code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Union[str, Any] = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "bart" __magic_name__ : Tuple = ["past_key_values"] __magic_name__ : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[str] , lowerCAmelCase : Tuple=50265 , lowerCAmelCase : str=1024 , lowerCAmelCase : int=12 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Dict=1024 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : int=False , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Any=2 , **lowerCAmelCase : Dict , )-> Tuple: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = classifier_dropout UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , lowerCAmelCase ): UpperCAmelCase = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class UpperCamelCase__( lowerCAmelCase ): @property def a__( self : Tuple )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowerCAmelCase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a__( self : Any )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowerCAmelCase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowerCAmelCase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a__( self : List[Any] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def a__( self : int , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def a__( self : Dict , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowerCAmelCase ) UpperCAmelCase = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def a__( self : Optional[Any] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def a__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: UpperCAmelCase = super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
50
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int = 10**12 ): '''simple docstring''' UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging _lowercase : int = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any , lowerCAmelCase : str=None , **lowerCAmelCase : Tuple )-> Any: """simple docstring""" warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCAmelCase , ) super().__init__(args=lowerCAmelCase , **lowerCAmelCase )
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : BigBirdConfig __magic_name__ : jnp.dtype = jnp.floataa __magic_name__ : bool = True def a__( self : Union[str, Any] )-> str: """simple docstring""" super().setup() UpperCAmelCase = nn.Dense(5 , dtype=self.dtype ) def __call__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = FlaxBigBirdForNaturalQuestionsModule def lowerCamelCase__ ( A : str , A : Any , A : int , A : str , A : List[str] , A : List[Any] ): '''simple docstring''' def cross_entropy(A : Optional[int] , A : Tuple , A : int=None ): UpperCAmelCase = logits.shape[-1] UpperCAmelCase = (labels[..., None] == jnp.arange(A )[None]).astype('''f4''' ) UpperCAmelCase = jax.nn.log_softmax(A , axis=-1 ) UpperCAmelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: UpperCAmelCase = reduction(A ) return loss UpperCAmelCase = partial(A , reduction=jnp.mean ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) UpperCAmelCase = cross_entropy(A , A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class UpperCamelCase__: __magic_name__ : str = "google/bigbird-roberta-base" __magic_name__ : int = 3000 __magic_name__ : int = 1_0500 __magic_name__ : int = 128 __magic_name__ : int = 3 __magic_name__ : int = 1 __magic_name__ : int = 5 # tx_args __magic_name__ : float = 3e-5 __magic_name__ : float = 0.0 __magic_name__ : int = 2_0000 __magic_name__ : float = 0.0_0_9_5 __magic_name__ : str = "bigbird-roberta-natural-questions" __magic_name__ : str = "training-expt" __magic_name__ : str = "data/nq-training.jsonl" __magic_name__ : str = "data/nq-validation.jsonl" def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" os.makedirs(self.base_dir , exist_ok=lowerCAmelCase ) UpperCAmelCase = os.path.join(self.base_dir , self.save_dir ) UpperCAmelCase = self.batch_size_per_device * jax.device_count() @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : int = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = self.collate_fn(lowerCAmelCase ) UpperCAmelCase = jax.tree_util.tree_map(lowerCAmelCase , lowerCAmelCase ) return batch def a__( self : List[str] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.fetch_inputs(features['''input_ids'''] ) UpperCAmelCase = { '''input_ids''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowerCAmelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def a__( self : Tuple , lowerCAmelCase : list )-> int: """simple docstring""" UpperCAmelCase = [self._fetch_inputs(lowerCAmelCase ) for ids in input_ids] return zip(*lowerCAmelCase ) def a__( self : Dict , lowerCAmelCase : list )-> Optional[Any]: """simple docstring""" UpperCAmelCase = [1 for _ in range(len(lowerCAmelCase ) )] while len(lowerCAmelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCamelCase__ ( A : str , A : Optional[Any] , A : List[str]=None ): '''simple docstring''' if seed is not None: UpperCAmelCase = dataset.shuffle(seed=A ) for i in range(len(A ) // batch_size ): UpperCAmelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A ) @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , A : Optional[int] , **A : int ): '''simple docstring''' def loss_fn(A : Dict ): UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=A , dropout_rng=A , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs return state.loss_fn( A , A , A , A , A , A , ) UpperCAmelCase , UpperCAmelCase = jax.random.split(A ) UpperCAmelCase = jax.value_and_grad(A ) UpperCAmelCase , UpperCAmelCase = grad_fn(state.params ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) UpperCAmelCase = jax.lax.pmean(A , '''batch''' ) UpperCAmelCase = state.apply_gradients(grads=A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def lowerCamelCase__ ( A : List[str] , **A : List[str] ): '''simple docstring''' UpperCAmelCase = model_inputs.pop('''start_labels''' ) UpperCAmelCase = model_inputs.pop('''end_labels''' ) UpperCAmelCase = model_inputs.pop('''pooled_labels''' ) UpperCAmelCase = state.apply_fn(**A , params=state.params , train=A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = outputs UpperCAmelCase = state.loss_fn(A , A , A , A , A , A ) UpperCAmelCase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class UpperCamelCase__( train_state.TrainState ): __magic_name__ : Callable = struct.field(pytree_node=lowerCAmelCase ) @dataclass class UpperCamelCase__: __magic_name__ : Args __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : Callable __magic_name__ : wandb __magic_name__ : Callable = None def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=None )-> Tuple: """simple docstring""" UpperCAmelCase = model.params UpperCAmelCase = TrainState.create( apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , loss_fn=lowerCAmelCase , ) if ckpt_dir is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = restore_checkpoint(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } UpperCAmelCase , UpperCAmelCase = build_tx(**lowerCAmelCase ) UpperCAmelCase = train_state.TrainState( step=lowerCAmelCase , apply_fn=model.__call__ , params=lowerCAmelCase , tx=lowerCAmelCase , opt_state=lowerCAmelCase , ) UpperCAmelCase = args UpperCAmelCase = data_collator UpperCAmelCase = lr UpperCAmelCase = params UpperCAmelCase = jax_utils.replicate(lowerCAmelCase ) return state def a__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.args UpperCAmelCase = len(lowerCAmelCase ) // args.batch_size UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(lowerCAmelCase , jax.device_count() ) for epoch in range(args.max_epochs ): UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = get_batched_dataset(lowerCAmelCase , args.batch_size , seed=lowerCAmelCase ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc=F"""Running EPOCH-{epoch}""" ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.train_step_fn(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: UpperCAmelCase = jax_utils.unreplicate(state.step ) UpperCAmelCase = running_loss.item() / i UpperCAmelCase = self.scheduler_fn(state_step - 1 ) UpperCAmelCase = self.evaluate(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowerCAmelCase ) ) self.logger.log(lowerCAmelCase , commit=lowerCAmelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple )-> Any: """simple docstring""" UpperCAmelCase = get_batched_dataset(lowerCAmelCase , self.args.batch_size ) UpperCAmelCase = len(lowerCAmelCase ) // self.args.batch_size UpperCAmelCase = jnp.array(0 , dtype=jnp.floataa ) UpperCAmelCase = 0 for batch in tqdm(lowerCAmelCase , total=lowerCAmelCase , desc='''Evaluating ... ''' ): UpperCAmelCase = self.data_collator(lowerCAmelCase ) UpperCAmelCase = self.val_step_fn(lowerCAmelCase , **lowerCAmelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def a__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = jax_utils.unreplicate(lowerCAmelCase ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=''' ... ''' ) self.model_save_fn(lowerCAmelCase , params=state.params ) with open(os.path.join(lowerCAmelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(lowerCAmelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(lowerCAmelCase , '''data_collator.joblib''' ) ) with open(os.path.join(lowerCAmelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , lowerCAmelCase ) print('''DONE''' ) def lowerCamelCase__ ( A : Tuple , A : Dict ): '''simple docstring''' print(f"""RESTORING CHECKPOINT FROM {save_dir}""" , end=''' ... ''' ) with open(os.path.join(A , '''flax_model.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.params , f.read() ) with open(os.path.join(A , '''opt_state.msgpack''' ) , '''rb''' ) as f: UpperCAmelCase = from_bytes(state.opt_state , f.read() ) UpperCAmelCase = joblib.load(os.path.join(A , '''args.joblib''' ) ) UpperCAmelCase = joblib.load(os.path.join(A , '''data_collator.joblib''' ) ) with open(os.path.join(A , '''training_state.json''' ) , '''r''' ) as f: UpperCAmelCase = json.load(A ) UpperCAmelCase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def lowerCamelCase__ ( A : Any , A : Any , A : Union[str, Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = num_train_steps - warmup_steps UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=A , transition_steps=A ) UpperCAmelCase = optax.linear_schedule(init_value=A , end_value=1E-7 , transition_steps=A ) UpperCAmelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCamelCase__ ( A : List[Any] , A : Optional[Any] , A : str , A : Optional[Any] , A : Any ): '''simple docstring''' def weight_decay_mask(A : List[str] ): UpperCAmelCase = traverse_util.flatten_dict(A ) UpperCAmelCase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(A ) UpperCAmelCase = scheduler_fn(A , A , A , A ) UpperCAmelCase = optax.adamw(learning_rate=A , weight_decay=A , mask=A ) return tx, lr
50
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import math def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(A ) def lowerCamelCase__ ( A : float = 1 / 1_23_45 ): '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 3 while True: UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(A ): UpperCAmelCase = int(A ) total_partitions += 1 if check_partition_perfect(A ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(A ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : tuple[int, int] , A : int ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = position UpperCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCAmelCase = [] for position in positions: UpperCAmelCase , UpperCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A ) return permissible_positions def lowerCamelCase__ ( A : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def lowerCamelCase__ ( A : list[list[int]] , A : tuple[int, int] , A : int ): '''simple docstring''' if is_complete(A ): return True for position in get_valid_pos(A , len(A ) ): UpperCAmelCase , UpperCAmelCase = position if board[y][x] == 0: UpperCAmelCase = curr + 1 if open_knight_tour_helper(A , A , curr + 1 ): return True UpperCAmelCase = 0 return False def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [[0 for i in range(A )] for j in range(A )] for i in range(A ): for j in range(A ): UpperCAmelCase = 1 if open_knight_tour_helper(A , (i, j) , 1 ): return board UpperCAmelCase = 0 UpperCAmelCase = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(A ) if __name__ == "__main__": import doctest doctest.testmod()
