List[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } _lowercase : Any = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } _lowercase : Optional[int] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[Any] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = ElectraTokenizer def __init__( self : int , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : Any="[SEP]" , lowerCAmelCase : Dict="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : str="[MASK]" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any] , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import operator def lowerCamelCase__ ( A : list , A : bool = False , A : list | None = None ): UpperCAmelCase = operator.lt if reverse else operator.gt UpperCAmelCase = solution or [] if not arr: return solution UpperCAmelCase = [arr.pop(0 )] for i, item in enumerate(A ): if _operator(A , sublist[-1] ): sublist.append(A ) arr.pop(A ) # merging sublist into solution list if not solution: solution.extend(A ) else: while sublist: UpperCAmelCase = sublist.pop(0 ) for i, xx in enumerate(A ): if not _operator(A , A ): solution.insert(A , A ) break else: solution.append(A ) strand_sort(A , A , A ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: UpperCAmelCase = 10_24 UpperCAmelCase = 40_96 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [2_56, 5_12, 10_24, 10_24] UpperCAmelCase = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: UpperCAmelCase = 7_68 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = [2_56, 5_12, 7_68, 7_68] UpperCAmelCase = 1_50 UpperCAmelCase = 16 UpperCAmelCase = (1, 3_84, 3_84) UpperCAmelCase = False UpperCAmelCase = '''project''' if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 7_68 UpperCAmelCase = [1, 1, 1, 0.5] UpperCAmelCase = 1_50 UpperCAmelCase = 16 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''ade20k-id2label.json''' UpperCAmelCase = json.load(open(cached_download(hf_hub_url(A , A , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 1_50, 4_80, 4_80] return config, expected_shape def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(A , A ) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: UpperCAmelCase = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: UpperCAmelCase = name.replace('''..''' , '''.''' ) if "stem.conv" in name: UpperCAmelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: UpperCAmelCase = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: UpperCAmelCase = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: UpperCAmelCase = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: UpperCAmelCase = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: UpperCAmelCase = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def lowerCamelCase__ ( A : Any , A : Union[str, Any] ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A : Dict , A : List[str] , A : Any , A : Dict , A : Optional[int] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_dpt_config(A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") UpperCAmelCase = torch.load(A , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(A ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(A , A ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(A ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(A ) model.load_state_dict(A ) model.eval() # Check outputs on an image UpperCAmelCase = 4_80 if '''ade''' in checkpoint_url else 3_84 UpperCAmelCase = DPTImageProcessor(size=A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(A , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**A ).logits if '''ade''' in checkpoint_url else model(**A ).predicted_depth if show_prediction: UpperCAmelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) _lowercase : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : tuple[int, int] , A : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = position UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase = [] for position in positions: UpperCAmelCase , UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A ) return permissible_positions def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowerCamelCase__ ( A : list[list[int]] , A : tuple[int, int] , A : int ): '''simple docstring''' if is_complete(A ): return True for position in get_valid_pos(A , len(A ) ): UpperCAmelCase , UpperCAmelCase = position if board[y][x] == 0: UpperCAmelCase = curr + 1 if open_knight_tour_helper(A , A , curr + 1 ): return True UpperCAmelCase = 0 return False def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [[0 for i in range(A )] for j in range(A )] for i in range(A ): for j in range(A ): UpperCAmelCase = 1 if open_knight_tour_helper(A , (i, j) , 1 ): return board UpperCAmelCase = 0 UpperCAmelCase = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(A ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging _lowercase : int = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any , lowerCAmelCase : str=None , **lowerCAmelCase : Tuple )-> Any: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCAmelCase , ) super().__init__(args=lowerCAmelCase , **lowerCAmelCase )
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertTrue(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) ) def a__( self : Optional[int] )-> List[str]: """simple docstring""" UpperCAmelCase = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase = '''fp16''' self.assertFalse(is_safetensors_compatible(lowerCAmelCase , variant=lowerCAmelCase ) )