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _lowercase : Tuple = logging.get_logger(__name__) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "vision-encoder-decoder" __magic_name__ : List[Any] = True def __init__( self : List[str] , **lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" super().__init__(**lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) UpperCAmelCase = kwargs.pop('''encoder''' ) UpperCAmelCase = encoder_config.pop('''model_type''' ) UpperCAmelCase = kwargs.pop('''decoder''' ) UpperCAmelCase = decoder_config.pop('''model_type''' ) UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = True @classmethod def a__( cls : Tuple , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : List[Any] )-> PretrainedConfig: """simple docstring""" logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase = True UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.encoder.to_dict() UpperCAmelCase = self.decoder.to_dict() UpperCAmelCase = self.__class__.model_type return output class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = version.parse("1.11" ) @property def a__( self : Union[str, Any] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__( self : Optional[int] )-> float: """simple docstring""" return 1E-4 @property def a__( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class UpperCamelCase__( lowerCAmelCase ): @property def a__( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCAmelCase = OrderedDict() UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def a__( self : Optional[Any] , lowerCAmelCase : "PreTrainedTokenizerBase" , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional["TensorType"] = None , )-> Mapping[str, Any]: """simple docstring""" import torch UpperCAmelCase = OrderedDict() UpperCAmelCase = super().generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = dummy_input['''input_ids'''].shape UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) UpperCAmelCase = dummy_input.pop('''input_ids''' ) UpperCAmelCase = dummy_input.pop('''attention_mask''' ) UpperCAmelCase = torch.zeros(lowerCAmelCase ) return common_inputs class UpperCamelCase__( lowerCAmelCase ): @property def a__( self : Dict )-> None: """simple docstring""" pass def a__( self : List[str] , lowerCAmelCase : PretrainedConfig )-> OnnxConfig: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase ) def a__( self : int , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" )-> OnnxConfig: """simple docstring""" UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase , lowerCAmelCase )
50
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _lowercase : Dict = """<<<<<<< This should probably be modified because it mentions: """ _lowercase : Tuple = """======= >>>>>>> """ _lowercase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] _lowercase : List[str] = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def lowerCamelCase__ ( A : Namespace ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[int]: """simple docstring""" UpperCAmelCase = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=lowerCAmelCase , required=lowerCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str , *lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = get_logger('''datasets-cli/converting''' ) UpperCAmelCase = tfds_path UpperCAmelCase = datasets_directory def a__( self : List[Any] )-> List[str]: """simple docstring""" if os.path.isdir(self._tfds_path ): UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase = os.listdir(lowerCAmelCase ) else: UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(lowerCAmelCase , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [] UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = [] for line in lines: UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase = '''''' continue elif "from absl import logging" in out_line: UpperCAmelCase = '''from datasets import logging\n''' elif "getLogger" in out_line: UpperCAmelCase = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase = True UpperCAmelCase = list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '''\n''' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase = re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) UpperCAmelCase = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase = True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase = f_name.replace('''.py''' , '''''' ) UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCAmelCase = os.path.basename(lowerCAmelCase ) UpperCAmelCase = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase__: __magic_name__ : CommonSchedulerState # setable values __magic_name__ : jnp.ndarray __magic_name__ : jnp.ndarray __magic_name__ : Optional[int] = None @classmethod def a__( cls : str , lowerCAmelCase : CommonSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray )-> List[str]: """simple docstring""" return cls(common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase ) @dataclass class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : DDPMSchedulerState class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[str] = [e.name for e in FlaxKarrasDiffusionSchedulers] __magic_name__ : jnp.dtype @property def a__( self : str )-> str: """simple docstring""" return True @register_to_config def __init__( self : List[Any] , lowerCAmelCase : int = 1000 , lowerCAmelCase : float = 0.0001 , lowerCAmelCase : float = 0.02 , lowerCAmelCase : str = "linear" , lowerCAmelCase : Optional[jnp.ndarray] = None , lowerCAmelCase : str = "fixed_small" , lowerCAmelCase : bool = True , lowerCAmelCase : str = "epsilon" , lowerCAmelCase : jnp.dtype = jnp.floataa , )-> Tuple: """simple docstring""" UpperCAmelCase = dtype def a__( self : Union[str, Any] , lowerCAmelCase : Optional[CommonSchedulerState] = None )-> DDPMSchedulerState: """simple docstring""" if common is None: UpperCAmelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowerCAmelCase , init_noise_sigma=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[int] = None )-> jnp.ndarray: """simple docstring""" return sample def a__( self : str , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : int , lowerCAmelCase : Tuple = () )-> DDPMSchedulerState: """simple docstring""" UpperCAmelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase = (jnp.arange(0 , lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowerCAmelCase , timesteps=lowerCAmelCase , ) def a__( self : Any , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : str , lowerCAmelCase : Any=None , lowerCAmelCase : Any=None )-> Optional[int]: """simple docstring""" UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase = jnp.clip(lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase = jnp.log(jnp.clip(lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase = variance UpperCAmelCase = state.common.betas[t] UpperCAmelCase = (predicted_variance + 1) / 2 UpperCAmelCase = frac * max_log + (1 - frac) * min_log return variance def a__( self : List[str] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : int , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : Optional[jax.random.KeyArray] = None , lowerCAmelCase : bool = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase = timestep if key is None: UpperCAmelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase , UpperCAmelCase = jnp.split(lowerCAmelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase = None # 1. compute alphas, betas UpperCAmelCase = state.common.alphas_cumprod[t] UpperCAmelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase = 1 - alpha_prod_t UpperCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase = jnp.clip(lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase = jax.random.split(lowerCAmelCase , num=1 ) UpperCAmelCase = jax.random.normal(lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowerCAmelCase , lowerCAmelCase , predicted_variance=lowerCAmelCase ) ** 0.5) * noise UpperCAmelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowerCAmelCase , state=lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : DDPMSchedulerState , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , lowerCAmelCase : jnp.ndarray , )-> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __len__( self : str )-> str: """simple docstring""" return self.config.num_train_timesteps
50
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
1
'''simple docstring''' from __future__ import annotations _lowercase : Any = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__: def __init__( self : Union[str, Any] , lowerCAmelCase : dict[str, list[str]] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase = {} UpperCAmelCase = source_vertex def a__( self : Optional[int] )-> None: """simple docstring""" UpperCAmelCase = {self.source_vertex} UpperCAmelCase = None UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase ) UpperCAmelCase = vertex queue.append(lowerCAmelCase ) def a__( self : List[Any] , lowerCAmelCase : str )-> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase = self.parent.get(lowerCAmelCase ) if target_vertex_parent is None: UpperCAmelCase = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowerCAmelCase ) return self.shortest_path(lowerCAmelCase ) + F"""->{target_vertex}""" if __name__ == "__main__": _lowercase : Tuple = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
50
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' def lowerCamelCase__ ( A : int = 1_00_00_00 ): '''simple docstring''' UpperCAmelCase = limit + 1 UpperCAmelCase = [0] * limit for first_term in range(1 , A ): for n in range(A , A , A ): UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : int = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "sew" def __init__( self : Any , lowerCAmelCase : Dict=32 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : List[str]=1E-5 , lowerCAmelCase : List[Any]="group" , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[int]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCAmelCase : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCAmelCase : Optional[int]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCAmelCase : Tuple=False , lowerCAmelCase : int=128 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[Any]=0.05 , lowerCAmelCase : List[str]=10 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Dict=10 , lowerCAmelCase : Tuple=0 , lowerCAmelCase : List[Any]="mean" , lowerCAmelCase : List[Any]=False , lowerCAmelCase : str=False , lowerCAmelCase : Tuple=256 , lowerCAmelCase : int=0 , lowerCAmelCase : str=1 , lowerCAmelCase : List[str]=2 , **lowerCAmelCase : Optional[int] , )-> Tuple: """simple docstring""" super().__init__(**lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(lowerCAmelCase ) UpperCAmelCase = list(lowerCAmelCase ) UpperCAmelCase = list(lowerCAmelCase ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = squeeze_factor UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # sequence classification UpperCAmelCase = use_weighted_layer_sum UpperCAmelCase = classifier_proj_size @property def a__( self : Optional[Any] )-> str: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
50
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
1
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = ["image_processor", "tokenizer"] __magic_name__ : Union[str, Any] = "LayoutLMv3ImageProcessor" __magic_name__ : List[str] = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : Optional[int] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Optional[int] , )-> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor UpperCAmelCase = self.image_processor(images=lowerCAmelCase , return_tensors=lowerCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase = features['''words'''] UpperCAmelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) # add pixel values UpperCAmelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase = self.get_overflowing_images(lowerCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase = images return encoded_inputs def a__( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(lowerCAmelCase )} and {len(lowerCAmelCase )}""" ) return images_with_overflow def a__( self : List[str] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] )-> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple )-> Dict: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Dict: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def a__( self : int )-> Tuple: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