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(A ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowercase : int = """true""" def lowerCamelCase__ ( A : Union[str, Any] , A : Union[str, Any]=82 , A : Optional[int]=16 ): '''simple docstring''' set_seed(42 ) UpperCAmelCase = RegressionModel() UpperCAmelCase = deepcopy(A ) UpperCAmelCase = RegressionDataset(length=A ) UpperCAmelCase = DataLoader(A , batch_size=A ) model.to(accelerator.device ) UpperCAmelCase , UpperCAmelCase = accelerator.prepare(A , A ) return model, ddp_model, dataloader def lowerCamelCase__ ( A : Accelerator , A : Tuple=False ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(A : Any ): UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs with accelerator.main_process_first(): UpperCAmelCase = dataset.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : Tuple ): if use_longest: return tokenizer.pad(A , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(A , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return DataLoader(A , shuffle=A , collate_fn=A , batch_size=16 ) def lowerCamelCase__ ( A : Any , A : List[Any] ): '''simple docstring''' UpperCAmelCase = Accelerator(dispatch_batches=A , split_batches=A ) UpperCAmelCase = get_dataloader(A , not dispatch_batches ) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=A ) UpperCAmelCase , UpperCAmelCase = accelerator.prepare(A , A ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ ( A : str , A : List[Any] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = [] for batch in dataloader: UpperCAmelCase , UpperCAmelCase = batch.values() with torch.no_grad(): UpperCAmelCase = model(A ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase , UpperCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(A ) targs.append(A ) UpperCAmelCase , UpperCAmelCase = torch.cat(A ), torch.cat(A ) return logits, targs def lowerCamelCase__ ( A : Accelerator , A : Dict=82 , A : Dict=False , A : Dict=False , A : List[Any]=16 ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_basic_setup(A , A , A ) UpperCAmelCase , UpperCAmelCase = generate_predictions(A , A , A ) assert ( len(A ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A )}""" def lowerCamelCase__ ( A : bool = False , A : bool = False ): '''simple docstring''' UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase , UpperCAmelCase = get_mrpc_setup(A , A ) # First do baseline UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = setup['''no'''] model.to(A ) model.eval() for batch in dataloader: batch.to(A ) with torch.inference_mode(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A , references=batch['''labels'''] ) UpperCAmelCase = metric.compute() # Then do distributed UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase = batch['''labels'''] UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A , references=A ) UpperCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(A , A ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(A , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase = Accelerator() test_torch_metrics(A , 5_12 ) accelerator.state._reset_state() def lowerCamelCase__ ( A : Any ): '''simple docstring''' main() if __name__ == "__main__": main()
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : str = logging.get_logger(__name__) class UpperCamelCase__( enum.Enum ): __magic_name__ : int = 0 __magic_name__ : Optional[int] = 1 @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = "generated" def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a__( self : Tuple , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Tuple=None , **lowerCAmelCase : int , )-> List[str]: """simple docstring""" UpperCAmelCase = {} if truncation is not None: UpperCAmelCase = truncation UpperCAmelCase = generate_kwargs UpperCAmelCase = {} if return_tensors is not None and return_type is None: UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Dict: """simple docstring""" return True def a__( self : Any , *lowerCAmelCase : Dict , lowerCAmelCase : int )-> Dict: """simple docstring""" UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase = ([prefix + arg for arg in args[0]],) UpperCAmelCase = True elif isinstance(args[0] , lowerCAmelCase ): UpperCAmelCase = (prefix + args[0],) UpperCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase = self.tokenizer(*lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[int] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) if ( isinstance(args[0] , lowerCAmelCase ) and all(isinstance(lowerCAmelCase , lowerCAmelCase ) for el in args[0] ) and all(len(lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def a__( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self._parse_and_tokenize(lowerCAmelCase , truncation=lowerCAmelCase , **lowerCAmelCase ) return inputs def a__( self : str , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple )-> Any: """simple docstring""" if self.framework == "pt": UpperCAmelCase , UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase , UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(lowerCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase = output_ids.reshape(lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=ReturnType.TEXT , lowerCAmelCase : List[str]=False )-> List[Any]: """simple docstring""" UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "summary" def __call__( self : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "translation" def a__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a__( self : int , *lowerCAmelCase : Optional[Any] , lowerCAmelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase : Any=None , lowerCAmelCase : List[Any]=None )-> int: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *lowerCAmelCase , return_tensors=self.framework , truncation=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase ) else: return super()._parse_and_tokenize(*lowerCAmelCase , truncation=lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = super()._sanitize_parameters(**lowerCAmelCase ) if src_lang is not None: UpperCAmelCase = src_lang if tgt_lang is not None: UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase = kwargs.get('''task''' , self.task ) UpperCAmelCase = task.split('''_''' ) if task and len(lowerCAmelCase ) == 4: # translation, XX, to YY UpperCAmelCase = items[1] UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase )
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import math def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [True] * n UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase = i * 2 while index < n: UpperCAmelCase = False UpperCAmelCase = index + i UpperCAmelCase = [2] for i in range(3 , A , 2 ): if is_prime[i]: primes.append(A ) return primes def lowerCamelCase__ ( A : int = 99_99_66_66_33_33 ): '''simple docstring''' UpperCAmelCase = math.floor(math.sqrt(A ) ) + 1_00 UpperCAmelCase = prime_sieve(A ) UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase = primes[prime_index + 1] UpperCAmelCase = last_prime**2 UpperCAmelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( A : Optional[Any] , A : Any , A : List[str] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase = np.concatenate(A , axis=0 ) UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = 2.0 * image - 1.0 UpperCAmelCase = torch.from_numpy(A ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase = torch.cat(A , dim=0 ) return image def lowerCamelCase__ ( A : str , A : str , A : List[Any] , A : Optional[int]=0.9_995 ): '''simple docstring''' if not isinstance(A , np.ndarray ): UpperCAmelCase = True UpperCAmelCase = va.device UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = np.sum(va * va / (np.linalg.norm(A ) * np.linalg.norm(A )) ) if np.abs(A ) > DOT_THRESHOLD: UpperCAmelCase = (1 - t) * va + t * va else: UpperCAmelCase = np.arccos(A ) UpperCAmelCase = np.sin(A ) UpperCAmelCase = theta_a * t UpperCAmelCase = np.sin(A ) UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase = sin_theta_t / sin_theta_a UpperCAmelCase = sa * va + sa * va if inputs_are_torch: UpperCAmelCase = torch.from_numpy(A ).to(A ) return va def lowerCamelCase__ ( A : Optional[Any] , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase = F.normalize(A , dim=-1 ) UpperCAmelCase = F.normalize(A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( A : Union[str, Any] , A : Any ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase = value class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase : AutoencoderKL , lowerCAmelCase : CLIPTextModel , lowerCAmelCase : CLIPModel , lowerCAmelCase : CLIPTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCAmelCase : CLIPFeatureExtractor , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=None , )-> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , clip_model=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , feature_extractor=lowerCAmelCase , coca_model=lowerCAmelCase , coca_tokenizer=lowerCAmelCase , coca_transform=lowerCAmelCase , ) UpperCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase ) set_requires_grad(self.clip_model , lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : Optional[Union[str, int]] = "auto" )-> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def a__( self : Optional[int] )-> Dict: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase ) def a__( self : str )-> str: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[Any] )-> int: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[str] )-> Dict: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]=None )-> List[str]: """simple docstring""" if not isinstance(lowerCAmelCase , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase )}""" ) UpperCAmelCase = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase ) ] UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) else: UpperCAmelCase = self.vae.encode(lowerCAmelCase ).latent_dist.sample(lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 0.18215 * init_latents UpperCAmelCase = init_latents.repeat_interleave(lowerCAmelCase , dim=0 ) UpperCAmelCase = randn_tensor(init_latents.shape , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = init_latents return latents def a__( self : List[str] , lowerCAmelCase : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.coca_transform(lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any )-> List[str]: """simple docstring""" UpperCAmelCase = self.feature_extractor.preprocess(lowerCAmelCase ) UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip.repeat_interleave(lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , )-> Tuple: """simple docstring""" UpperCAmelCase = latents.detach().requires_grad_() UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase = torch.sqrt(lowerCAmelCase ) UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = self.scheduler.sigmas[index] UpperCAmelCase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * sample UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(lowerCAmelCase ) UpperCAmelCase = self.normalize(lowerCAmelCase ).to(latents.dtype ) UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = spherical_dist_loss(lowerCAmelCase , lowerCAmelCase ).mean() * clip_guidance_scale UpperCAmelCase = -torch.autograd.grad(lowerCAmelCase , lowerCAmelCase )[0] if isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = latents.detach() + grads * (sigma**2) UpperCAmelCase = noise_pred_original else: UpperCAmelCase = noise_pred_original - torch.sqrt(lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = 512 , lowerCAmelCase : Optional[int] = 512 , lowerCAmelCase : float = 0.6 , lowerCAmelCase : Optional[int] = 50 , lowerCAmelCase : Optional[float] = 7.5 , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : Optional[float] = 100 , lowerCAmelCase : Optional[torch.Generator] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , lowerCAmelCase : float = 0.8 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : float = 0.1 , )-> Optional[Any]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(lowerCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(lowerCAmelCase , torch.Generator ) and