1
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowercase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__: __magic_name__ : str = None @experimental def lowerCamelCase__ ( A : List[Any] , A : Any , A : List[Any] , A : Union[str, Any] , A : Tuple , A : Optional[Any] , A : str ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( A , A , A , A , A , A , A ) return _map_with_joblib(A , A , A , A , A , A , A ) def lowerCamelCase__ ( A : Tuple , A : List[str] , A : Any , A : Union[str, Any] , A : Optional[Any] , A : List[str] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = num_proc if num_proc <= len(A ) else len(A ) UpperCAmelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(A ): UpperCAmelCase = len(A ) // num_proc UpperCAmelCase = len(A ) % num_proc UpperCAmelCase = div * index + min(A , A ) UpperCAmelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(A ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(A )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(A )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) UpperCAmelCase , UpperCAmelCase = None, None if not disable_tqdm: UpperCAmelCase , UpperCAmelCase = (RLock(),), tqdm.set_lock with Pool(A , initargs=A , initializer=A ) as pool: UpperCAmelCase = pool.map(A , A ) logger.info(f"""Finished {num_proc} processes""" ) UpperCAmelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(A )} objects""" ) return mapped def lowerCamelCase__ ( A : Dict , A : List[Any] , A : str , A : Optional[int] , A : Dict , A : Optional[int] , A : List[Any] ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=A ): return joblib.Parallel()( joblib.delayed(A )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: UpperCAmelCase = None
50
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer _lowercase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase : List[Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } _lowercase : Any = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } _lowercase : Optional[int] = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = VOCAB_FILES_NAMES __magic_name__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[Any] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = ElectraTokenizer def __init__( self : int , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="[UNK]" , lowerCAmelCase : Any="[SEP]" , lowerCAmelCase : Dict="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : str="[MASK]" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any] , )-> int: """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase ) UpperCAmelCase = do_lower_case def a__( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None )-> List[Any]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
50
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( A : Union[str, Any] , A : Any ): '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = tokenizer('''This is me''' , return_tensors='''pt''' ) UpperCAmelCase = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) UpperCAmelCase = model.generate(**lowerCAmelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) UpperCAmelCase = model_reloaded.generate(**lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) def a__( self : str )-> List[str]: """simple docstring""" UpperCAmelCase = '''hf-internal-testing/tiny-random-t5''' UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase__ ): model.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase = model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase__ )
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A : List[Any] = "AAPL" ): '''simple docstring''' UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCAmelCase = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , '''html.parser''' ) UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github _lowercase : str = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase = g.get_repo('''huggingface/diffusers''' ) UpperCAmelCase = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase = sorted(issue.get_comments() , key=lambda A : i.created_at , reverse=A ) UpperCAmelCase = comments[0] if len(A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Optional[int] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "marian" __magic_name__ : Optional[int] = ["past_key_values"] __magic_name__ : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , lowerCAmelCase : Union[str, Any]=58101 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str=1024 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : str=4096 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Union[str, Any]=4096 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : str="gelu" , lowerCAmelCase : Optional[int]=1024 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : str=58100 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Union[str, Any]=58100 , lowerCAmelCase : int=0 , lowerCAmelCase : str=0 , lowerCAmelCase : str=True , **lowerCAmelCase : Any , )-> List[str]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class UpperCamelCase__( lowerCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def a__( self : List[str] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: 'batch'} UpperCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} UpperCAmelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = self.num_layers for i in range(UpperCamelCase_ ): UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def a__( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(UpperCamelCase_ , self ).outputs if self.use_past: UpperCAmelCase = self.num_layers for i in range(UpperCamelCase_ ): UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} UpperCAmelCase = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def a__( self : List[str] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase = common_inputs['input_ids'].shape UpperCAmelCase = common_inputs['decoder_input_ids'].shape[1] UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase = self.num_layers UpperCAmelCase = min(UpperCamelCase_ , UpperCamelCase_ ) UpperCAmelCase = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers UpperCAmelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def a__( self : Dict , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase = self.num_layers UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['attention_mask'].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def a__( self : int , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" UpperCAmelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) UpperCAmelCase = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def a__( self : Optional[int] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def a__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str )-> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: UpperCAmelCase = super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @property def a__( self : List[Any] )-> float: """simple docstring""" return 1E-4
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowercase : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__( lowercase__ ): __magic_name__ : str = ["pixel_values"] def __init__( self : Dict , lowerCAmelCase : bool = True , lowerCAmelCase : int = 32 , lowerCAmelCase : int=PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , **lowerCAmelCase : int , )-> Dict: """simple docstring""" UpperCAmelCase = do_resize UpperCAmelCase = do_rescale UpperCAmelCase = size_divisor UpperCAmelCase = resample super().__init__(**__lowerCamelCase ) def a__( self : Union[str, Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Optional[ChannelDimension] = None , **lowerCAmelCase : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase = height // size_divisor * size_divisor UpperCAmelCase = width // size_divisor * size_divisor UpperCAmelCase = resize(__lowerCamelCase , (new_h, new_w) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) return image def a__( self : Any , lowerCAmelCase : np.ndarray , lowerCAmelCase : float , lowerCAmelCase : Optional[ChannelDimension] = None , **lowerCAmelCase : Tuple )-> Dict: """simple docstring""" return rescale(image=__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def a__( self : Any , lowerCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[TensorType, str]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Tuple , )-> List[str]: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) UpperCAmelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: UpperCAmelCase = [self.resize(__lowerCamelCase , size_divisor=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(__lowerCamelCase , scale=1 / 255 ) for image in images] UpperCAmelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCamelCase__( __lowerCamelCase ): __magic_name__ : Union[str, Any] = ["image_processor", "tokenizer"] __magic_name__ : int = "OwlViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Optional[int] , lowerCAmelCase : str=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[Any] )-> str: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase_ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Tuple , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : int=None , lowerCAmelCase : Optional[Any]="max_length" , lowerCAmelCase : str="np" , **lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(text[0] , UpperCAmelCase_ )): UpperCAmelCase = [self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )] elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(text[0] , UpperCAmelCase_ ): UpperCAmelCase = [] # Maximum number of queries across batch UpperCAmelCase = max([len(UpperCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase_ ) != max_num_queries: UpperCAmelCase = t + [' '] * (max_num_queries - len(UpperCAmelCase_ )) UpperCAmelCase = self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) encodings.append(UpperCAmelCase_ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": UpperCAmelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) UpperCAmelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) UpperCAmelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) UpperCAmelCase = BatchEncoding() UpperCAmelCase = input_ids UpperCAmelCase = attention_mask if query_images is not None: UpperCAmelCase = BatchEncoding() UpperCAmelCase = self.image_processor( UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ).pixel_values UpperCAmelCase = query_pixel_values if images is not None: UpperCAmelCase = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def a__( self : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any] )-> int: """simple docstring""" return self.image_processor.post_process(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a__( self : int , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[Any] )-> Optional[Any]: """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a__( self : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : int )-> Dict: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a__( self : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict )-> Dict: """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def a__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def a__( self : str )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase_ , ) return self.image_processor_class @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase_ , ) return self.image_processor