batch_size > 1: UpperCAmelCase = [generator] + [None] * (batch_size - 1) UpperCAmelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase = ''', '''.join(lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) if style_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) # get prompt text embeddings for content and style UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = text_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # set timesteps UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase = {} if accepts_offset: UpperCAmelCase = 1 self.scheduler.set_timesteps(lowerCAmelCase , **lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) UpperCAmelCase = timesteps[:1].repeat(lowerCAmelCase ) # Preprocess image UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if clip_guidance_scale > 0: UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = slerp( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = content_text_input.input_ids.shape[-1] UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=lowerCAmelCase , return_tensors='''pt''' ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase = uncond_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device='''cpu''' , dtype=lowerCAmelCase ).to( self.device ) else: UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta # check if the scheduler accepts generator UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase = generator with self.progress_bar(total=lowerCAmelCase ): for i, t in enumerate(lowerCAmelCase ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase , UpperCAmelCase = self.cond_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * latents UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase , nsfw_content_detected=lowerCAmelCase )
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import math def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(A ) def lowerCamelCase__ ( A : float = 1 / 1_23_45 ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 3 while True: UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(A ): UpperCAmelCase = int(A ) total_partitions += 1 if check_partition_perfect(A ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(A ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _lowercase : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") _lowercase : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") _lowercase : Union[str, Any] = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = CamembertTokenizer __magic_name__ : Dict = CamembertTokenizerFast __magic_name__ : int = True __magic_name__ : Optional[int] = True def a__( self : Optional[Any] )-> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCAmelCase ) , 1004 ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1005 ) def a__( self : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = CamembertTokenizer(lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) UpperCAmelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. UpperCAmelCase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase , )
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : str=3 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Optional[int]=[8, 16, 32, 64] , lowerCAmelCase : Tuple=[1, 1, 2, 1] , lowerCAmelCase : str=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]="relu" , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=["stage2", "stage3", "stage4"] , lowerCAmelCase : List[Any]=[2, 3, 4] , lowerCAmelCase : int=1 , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = num_groups def a__( self : str )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : List[Any] )-> int: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = BitModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = BitForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BitBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = BitBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __magic_name__ : Tuple = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __magic_name__ : Union[str, Any] = False __magic_name__ : Any = False __magic_name__ : Any = False __magic_name__ : int = False __magic_name__ : List[str] = False def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = BitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : Tuple )-> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def a__( self : int )-> Any: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def a__( self : List[str] )-> Dict: """simple docstring""" pass def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(config=lowerCAmelCase ) for name, module in model.named_modules(): if isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a__( self : List[str] )-> str: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str ): UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase = layer_type UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" pass def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def a__( self : Union[str, Any] )-> str: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = BitModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : List[Any] )-> List[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__( self : Optional[Any] )-> str: """simple docstring""" UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''pt''' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) ) @require_torch class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[Any] = (BitBackbone,) if is_torch_available() else () __magic_name__ : int = BitConfig __magic_name__ : Union[str, Any] = False def a__( self : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = BitModelTester(self )
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from math import sqrt def lowerCamelCase__ ( A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(A , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : str = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowercase : List[Any] = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _lowercase : int = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _lowercase : List[str] = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowercase : List[Any] = F"""down_blocks.{i}.resnets.{j}.""" _lowercase : Union[str, Any] = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowercase : int = F"""down_blocks.{i}.attentions.{j}.""" _lowercase : Tuple = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowercase : List[str] = F"""up_blocks.{i}.resnets.{j}.""" _lowercase : Any = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowercase : Optional[Any] = F"""up_blocks.{i}.attentions.{j}.""" _lowercase : Optional[int] = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowercase : Dict = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowercase : Tuple = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowercase : Union[str, Any] = F"""up_blocks.{i}.upsamplers.0.""" _lowercase : Tuple = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowercase : Tuple = """mid_block.attentions.0.""" _lowercase : Optional[Any] = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowercase : int = F"""mid_block.resnets.{j}.""" _lowercase : Any = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: UpperCAmelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v UpperCAmelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowercase : Any = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowercase : List[str] = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowercase : Optional[int] = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowercase : Union[str, Any] = F"""down_blocks.{i}.downsamplers.0.""" _lowercase : str = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowercase : Optional[int] = F"""up_blocks.{i}.upsamplers.0.""" _lowercase : Union[str, Any] = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowercase : Tuple = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowercase : int = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowercase : Any = F"""mid_block.resnets.{i}.""" _lowercase : List[Any] = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowercase : Optional[Any] = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( A : Dict ): '''simple docstring''' return w.reshape(*w.shape , 1 , 1 ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: UpperCAmelCase = v.replace(A , A ) UpperCAmelCase = v UpperCAmelCase = {v: vae_state_dict[k] for k, v in mapping.items()} UpperCAmelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) UpperCAmelCase = reshape_weight_for_sd(A ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowercase : Union[str, Any] = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _lowercase : int = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowercase : str = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowercase : Dict = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = {} UpperCAmelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): UpperCAmelCase = k[: -len('''.q_proj.weight''' )] UpperCAmelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: UpperCAmelCase = [None, None, None] UpperCAmelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): UpperCAmelCase = k[: -len('''.q_proj.bias''' )] UpperCAmelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: UpperCAmelCase = [None, None, None] UpperCAmelCase = v continue UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = torch.cat(A ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) UpperCAmelCase = textenc_pattern.sub(lambda A : protected[re.escape(m.group(0 ) )] , A ) UpperCAmelCase = torch.cat(A ) return new_state_dict def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _lowercase : Any = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowercase : Optional[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _lowercase : Union[str, Any] = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _lowercase : Optional[Any] = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowercase : List[Any] = load_file(unet_path, device="""cpu""") else: _lowercase : List[Any] = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _lowercase : int = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _lowercase : Tuple = load_file(vae_path, device="""cpu""") else: _lowercase : int = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _lowercase : Union[str, Any] = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _lowercase : Union[str, Any] = load_file(text_enc_path, device="""cpu""") else: _lowercase : List[Any] = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _lowercase : int = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _lowercase : Optional[int] = convert_unet_state_dict(unet_state_dict) _lowercase : Dict = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowercase : Dict = convert_vae_state_dict(vae_state_dict) _lowercase : Tuple = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowercase : Any = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowercase : Any = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _lowercase : Dict = convert_text_enc_state_dict_vaa(text_enc_dict) _lowercase : Dict = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _lowercase : Optional[Any] = convert_text_enc_state_dict(text_enc_dict) _lowercase : Any = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowercase : Tuple = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowercase : Tuple = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowercase : Dict = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=7 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Optional[int]=18 , lowerCAmelCase : Union[str, Any]=30 , lowerCAmelCase : List[Any]=400 , lowerCAmelCase : Any=True , lowerCAmelCase : int=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCAmelCase : int=[0.5, 0.5, 0.5] , lowerCAmelCase : Optional[Any]=False , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_normalize UpperCAmelCase = image_mean UpperCAmelCase = image_std UpperCAmelCase = do_reduce_labels def a__( self : Any )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(dataset[0]['''file'''] ) UpperCAmelCase = Image.open(dataset[1]['''file'''] ) return image, map def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase = Image.open(ds[0]['''file'''] ) UpperCAmelCase = Image.open(ds[1]['''file'''] ) UpperCAmelCase = Image.open(ds[2]['''file'''] ) UpperCAmelCase = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Union[str, Any] = BeitImageProcessor if is_vision_available() else None def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = BeitImageProcessingTester(self ) @property def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''image_std''' ) ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) def a__( self : Tuple )-> str: """simple docstring""" pass def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Optional[int] )-> Tuple: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) UpperCAmelCase = [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) UpperCAmelCase , UpperCAmelCase = prepare_semantic_single_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) UpperCAmelCase , UpperCAmelCase = prepare_semantic_batch_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase , UpperCAmelCase = prepare_semantic_single_inputs() UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) UpperCAmelCase = True UpperCAmelCase = image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowercase : int = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = "focalnet" def __init__( self : List[Any] , lowerCAmelCase : Any=224 , lowerCAmelCase : Any=4 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : str=96 , lowerCAmelCase : List[str]=False , lowerCAmelCase : int=[192, 384, 768, 768] , lowerCAmelCase : List[Any]=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : str=4.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[int]=1E-4 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=False , lowerCAmelCase : Any=0.02 , lowerCAmelCase : Tuple=1E-5 , lowerCAmelCase : Dict=32 , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = use_conv_embed UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = focal_levels UpperCAmelCase = focal_windows UpperCAmelCase = hidden_act UpperCAmelCase = mlp_ratio UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = use_layerscale UpperCAmelCase = layerscale_value UpperCAmelCase = use_post_layernorm UpperCAmelCase = use_post_layernorm_in_modulation UpperCAmelCase = normalize_modulator UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = encoder_stride UpperCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple )-> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = 1 UpperCAmelCase = 3 UpperCAmelCase = (32, 32) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image @property def a__( self : Optional[Any] )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def a__( self : Any )-> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def a__( self : Dict )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase ) @property def a__( self : Optional[Any] )-> Tuple: """simple docstring""" def extract(*lowerCAmelCase : str , **lowerCAmelCase : Tuple ): class UpperCamelCase__: def __init__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = torch.ones([0] ) def a__( self : Dict , lowerCAmelCase : str )-> str: """simple docstring""" self.pixel_values.to(lowerCAmelCase ) return self return Out() return extract def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Tuple )-> Tuple: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase = output.images UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(pipe.scheduler , lowerCAmelCase ) assert pipe.safety_checker is None UpperCAmelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.dummy_cond_unet UpperCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) UpperCAmelCase = self.dummy_vae UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase = unet.half() UpperCAmelCase = vae.half() UpperCAmelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase = StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''A painting of a squirrel eating a burger''' UpperCAmelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase = 4003660346 UpperCAmelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase ) UpperCAmelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase = 2734971755 UpperCAmelCase = 7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase = 1044355234 UpperCAmelCase = 12 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) UpperCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase = output.images UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowerCamelCase__ ( A : Union[str, Any]=32 , A : Dict=10 , A : int=1_00 , A : Optional[int]=10_26 , A : Dict=True , A : Dict="data/tokenized_stories_train_wikitext103.jbl" , A : Optional[int]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set UpperCAmelCase , UpperCAmelCase = generate_datasets( A , A , number=A , min_len=10_26 , trim=A ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model UpperCAmelCase = load_gpta('''gpt2''' ).to(A ) print('''computing perplexity on objective set''' ) UpperCAmelCase = compute_perplexity(A , A , A ).item() print('''perplexity on objective set:''' , A ) # collect igf pairs and save to file demo.jbl collect_objective_set(A , A , A , A , A , A , A , A ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowerCamelCase__ ( A : Optional[Any] , A : List[Any]=15 , A : Any=1_28 , A : Dict=1_00 , A : Any="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model UpperCAmelCase = SecondaryLearner(A ) # Train secondary learner UpperCAmelCase = train_secondary_learner( A , A , max_epochs=A , batch_size=A , eval_freq=1_00 , igf_model_path=A , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowerCamelCase__ ( A : int , A : List[Any] , A : Any , A : Optional[Any]=32 , A : Union[str, Any]=10_00 , A : List[Any]=16 , A : Any=1.0 , A : List[str]=recopy_gpta , A : Any=None , A : Union[str, Any]=10 , A : Any="gpt2_finetuned.pt" , ): UpperCAmelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase = RandomSampler(A ) UpperCAmelCase = DataLoader(A , sampler=A ) UpperCAmelCase = max_steps // (len(A )) + 1 UpperCAmelCase = 0 UpperCAmelCase = torch.zeros((1, context_len) , dtype=torch.long , device=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = recopy_model(A , A , A ) model.train() if secondary_learner is not None: secondary_learner.to(A ) secondary_learner.eval() UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = [] UpperCAmelCase = [] # Compute the performance of the transformer model at the beginning UpperCAmelCase = compute_perplexity(A , A , A ) test_perps.append(A ) print('''Test perplexity, step''' , A , ''':''' , A ) for epoch in range(int(A ) ): for step, example in enumerate(A ): torch.cuda.empty_cache() UpperCAmelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCAmelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCAmelCase = model(A , labels=A ) UpperCAmelCase = True if secondary_learner is not None: UpperCAmelCase = secondary_learner.forward( torch.tensor(A , dtype=torch.long , device=A ).unsqueeze(0 ) )[0].item() observed_qs.append(float(A ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCAmelCase = -1 if predicted_q < threshold: UpperCAmelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCAmelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCAmelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCAmelCase = compute_perplexity(A , A , A ) test_perps.append(A ) print('''Test perplexity, step''' , A , ''':''' , A ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , A ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowerCamelCase__ ( ): UpperCAmelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=A , type=A , required=A , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A , type=A , required=A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=A , default=A , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=A , default=A , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=A , type=A , required=A , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=A , type=A , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=A , default=A , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=A , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=A , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=A , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=A , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=A , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=A , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=A , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=A , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=A , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=A , type=A , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=A , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=A , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=A , type=A , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=A , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner UpperCAmelCase = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner UpperCAmelCase = training_secondary_learner( A , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model UpperCAmelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCAmelCase , UpperCAmelCase = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=A ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( A , A , A , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=A , secondary_learner=A , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 2 while i * i <= n: UpperCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(A ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : Optional[int]=32 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Union[str, Any]=[1, 2, 1] , lowerCAmelCase : List[str]=[2, 2, 4] , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : str=2.0 , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Union[str, Any]=1E-5 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=None , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : str=["stage1", "stage2", "stage3"] , lowerCAmelCase : str=[1, 2, 3] , )-> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = num_heads UpperCAmelCase = window_size UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = use_absolute_embeddings UpperCAmelCase = patch_norm UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = is_training UpperCAmelCase = scope UpperCAmelCase = use_labels UpperCAmelCase = type_sequence_label_size UpperCAmelCase = encoder_stride UpperCAmelCase = out_features UpperCAmelCase = out_indices def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def a__( self : str )-> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = MaskFormerSwinModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(lowerCAmelCase ): UpperCAmelCase = ['''stem'''] UpperCAmelCase = MaskFormerSwinBackbone(config=lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : str = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __magic_name__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __magic_name__ : Any = False __magic_name__ : Optional[int] = False __magic_name__ : Dict = False __magic_name__ : str = False __magic_name__ : Tuple = False def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = MaskFormerSwinModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" pass def