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCamelCase__( UpperCAmelCase_ ): __magic_name__ : int = 'speech_to_text' __magic_name__ : Union[str, Any] = ['past_key_values'] __magic_name__ : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , lowerCAmelCase : Tuple=10000 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : str=2048 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Tuple=6 , lowerCAmelCase : Tuple=2048 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Union[str, Any]="relu" , lowerCAmelCase : List[str]=256 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Tuple=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Optional[int]=6000 , lowerCAmelCase : Dict=1024 , lowerCAmelCase : str=2 , lowerCAmelCase : Union[str, Any]=(5, 5) , lowerCAmelCase : List[str]=1024 , lowerCAmelCase : List[str]=80 , lowerCAmelCase : Any=1 , **lowerCAmelCase : Dict , )-> List[str]: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = max_source_positions UpperCAmelCase = max_target_positions UpperCAmelCase = num_conv_layers UpperCAmelCase = list(_lowercase ) UpperCAmelCase = conv_channels UpperCAmelCase = input_feat_per_channel UpperCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Optional[int] = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase__ ( A : Dict ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase = k.replace(__A , __A ) if k.startswith('''encoder''' ): UpperCAmelCase = k.replace('''.attn''' , '''.self_attn''' ) UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) UpperCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' ) return k def lowerCamelCase__ ( A : Dict ): '''simple docstring''' UpperCAmelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: UpperCAmelCase = sd.pop(__A ) UpperCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd UpperCAmelCase = v _lowercase : List[str] = ["""START"""] @torch.no_grad() def lowerCamelCase__ ( A : List[str] , A : Optional[Any] , A : str ): '''simple docstring''' UpperCAmelCase = torch.load(__A , map_location='''cpu''' ) UpperCAmelCase = model['''model'''] UpperCAmelCase = BlenderbotConfig.from_json_file(__A ) UpperCAmelCase = BlenderbotForConditionalGeneration(__A ) UpperCAmelCase = m.model.state_dict().keys() UpperCAmelCase = [] UpperCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase = rename_state_dict_key(__A ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__A ) m.model.load_state_dict(__A , strict=__A ) m.half() m.save_pretrained(__A ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) _lowercase : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase__ ( A : Tuple , A : int ): '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = torch.permute(__lowerCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__lowerCAmelCase ): # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def lowerCamelCase__ ( A : Tuple , A : int , A : Union[str, Any] ): '''simple docstring''' if "metadata" in layer: UpperCAmelCase = layer.split('''metadata''' ) UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: UpperCAmelCase = layer.split('''kvstore''' ) UpperCAmelCase = ''''''.join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: UpperCAmelCase = layer.split('''/''' ) UpperCAmelCase = '''/'''.join(split_layer[:-1] ) UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase = f"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCAmelCase = '''file''' else: UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase__ ( A : str , A : Tuple ): '''simple docstring''' UpperCAmelCase = rename_keys(__lowerCAmelCase ) UpperCAmelCase = {} for k, v in current_block.items(): UpperCAmelCase = v UpperCAmelCase = new_current_block torch.save(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase__ ( A : Dict , A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : str = WEIGHTS_NAME ): '''simple docstring''' UpperCAmelCase = convert_file_size_to_int(__lowerCAmelCase ) UpperCAmelCase = [] UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: UpperCAmelCase = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] UpperCAmelCase = flatten_dict(__lowerCAmelCase , sep='''/''' ) UpperCAmelCase = {} for layer in checkpoint_info.keys(): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_key_and_tensorstore_dict( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if curr_real_layer_name in all_layers: UpperCAmelCase = content else: UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase = torch.tensor(__lowerCAmelCase ) UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase , UpperCAmelCase = rename_base_flax_keys(tuple(key.split('''/''' ) ) , __lowerCAmelCase ) UpperCAmelCase = '''/'''.join(__lowerCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase = os.path.join( __lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = raw_weights.to(getattr(__lowerCAmelCase , __lowerCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase = os.path.join(__lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{len(__lowerCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__lowerCAmelCase , __lowerCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__lowerCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase = {} UpperCAmelCase = {} for idx, shard in enumerate(__lowerCAmelCase ): UpperCAmelCase = weights_name.replace( '''.bin''' , f"""-{idx+1:05d}-of-{len(__lowerCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCAmelCase = os.path.join(__lowerCAmelCase , weights_name.replace('''.bin''' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCAmelCase , os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) UpperCAmelCase = shard for key in shard: UpperCAmelCase = shard_file # Add the metadata UpperCAmelCase = {'''total_size''': total_size} UpperCAmelCase = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.dumps(__lowerCAmelCase , indent=2 , sort_keys=__lowerCAmelCase ) + '''\n''' f.write(__lowerCAmelCase ) return metadata, index if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) _lowercase : Dict = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase__ ( ): '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) UpperCAmelCase = TaTokenizer.from_pretrained('''t5-small''' ) UpperCAmelCase = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' UpperCAmelCase = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ).input_ids UpperCAmelCase = model.generate(__lowerCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase : Optional[Any] = logging.getLogger(__name__) _lowercase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__: __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase )} , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase__: __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "The input training data file (a text file)."} ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) __magic_name__ : Optional[str] = field( default=lowerCAmelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) __magic_name__ : bool = field(default=lowerCAmelCase , metadata={"help": "Whether ot not to use whole word mask."} ) __magic_name__ : float = field( default=0.1_5 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) __magic_name__ : float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) __magic_name__ : int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) __magic_name__ : int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) __magic_name__ : bool = field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase__ ( A : Tuple , A : str , A : Tuple = False , A : Optional[int] = None , ): '''simple docstring''' def _dataset(A : List[str] , A : Any=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , ref_path=lowerCamelCase__ , ) return LineByLineTextDataset(tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase__ , file_path=lowerCamelCase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase = AutoModelWithLMHead.from_config(lowerCamelCase__ ) model.resize_token_embeddings(len(lowerCamelCase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase = ( get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase = ( get_dataset(lowerCamelCase__ , tokenizer=lowerCamelCase__ , evaluate=lowerCamelCase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase__ , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , data_collator=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , prediction_loss_only=lowerCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase = {"perplexity": perplexity} UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowerCamelCase__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , lowerCamelCase__ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowerCamelCase__ ) return results def lowerCamelCase__ ( A : int ): '''simple docstring''' main() if __name__ == "__main__": main()
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' def lowerCamelCase__ ( A : float , A : int ): '''simple docstring''' if digit_amount > 0: return round(number - int(_lowerCAmelCase ) , _lowerCAmelCase ) return number - int(_lowerCAmelCase ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets _lowercase : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _lowercase : Dict = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _lowercase : Union[str, Any] = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def a__( self : int )-> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def a__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]="uniform_average" , lowerCAmelCase : Tuple=True )-> Any: """simple docstring""" UpperCAmelCase = mean_squared_error( _a , _a , sample_weight=_a , multioutput=_a , squared=_a ) return {"mse": mse}
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowercase : Any = (720, 1280) # Height, Width _lowercase : Dict = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowercase : Dict = 1 / 100 _lowercase : List[Any] = """""" _lowercase : Optional[int] = """""" _lowercase : Optional[int] = """""" _lowercase : List[str] = 250 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_dataset(__UpperCAmelCase , __UpperCAmelCase ) for index in range(__UpperCAmelCase ): UpperCAmelCase = random.sample(range(len(__UpperCAmelCase ) ) , 4 ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = update_image_and_anno( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , filter_scale=__UpperCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCAmelCase = random_chars(32 ) UpperCAmelCase = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] UpperCAmelCase = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , __UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) UpperCAmelCase = [] for anno in new_annos: UpperCAmelCase = anno[3] - anno[1] UpperCAmelCase = anno[4] - anno[2] UpperCAmelCase = anno[1] + width / 2 UpperCAmelCase = anno[2] + height / 2 UpperCAmelCase = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(__UpperCAmelCase ) with open(f"""{file_root}.txt""" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def lowerCamelCase__ ( A : Optional[int] , A : List[str] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase , '''*.txt''' ) ): UpperCAmelCase = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(__UpperCAmelCase ) as in_file: UpperCAmelCase = in_file.readlines() UpperCAmelCase = os.path.join(__UpperCAmelCase , f"""{label_name}.jpg""" ) UpperCAmelCase = [] for obj_list in obj_lists: UpperCAmelCase = obj_list.rstrip('''\n''' ).split(''' ''' ) UpperCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 UpperCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 UpperCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 UpperCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def lowerCamelCase__ ( A : Optional[Any] , A : Union[str, Any] , A : List[str] , A : Dict , A : Optional[Any] , A : List[Any] = 0.0 , ): '''simple docstring''' UpperCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCAmelCase = int(scale_x * output_size[1] ) UpperCAmelCase = int(scale_y * output_size[0] ) UpperCAmelCase = [] UpperCAmelCase = [] for i, index in enumerate(__UpperCAmelCase ): UpperCAmelCase = all_img_list[index] path_list.append(__UpperCAmelCase ) UpperCAmelCase = all_annos[index] UpperCAmelCase = cva.imread(__UpperCAmelCase ) if i == 0: # top-left UpperCAmelCase = cva.resize(__UpperCAmelCase , (divid_point_x, divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = bbox[1] * scale_x UpperCAmelCase = bbox[2] * scale_y UpperCAmelCase = bbox[3] * scale_x UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCAmelCase = cva.resize(__UpperCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase = bbox[2] * scale_y UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCAmelCase = cva.resize(__UpperCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = bbox[1] * scale_x UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase = bbox[3] * scale_x UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCAmelCase = cva.resize( __UpperCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCAmelCase = img for bbox in img_annos: UpperCAmelCase = scale_x + bbox[1] * (1 - scale_x) UpperCAmelCase = scale_y + bbox[2] * (1 - scale_y) UpperCAmelCase = scale_x + bbox[3] * (1 - scale_x) UpperCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" UpperCAmelCase = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowercase : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) _lowercase : Optional[Any] = [] _lowercase : List[str] = [] _lowercase : List[str] = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} _lowercase : Any = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] _lowercase : str = 0 for log in Path().glob("""*.log"""): _lowercase : List[Any] = 0 with open(log, """r""") as f: for line in f: _lowercase : Optional[int] = json.loads(line) if line.get("""nodeid""", """""") != "": _lowercase : List[Any] = line["""nodeid"""] if line.get("""duration""", None) is not None: _lowercase : int = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowercase : Dict = [] log.unlink() _lowercase : Dict = """""" _lowercase : Dict = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _lowercase : str = [] _lowercase : int = {} for test in failed_tests: _lowercase : List[str] = test[0].split("""::""") _lowercase : Any = data[0].split("""/""")[-1] if data[0] not in filesafailed: _lowercase : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowercase : Optional[Any] = [test[0] for test in failed_table] _lowercase : str = list(set(files)) # Count number of instances in failed_tests _lowercase : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowercase : Tuple = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: _lowercase : List[Any] = """Too many failed tests, please see the full report in the Action results.""" _lowercase : Tuple = len(err) + 10 _lowercase : Optional[Any] = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: _lowercase : Union[str, Any] = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient _lowercase : Optional[int] = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": _lowercase : Dict = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) _lowercase : Any = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) _lowercase : str = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) _lowercase : Optional[Any] = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) _lowercase : Any = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowercase : Optional[Any] = """""" for i, row in enumerate(test_failures): if row[0] != test_class: _lowercase : Dict = row[0] else: _lowercase : Optional[Any] = """""" _lowercase : Optional[Any] = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__( __lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[Any] = LxmertTokenizer __magic_name__ : List[str] = LxmertTokenizerFast __magic_name__ : List[str] = True __magic_name__ : Optional[int] = True def a__( self : Any )-> List[str]: """simple docstring""" super().setUp() UpperCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def a__( self : str , lowerCAmelCase : List[str] )-> int: """simple docstring""" UpperCAmelCase = """UNwant\u00E9d,running""" UpperCAmelCase = """unwanted, running""" return input_text, output_text def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.tokenizer_class(self.vocab_file ) UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def a__( self : Optional[int] )-> int: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = tokenizer.tokenize(_UpperCamelCase ) UpperCAmelCase = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(_UpperCamelCase ) UpperCAmelCase = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : Any , A : Any , A : Any , A : Tuple ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase = result + left + right return input_list def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return input_list UpperCAmelCase = list(_lowerCamelCase ) # iteration for two-way merging UpperCAmelCase = 2 while p <= len(_lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): UpperCAmelCase = i UpperCAmelCase = i + p - 1 UpperCAmelCase = (low + high + 1) // 2 UpperCAmelCase = merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # final merge of last two parts if p * 2 >= len(_lowerCamelCase ): UpperCAmelCase = i UpperCAmelCase = merge(_lowerCamelCase , 0 , _lowerCamelCase , len(_lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowercase : int = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _lowercase : Optional[int] = [] else: _lowercase : Optional[int] = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase__ ( A : Dict , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = list(_lowerCamelCase ) UpperCAmelCase = list(_lowerCamelCase ) UpperCAmelCase = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase = "_" if count > 1: return False else: return "".join(_lowerCamelCase ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = [] while True: UpperCAmelCase = ["$"] * len(_lowerCamelCase ) UpperCAmelCase = [] for i in range(len(_lowerCamelCase ) ): for j in range(i + 1 , len(_lowerCamelCase ) ): UpperCAmelCase = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase = "*" UpperCAmelCase = "*" temp.append('''X''' ) for i in range(len(_lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowerCamelCase ) == 0: return pi UpperCAmelCase = list(set(_lowerCamelCase ) ) def lowerCamelCase__ ( A : Any , A : Any ): '''simple docstring''' UpperCAmelCase = [] for minterm in minterms: UpperCAmelCase = "" for _ in range(_lowerCamelCase ): UpperCAmelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowerCamelCase ) return temp def lowerCamelCase__ ( A : List[Any] , A : Optional[int] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = list(_lowerCamelCase ) UpperCAmelCase = list(_lowerCamelCase ) UpperCAmelCase = 0 for i in range(len(_lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase__ ( A : Dict , A : List[Any] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = [0] * len(_lowerCamelCase ) for i in range(len(chart[0] ) ): UpperCAmelCase = 0 UpperCAmelCase = -1 for j in range(len(_lowerCamelCase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase = j if count == 1: UpperCAmelCase = 1 for i in range(len(_lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowerCamelCase ) ): UpperCAmelCase = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase = 0 UpperCAmelCase = -1 UpperCAmelCase = 0 for i in range(len(_lowerCamelCase ) ): UpperCAmelCase = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase = count_n UpperCAmelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowerCamelCase ) ): UpperCAmelCase = 0 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' UpperCAmelCase = [[0 for x in range(len(_lowerCamelCase ) )] for x in range(len(_lowerCamelCase ) )] for i in range(len(_lowerCamelCase ) ): UpperCAmelCase = prime_implicants[i].count('''_''' ) for j in range(len(_lowerCamelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowerCamelCase ): UpperCAmelCase = 1 return chart def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase = [ float(_lowerCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase = decimal_to_binary(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase = check(_lowerCamelCase ) print('''Prime Implicants are:''' ) print(_lowerCamelCase ) UpperCAmelCase = prime_implicant_chart(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase = selection(_lowerCamelCase , _lowerCamelCase ) print('''Essential Prime Implicants are:''' ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__( _UpperCAmelCase ): __magic_name__ : UNetaDModel __magic_name__ : ScoreSdeVeScheduler def __init__( self : Tuple , lowerCAmelCase : UNetaDModel , lowerCAmelCase : ScoreSdeVeScheduler )-> str: """simple docstring""" super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 2000 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , **lowerCAmelCase : Union[str, Any] , )-> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCAmelCase = self.unet.config.sample_size UpperCAmelCase = (batch_size, 3, img_size, img_size) UpperCAmelCase = self.unet UpperCAmelCase = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase ) * self.scheduler.init_noise_sigma UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCamelCase ) self.scheduler.set_sigmas(__UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample UpperCAmelCase = self.scheduler.step_correct(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample # prediction step UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ).sample UpperCAmelCase = self.scheduler.step_pred(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) UpperCAmelCase , UpperCAmelCase = output.prev_sample, output.prev_sample_mean UpperCAmelCase = sample_mean.clamp(0 , 1 ) UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCamelCase )
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase__: def __init__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Dict=3 , lowerCAmelCase : str=32 * 4 , lowerCAmelCase : int=32 * 6 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Any=32 , )-> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = is_training UpperCAmelCase = use_auxiliary_loss UpperCAmelCase = num_queries UpperCAmelCase = num_channels UpperCAmelCase = min_size UpperCAmelCase = max_size UpperCAmelCase = num_labels UpperCAmelCase = mask_feature_size def a__( self : Tuple )-> Any: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case_ ) UpperCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_ ) UpperCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_ ) > 0.5 ).float() UpperCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_ ) > 0.5).long() UpperCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def a__( self : List[str] )-> Optional[int]: """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def a__( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] )-> int: """simple docstring""" UpperCAmelCase = output.encoder_hidden_states UpperCAmelCase = output.pixel_decoder_hidden_states UpperCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case_ ) , config.decoder_config.decoder_layers ) def a__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=False )-> Optional[Any]: """simple docstring""" with torch.no_grad(): UpperCAmelCase = MaskFormerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCAmelCase = model(snake_case_ , output_hidden_states=snake_case_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_ ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any] )-> str: """simple docstring""" UpperCAmelCase = MaskFormerForInstanceSegmentation(config=snake_case_ ) model.to(snake_case_ ) model.eval() def comm_check_on_output(lowerCAmelCase : Tuple ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase = model(pixel_values=snake_case_ , pixel_mask=snake_case_ ) UpperCAmelCase = model(snake_case_ ) comm_check_on_output(snake_case_ ) UpperCAmelCase = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) comm_check_on_output(snake_case_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class UpperCamelCase__( _a , _a , unittest.TestCase ): __magic_name__ : Union[str, Any] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __magic_name__ : List[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __magic_name__ : Union[str, Any] = False __magic_name__ : Optional[int] = False __magic_name__ : int = False __magic_name__ : List[Any] = False def a__( self : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaskFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def a__( self : Any )-> Any: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def a__( self : List[str] )-> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*snake_case_ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def a__( self : Tuple )-> str: """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def a__( self : Optional[Any] )-> int: """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def a__( self : Any )-> int: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def a__( self : Optional[int] )-> Dict: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__( self : Any )-> Any: """simple docstring""" pass def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case_ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) @slow def a__( self : str )-> Dict: """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase = MaskFormerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def a__( self : Any )-> int: """simple docstring""" UpperCAmelCase = (self.model_tester.min_size,) * 2 UpperCAmelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=snake_case_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=snake_case_ ), '''class_labels''': torch.zeros(2 , 10 , device=snake_case_ ).long(), } UpperCAmelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(snake_case_ ) UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_ ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case_ ).to(snake_case_ ) UpperCAmelCase = model(**snake_case_ , output_attentions=snake_case_ ) self.assertTrue(outputs.attentions is not None ) def a__( self : Any )-> str: """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ).loss loss.backward() def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.train() UpperCAmelCase = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_ ) UpperCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase : Any = 1E-4 def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : List[str] )-> Optional[Any]: """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(snake_case_ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase = model(**snake_case_ ) UpperCAmelCase = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCAmelCase = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) UpperCAmelCase = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(snake_case_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def a__( self : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(snake_case_ ) .eval() ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(snake_case_ ) .eval() ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) UpperCAmelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case_ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCAmelCase = model(**snake_case_ ) # masks_queries_logits UpperCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_ ) ) # class_queries_logits UpperCAmelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def a__( self : Dict )-> Any: """simple docstring""" UpperCAmelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(snake_case_ ) .eval() ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCAmelCase = inputs['''pixel_values'''].to(snake_case_ ) UpperCAmelCase = [el.to(snake_case_ ) for el in inputs['''mask_labels''']] UpperCAmelCase = [el.to(snake_case_ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCAmelCase = model(**snake_case_ ) self.assertTrue(outputs.loss is not None )
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class UpperCamelCase__( SCREAMING_SNAKE_CASE__ ): def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" with self.assertRaises(_lowercase ): UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def a__( self : Dict )-> str: """simple docstring""" with self.assertRaises(_lowercase ): UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__( self : List[Any] )-> Dict: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def a__( self : str )-> Optional[int]: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def a__( self : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def a__( self : Dict )-> List[str]: """simple docstring""" import PIL.Image UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=_lowercase ) as mock_cast_to_python_objects: UpperCAmelCase = pa.array(TypedSequence([{'''path''': None, '''bytes''': b'''image_bytes'''}, pil_image] , type=Image() ) ) UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , _lowercase ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def lowerCamelCase__ ( A : Tuple , A : int ): '''simple docstring''' UpperCAmelCase = pa.BufferReader(__UpperCamelCase ) if isinstance(__UpperCamelCase , pa.Buffer ) else pa.memory_map(__UpperCamelCase ) UpperCAmelCase = pa.ipc.open_stream(__UpperCamelCase ) UpperCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() UpperCAmelCase = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() UpperCAmelCase = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=__UpperCamelCase , features=__UpperCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase = pa.BufferReader(output.getvalue() ) UpperCAmelCase = pa.ipc.open_stream(__UpperCamelCase ) UpperCAmelCase = f.read_all() UpperCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__UpperCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) UpperCAmelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: with pytest.raises(__UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) UpperCAmelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=__UpperCamelCase , writer_batch_size=__UpperCamelCase , hash_salt='''split_name''' , check_duplicates=__UpperCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( A : int , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() UpperCAmelCase = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( A : str , A : int ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() UpperCAmelCase = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowerCamelCase__ ( A : str , A : Dict ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() UpperCAmelCase = pa.schema(__UpperCamelCase ) if fields else None with ArrowWriter(stream=__UpperCamelCase , schema=__UpperCamelCase , writer_batch_size=__UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} UpperCAmelCase = os.path.join(__UpperCamelCase , '''test.arrow''' ) with ArrowWriter(path=__UpperCamelCase , schema=pa.schema(__UpperCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__UpperCamelCase , metadata=writer._schema.metadata ) _check_output(__UpperCamelCase , 1 ) def lowerCamelCase__ ( A : Any ): '''simple docstring''' if pa.types.is_list(__UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase__ ( A : int , A : Dict ): '''simple docstring''' if isinstance(lst[0] , __UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , __UpperCamelCase ) else: UpperCAmelCase = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( A : Any , A : List[str] , A : List[str] ): '''simple docstring''' UpperCAmelCase = pa.array(TypedSequence(__UpperCamelCase , optimized_int_type=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( A : Dict , A : str , A : List[Any] ): '''simple docstring''' UpperCAmelCase = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase = copy.deepcopy(__UpperCamelCase ) UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase = pa.array(OptimizedTypedSequence(__UpperCamelCase , col=__UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def lowerCamelCase__ ( A : List[str] , A : Dict ): '''simple docstring''' UpperCAmelCase = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=__UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=__UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__UpperCamelCase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=__UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase = pa.BufferReader(output.getvalue() ) UpperCAmelCase = pq.read_table(__UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def lowerCamelCase__ ( A : Optional[int] , A : Optional[int] ): '''simple docstring''' import PIL.Image UpperCAmelCase = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__UpperCamelCase , format='''png''' ) UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=__UpperCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=__UpperCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() UpperCAmelCase = pa.BufferReader(output.getvalue() ) UpperCAmelCase = pq.read_table(__UpperCamelCase ) UpperCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , __UpperCamelCase ) with open(__UpperCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = pa.schema([pa.field('''col_1''' , pa.string() , nullable=__UpperCamelCase )] ) UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=__UpperCamelCase ) as writer: writer._build_writer(inferred_schema=__UpperCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : str=7 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : List[Any]=18 , lowerCAmelCase : List[str]=30 , lowerCAmelCase : Optional[Any]=400 , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[str]=True , )-> str: """simple docstring""" UpperCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = min_resolution UpperCAmelCase = max_resolution UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = do_normalize def a__( self : List[str] )-> List[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCamelCase__( _lowercase , unittest.TestCase ): __magic_name__ : List[Any] = ImageGPTImageProcessor if is_vision_available() else None def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = ImageGPTImageProcessingTester(self ) @property def a__( self : List[str] )-> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__( self : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''clusters''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__( self : List[str] )-> str: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , obj[key] ) ) else: self.assertEqual(obj[key] , A_ ) def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(A_ , '''image_processor.json''' ) image_processor_first.to_json_file(A_ ) UpperCAmelCase = self.image_processing_class.from_json_file(A_ ).to_dict() UpperCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A_ ) def a__( self : List[str] )-> int: """simple docstring""" UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) UpperCAmelCase = self.image_processing_class.from_pretrained(A_ ).to_dict() UpperCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A_ ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def a__( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" pass def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) UpperCAmelCase = Image.open(dataset[4]['''file'''] ) UpperCAmelCase = Image.open(dataset[5]['''file'''] ) UpperCAmelCase = [imagea, imagea] return images @require_vision @require_torch class UpperCamelCase__( unittest.TestCase ): @slow def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) UpperCAmelCase = prepare_images() # test non-batched UpperCAmelCase = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCAmelCase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , A_ ) # test batched UpperCAmelCase = image_processing(A_ , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCAmelCase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , A_ )
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : int = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class UpperCamelCase__( lowercase__ ): __magic_name__ : Tuple = 'mgp-str' def __init__( self : Dict , lowerCAmelCase : Any=[32, 128] , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=27 , lowerCAmelCase : int=38 , lowerCAmelCase : Dict=50257 , lowerCAmelCase : List[Any]=30522 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[Any]=1E-5 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]=0.02 , **lowerCAmelCase : List[Any] , )-> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = max_token_length UpperCAmelCase = num_character_labels UpperCAmelCase = num_bpe_labels UpperCAmelCase = num_wordpiece_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = mlp_ratio UpperCAmelCase = distilled UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_rate UpperCAmelCase = qkv_bias UpperCAmelCase = attn_drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = output_aa_attentions UpperCAmelCase = initializer_range