a__( self : Dict )-> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Optional[Any] )-> List[str]: """simple docstring""" return def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a__( self : Dict )-> List[Any]: """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a__( self : Any )-> Optional[Any]: """simple docstring""" pass def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a__( self : Optional[int] )-> Dict: """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" pass def a__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # Swin has a different seq_length UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a__( self : List[str] )-> List[Any]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a__( self : List[str] )-> Optional[int]: """simple docstring""" pass def a__( self : int )-> int: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase : Tuple ): UpperCAmelCase = 0 return t def check_equivalence(lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]={} ): with torch.no_grad(): UpperCAmelCase = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = model(**lowerCAmelCase , return_dict=lowerCAmelCase , **lowerCAmelCase ).to_tuple() def recursive_check(lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] ): if isinstance(lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase , lowerCAmelCase ): recursive_check(lowerCAmelCase , lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(lowerCAmelCase , lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase ) , set_nan_tensor_to_zero(lowerCAmelCase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(lowerCAmelCase ).any()} and `inf`: {torch.isinf(lowerCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(lowerCAmelCase ).any()} and `inf`: {torch.isinf(lowerCAmelCase )}.""" ) , ) recursive_check(lowerCAmelCase , lowerCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'''output_hidden_states''': True} ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) check_equivalence(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , {'''output_hidden_states''': True} ) @require_torch class UpperCamelCase__( unittest.TestCase , lowerCAmelCase ): __magic_name__ : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () __magic_name__ : str = MaskFormerSwinConfig def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = MaskFormerSwinModelTester(self ) def a__( self : Dict )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: UpperCAmelCase = backbone_class(lowerCAmelCase ) backbone.to(lowerCAmelCase ) backbone.eval() UpperCAmelCase = backbone(**lowerCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCAmelCase = backbone(**lowerCAmelCase , output_hidden_states=lowerCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCAmelCase = backbone(**lowerCAmelCase , output_attentions=lowerCAmelCase ) self.assertIsNotNone(outputs.attentions )
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' def lowerCamelCase__ ( A : list , A : list , A : int , A : int , A : int ): '''simple docstring''' if index == number_of_items: return 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = knapsack(A , A , A , A , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase = values[index] + knapsack( A , A , A , max_weight - weights[index] , index + 1 ) return max(A , A ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _lowercase : Dict = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowercase : Tuple = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' UpperCAmelCase = [] for i in range(len(A ) ): UpperCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(A ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(A ) - 1: neighbour_count += cells[i + 1][j] if i < len(A ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(A ) return next_generation def lowerCamelCase__ ( A : list[list[int]] , A : int ): '''simple docstring''' UpperCAmelCase = [] for _ in range(A ): # Create output image UpperCAmelCase = Image.new('''RGB''' , (len(cells[0] ), len(A )) ) UpperCAmelCase = img.load() # Save cells to image for x in range(len(A ) ): for y in range(len(cells[0] ) ): UpperCAmelCase = 2_55 - cells[y][x] * 2_55 UpperCAmelCase = (colour, colour, colour) # Save image images.append(A ) UpperCAmelCase = new_generation(A ) return images if __name__ == "__main__": _lowercase : int = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger("""transformers.models.speecht5""") def lowerCamelCase__ ( A : List[Any] , A : int , A : Union[str, Any] ): '''simple docstring''' hf_model.apply_weight_norm() UpperCAmelCase = checkpoint['''input_conv.weight_g'''] UpperCAmelCase = checkpoint['''input_conv.weight_v'''] UpperCAmelCase = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCAmelCase = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""] UpperCAmelCase = checkpoint['''output_conv.1.weight_g'''] UpperCAmelCase = checkpoint['''output_conv.1.weight_v'''] UpperCAmelCase = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def lowerCamelCase__ ( A : str , A : Dict , A : int , A : Union[str, Any]=None , A : Optional[Any]=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase = SpeechTaHifiGanConfig.from_pretrained(A ) else: UpperCAmelCase = SpeechTaHifiGanConfig() UpperCAmelCase = SpeechTaHifiGan(A ) UpperCAmelCase = torch.load(A ) load_weights(orig_checkpoint['''model''']['''generator'''] , A , A ) UpperCAmelCase = np.load(A ) UpperCAmelCase = stats[0].reshape(-1 ) UpperCAmelCase = stats[1].reshape(-1 ) UpperCAmelCase = torch.from_numpy(A ).float() UpperCAmelCase = torch.from_numpy(A ).float() model.save_pretrained(A ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(A ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowercase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[Any] = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : List[str] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0