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( A : List[Any] , A : List[str] , A : Optional[int] ): '''simple docstring''' if isinstance(A , torch.Tensor ): return image elif isinstance(A , PIL.Image.Image ): UpperCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase = np.concatenate(A , axis=0 ) UpperCAmelCase = np.array(A ).astype(np.floataa ) / 255.0 UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase = 2.0 * image - 1.0 UpperCAmelCase = torch.from_numpy(A ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase = torch.cat(A , dim=0 ) return image def lowerCamelCase__ ( A : Optional[Any] , A : Optional[int] , A : Any , A : Dict=0.9_995 ): '''simple docstring''' if not isinstance(A , np.ndarray ): UpperCAmelCase = True UpperCAmelCase = va.device UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = va.cpu().numpy() UpperCAmelCase = np.sum(va * va / (np.linalg.norm(A ) * np.linalg.norm(A )) ) if np.abs(A ) > DOT_THRESHOLD: UpperCAmelCase = (1 - t) * va + t * va else: UpperCAmelCase = np.arccos(A ) UpperCAmelCase = np.sin(A ) UpperCAmelCase = theta_a * t UpperCAmelCase = np.sin(A ) UpperCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase = sin_theta_t / sin_theta_a UpperCAmelCase = sa * va + sa * va if inputs_are_torch: UpperCAmelCase = torch.from_numpy(A ).to(A ) return va def lowerCamelCase__ ( A : Union[str, Any] , A : str ): '''simple docstring''' UpperCAmelCase = F.normalize(A , dim=-1 ) UpperCAmelCase = F.normalize(A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( A : List[str] , A : str ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase = value class UpperCamelCase__( lowerCAmelCase ): def __init__( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None , )-> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( vae=lowerCAmelCase , text_encoder=lowerCAmelCase , clip_model=lowerCAmelCase , tokenizer=lowerCAmelCase , unet=lowerCAmelCase , scheduler=lowerCAmelCase , feature_extractor=lowerCAmelCase , coca_model=lowerCAmelCase , coca_tokenizer=lowerCAmelCase , coca_transform=lowerCAmelCase , ) UpperCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase ) set_requires_grad(self.clip_model , lowerCAmelCase ) def a__( self : int , lowerCAmelCase : List[str] = "auto" )-> Dict: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[str] )-> Optional[int]: """simple docstring""" set_requires_grad(self.vae , lowerCAmelCase ) def a__( self : List[str] )-> Dict: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Tuple )-> List[str]: """simple docstring""" set_requires_grad(self.unet , lowerCAmelCase ) def a__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] )-> Any: """simple docstring""" UpperCAmelCase = min(int(num_inference_steps * strength ) , lowerCAmelCase ) UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def a__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=None )-> int: """simple docstring""" if not isinstance(lowerCAmelCase , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase )}""" ) UpperCAmelCase = image.to(device=lowerCAmelCase , dtype=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase ) ] UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) else: UpperCAmelCase = self.vae.encode(lowerCAmelCase ).latent_dist.sample(lowerCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 0.18215 * init_latents UpperCAmelCase = init_latents.repeat_interleave(lowerCAmelCase , dim=0 ) UpperCAmelCase = randn_tensor(init_latents.shape , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) # get latents UpperCAmelCase = self.scheduler.add_noise(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = init_latents return latents def a__( self : str , lowerCAmelCase : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.coca_transform(lowerCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def a__( self : int , lowerCAmelCase : str , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = self.feature_extractor.preprocess(lowerCAmelCase ) UpperCAmelCase = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip.repeat_interleave(lowerCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def a__( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , )-> Dict: """simple docstring""" UpperCAmelCase = latents.detach().requires_grad_() UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase = torch.sqrt(lowerCAmelCase ) UpperCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = self.scheduler.sigmas[index] UpperCAmelCase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * sample UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = transforms.Resize(self.feature_extractor_size )(lowerCAmelCase ) UpperCAmelCase = self.normalize(lowerCAmelCase ).to(latents.dtype ) UpperCAmelCase = self.clip_model.get_image_features(lowerCAmelCase ) UpperCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase ) UpperCAmelCase = spherical_dist_loss(lowerCAmelCase , lowerCAmelCase ).mean() * clip_guidance_scale UpperCAmelCase = -torch.autograd.grad(lowerCAmelCase , lowerCAmelCase )[0] if isinstance(self.scheduler , lowerCAmelCase ): UpperCAmelCase = latents.detach() + grads * (sigma**2) UpperCAmelCase = noise_pred_original else: UpperCAmelCase = noise_pred_original - torch.sqrt(lowerCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any] = None , lowerCAmelCase : Any = None , lowerCAmelCase : Tuple = 512 , lowerCAmelCase : str = 512 , lowerCAmelCase : Optional[Any] = 0.6 , lowerCAmelCase : List[str] = 50 , lowerCAmelCase : Any = 7.5 , lowerCAmelCase : int = 1 , lowerCAmelCase : Any = 0.0 , lowerCAmelCase : Optional[Any] = 100 , lowerCAmelCase : List[Any] = None , lowerCAmelCase : List[Any] = "pil" , lowerCAmelCase : List[Any] = True , lowerCAmelCase : Tuple = 0.8 , lowerCAmelCase : Dict = 0.1 , lowerCAmelCase : Union[str, Any] = 0.1 , )-> Tuple: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(lowerCAmelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(lowerCAmelCase , torch.Generator ) and batch_size > 1: UpperCAmelCase = [generator] + [None] * (batch_size - 1) UpperCAmelCase = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase = ''', '''.join(lowerCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) if style_prompt is None: if len(lowerCAmelCase ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) UpperCAmelCase = self.get_image_description(lowerCAmelCase ) # get prompt text embeddings for content and style UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = self.tokenizer( lowerCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='''pt''' , ) UpperCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # duplicate text embeddings for each generation per prompt UpperCAmelCase = text_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # set timesteps UpperCAmelCase = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase = {} if accepts_offset: UpperCAmelCase = 1 self.scheduler.set_timesteps(lowerCAmelCase , **lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase , UpperCAmelCase = self.get_timesteps(lowerCAmelCase , lowerCAmelCase , self.device ) UpperCAmelCase = timesteps[:1].repeat(lowerCAmelCase ) # Preprocess image UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = preprocess(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.prepare_latents( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text_embeddings.dtype , self.device , lowerCAmelCase ) UpperCAmelCase = slerp(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if clip_guidance_scale > 0: UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = self.get_clip_image_embeddings(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = slerp( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase = content_text_input.input_ids.shape[-1] UpperCAmelCase = self.tokenizer([''''''] , padding='''max_length''' , max_length=lowerCAmelCase , return_tensors='''pt''' ) UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase = uncond_embeddings.repeat_interleave(lowerCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device='''cpu''' , dtype=lowerCAmelCase ).to( self.device ) else: UpperCAmelCase = torch.randn(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta # check if the scheduler accepts generator UpperCAmelCase = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase = generator with self.progress_bar(total=lowerCAmelCase ): for i, t in enumerate(lowerCAmelCase ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = self.scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase ) # predict the noise residual UpperCAmelCase = self.unet(lowerCAmelCase , lowerCAmelCase , encoder_hidden_states=lowerCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase , UpperCAmelCase = self.cond_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase = 1 / 0.18215 * latents UpperCAmelCase = self.vae.decode(lowerCAmelCase ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase , nsfw_content_detected=lowerCAmelCase )
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[int] = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] _lowercase : Tuple = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class UpperCamelCase__: def __init__( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Any=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Dict=32 , lowerCAmelCase : List[Any]=5 , lowerCAmelCase : int=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Any=2 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=4 , lowerCAmelCase : List[str]=None , )-> Dict: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def a__( self : List[Any] )-> Any: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__( self : Union[str, Any] )-> Any: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def a__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = LlamaModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , )-> List[str]: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = LlamaModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = LlamaForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , )-> List[Any]: """simple docstring""" UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = LlamaForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # first forward pass UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["hidden_states"][0] UpperCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["hidden_states"][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( UpperCAmelCase ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): __magic_name__ : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __magic_name__ : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () __magic_name__ : Tuple = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ : List[Any] = False __magic_name__ : Optional[Any] = False def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = LlamaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = LlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = "single_label_classification" UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = LlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = "multi_label_classification" UpperCAmelCase = input_dict["input_ids"] UpperCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase = LlamaForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__( self : str , lowerCAmelCase : Optional[int] )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = LlamaModel(lowerCAmelCase ) original_model.to(lowerCAmelCase ) original_model.eval() UpperCAmelCase = original_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase = original_model(lowerCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = {"type": scaling_type, "factor": 10.0} UpperCAmelCase = LlamaModel(lowerCAmelCase ) scaled_model.to(lowerCAmelCase ) scaled_model.eval() UpperCAmelCase = scaled_model(lowerCAmelCase ).last_hidden_state UpperCAmelCase = scaled_model(lowerCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5 ) ) @require_torch class UpperCamelCase__( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a__( self : List[Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) UpperCAmelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCAmelCase = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a__( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) UpperCAmelCase = model(torch.tensor(lowerCAmelCase ) ) # Expected mean on dim = -1 UpperCAmelCase = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a__( self : str )-> Any: """simple docstring""" UpperCAmelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) UpperCAmelCase = model(torch.tensor(lowerCAmelCase ) ) # Expected mean on dim = -1 UpperCAmelCase = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def a__( self : Tuple )-> Any: """simple docstring""" UpperCAmelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCAmelCase = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) UpperCAmelCase = model(torch.tensor(lowerCAmelCase ) ) UpperCAmelCase = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off UpperCAmelCase = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def a__( self : List[str] )-> int: """simple docstring""" UpperCAmelCase = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" UpperCAmelCase = "Simply put, the theory of relativity states that " UpperCAmelCase = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) UpperCAmelCase = tokenizer.encode(lowerCAmelCase , return_tensors='''pt''' ) UpperCAmelCase = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=lowerCAmelCase ) # greedy generation outputs UpperCAmelCase = model.generate(lowerCAmelCase , max_new_tokens=64 , top_p=lowerCAmelCase , temperature=1 , do_sample=lowerCAmelCase ) UpperCAmelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' def lowerCamelCase__ ( A : list ): '''simple docstring''' UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCAmelCase = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCAmelCase = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _lowercase : str = [int(x) for x in input().split()] # inputing elements of the list in one line _lowercase : Optional[Any] = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = 9, 14 # noqa: F841 UpperCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase = defaultdict(snake_case__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase = mst(snake_case__ ) UpperCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase = tuple(answer[:2] ) UpperCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar _lowercase = TypeVar("""_T""") class UpperCamelCase__( Generic[_T] ): def __init__( self : Dict , lowerCAmelCase : Tuple = None )-> Optional[int]: """simple docstring""" UpperCAmelCase = list(iterable or [] ) UpperCAmelCase = [] def __len__( self : Optional[Any] )-> Optional[int]: """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" return F"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def a__( self : str , lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" self._stacka.append(__lowerCAmelCase ) def a__( self : Any )-> Dict: """simple docstring""" UpperCAmelCase = self._stacka.pop UpperCAmelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' from ... import PretrainedConfig _lowercase : Union[str, Any] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class UpperCamelCase__( _UpperCAmelCase ): __magic_name__ : Optional[int] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP __magic_name__ : Any = "nezha" def __init__( self : Dict , lowerCAmelCase : Tuple=21128 , lowerCAmelCase : Dict=768 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : str=3072 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=512 , lowerCAmelCase : str=64 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Optional[int]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : str=3 , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : Dict , )-> Tuple: """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = max_relative_position UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout UpperCAmelCase = use_cache
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase__( a__ ): __magic_name__ : int = """M-CLIP""" def __init__( self : Optional[int] , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : Optional[int]=768 , **lowerCAmelCase : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = transformerDimSize UpperCAmelCase = imageDimSize super().__init__(**lowerCAmelCase__ ) class UpperCamelCase__( a__ ): __magic_name__ : str = MCLIPConfig def __init__( self : List[str] , lowerCAmelCase : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple )-> Union[str, Any]: """simple docstring""" super().__init__(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase = XLMRobertaModel(lowerCAmelCase__ ) UpperCAmelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] )-> str: """simple docstring""" UpperCAmelCase = self.transformer(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] UpperCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCAmelCase__ ), embs
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase__ ( A : List[str] , A : str ): '''simple docstring''' UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' UpperCAmelCase = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert('''RGB''' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) UpperCAmelCase = transform(UpperCAmelCase__ ).unsqueeze(0 ).to(UpperCAmelCase__ ) return image def lowerCamelCase__ ( A : Dict ): '''simple docstring''' if "visual_encoder" in key: UpperCAmelCase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , UpperCAmelCase__ ) if "blocks" in key: UpperCAmelCase = re.sub(R'''blocks''' , '''layers''' , UpperCAmelCase__ ) if "attn" in key: UpperCAmelCase = re.sub(R'''attn''' , '''self_attn''' , UpperCAmelCase__ ) if "norm1" in key: UpperCAmelCase = re.sub(R'''norm1''' , '''layer_norm1''' , UpperCAmelCase__ ) if "norm2" in key: UpperCAmelCase = re.sub(R'''norm2''' , '''layer_norm2''' , UpperCAmelCase__ ) if "encoder.norm" in key: UpperCAmelCase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , UpperCAmelCase__ ) if "encoder.patch_embed.proj" in key: UpperCAmelCase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , UpperCAmelCase__ ) if "encoder.pos_embed" in key: UpperCAmelCase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , UpperCAmelCase__ ) if "encoder.cls_token" in key: UpperCAmelCase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , UpperCAmelCase__ ) if "self_attn" in key: UpperCAmelCase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , UpperCAmelCase__ ) return key @torch.no_grad() def lowerCamelCase__ ( A : int , A : List[str]=None ): '''simple docstring''' if config_path is not None: UpperCAmelCase = BlipConfig.from_pretrained(UpperCAmelCase__ ) else: UpperCAmelCase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) UpperCAmelCase = BlipForConditionalGeneration(UpperCAmelCase__ ).eval() UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' UpperCAmelCase = blip_decoder(pretrained=UpperCAmelCase__ , image_size=3_84 , vit='''base''' ) UpperCAmelCase = pt_model.eval() UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(UpperCAmelCase__ ) UpperCAmelCase = rename_key(UpperCAmelCase__ ) UpperCAmelCase = value hf_model.load_state_dict(UpperCAmelCase__ ) UpperCAmelCase = 3_84 UpperCAmelCase = load_demo_image(image_size=UpperCAmelCase__ , device='''cpu''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = tokenizer(['''a picture of'''] ).input_ids UpperCAmelCase = hf_model.generate(UpperCAmelCase__ , UpperCAmelCase__ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] UpperCAmelCase = hf_model.generate(UpperCAmelCase__ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCAmelCase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' UpperCAmelCase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) UpperCAmelCase = blip_vqa(pretrained=UpperCAmelCase__ , image_size=UpperCAmelCase__ , vit='''base''' ) vqa_model.eval() UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(UpperCAmelCase__ ) UpperCAmelCase = rename_key(UpperCAmelCase__ ) UpperCAmelCase = value UpperCAmelCase = BlipForQuestionAnswering(UpperCAmelCase__ ) hf_vqa_model.load_state_dict(UpperCAmelCase__ ) UpperCAmelCase = ['''How many dogs are in this image?'''] UpperCAmelCase = tokenizer(UpperCAmelCase__ , return_tensors='''pt''' ).input_ids UpperCAmelCase = hf_vqa_model.generate(UpperCAmelCase__ , UpperCAmelCase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) UpperCAmelCase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' UpperCAmelCase = blip_itm(pretrained=UpperCAmelCase__ , image_size=UpperCAmelCase__ , vit='''base''' ) itm_model.eval() UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): UpperCAmelCase = modified_state_dict.pop(UpperCAmelCase__ ) UpperCAmelCase = rename_key(UpperCAmelCase__ ) UpperCAmelCase = value UpperCAmelCase = BlipForImageTextRetrieval(UpperCAmelCase__ ) UpperCAmelCase = ['''A picture of a woman with a dog sitting in a beach'''] UpperCAmelCase = tokenizer( UpperCAmelCase__ , return_tensors='''pt''' , padding='''max_length''' , truncation=UpperCAmelCase__ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(UpperCAmelCase__ ) hf_itm_model.eval() UpperCAmelCase = hf_itm_model(UpperCAmelCase__ , UpperCAmelCase__ , use_itm_head=UpperCAmelCase__ ) UpperCAmelCase = hf_itm_model(UpperCAmelCase__ , UpperCAmelCase__ , use_itm_head=UpperCAmelCase__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _lowercase : Any = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import numpy as np def lowerCamelCase__ ( A : List[Any] , A : int ): '''simple docstring''' return np.where(vector > 0 , _snake_case , (alpha * (np.exp(_snake_case ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCAmelCase = [3, 3, 3, 3] UpperCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: UpperCAmelCase = [4, 4, 4, 4] UpperCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: UpperCAmelCase = [3, 3, 3, 3] else: UpperCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: UpperCAmelCase = 96 elif "small" in model_name: UpperCAmelCase = 96 elif "base" in model_name: UpperCAmelCase = 1_28 elif "large" in model_name: UpperCAmelCase = 1_92 elif "xlarge" in model_name: UpperCAmelCase = 2_56 elif "huge" in model_name: UpperCAmelCase = 3_52 # set label information UpperCAmelCase = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: UpperCAmelCase = '''imagenet-22k-id2label.json''' else: UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = FocalNetConfig( embed_dim=_lowercase , depths=_lowercase , focal_levels=_lowercase , focal_windows=_lowercase , use_conv_embed=_lowercase , idalabel=_lowercase , labelaid=_lowercase , use_post_layernorm=_lowercase , use_layerscale=_lowercase , ) return config def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase = '''encoder.''' + name if "encoder.layers" in name: UpperCAmelCase = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: UpperCAmelCase = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCAmelCase = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCAmelCase = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCAmelCase = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": UpperCAmelCase = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase = '''layernorm.bias''' if "head" in name: UpperCAmelCase = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase = '''focalnet.''' + name return name def lowerCamelCase__ ( A : Optional[Any] , A : int , A : List[Any]=False ): '''simple docstring''' UpperCAmelCase = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on UpperCAmelCase = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _lowercase ) UpperCAmelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(_lowercase ) UpperCAmelCase = val UpperCAmelCase = get_focalnet_config(_lowercase ) UpperCAmelCase = FocalNetForImageClassification(_lowercase ) model.eval() # load state dict model.load_state_dict(_lowercase ) # verify conversion UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = BitImageProcessor( do_resize=_lowercase , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=_lowercase , crop_size=2_24 , do_normalize=_lowercase , image_mean=_lowercase , image_std=_lowercase , ) UpperCAmelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) UpperCAmelCase = processor(images=_lowercase , return_tensors='''pt''' ) UpperCAmelCase = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase = image_transforms(_lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _lowercase , atol=1E-4 ) UpperCAmelCase = model(**_lowercase ) UpperCAmelCase = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCAmelCase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": UpperCAmelCase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": UpperCAmelCase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": UpperCAmelCase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": UpperCAmelCase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": UpperCAmelCase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) _lowercase : Dict = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _lowercase : List[str] = get_tests_dir("""fixtures""") class lowerCamelCase_( unittest.TestCase ): def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase = mock.Mock() UpperCAmelCase = 500 UpperCAmelCase = {} UpperCAmelCase = HTTPError UpperCAmelCase = {} # Download this model to make sure it's in the cache. UpperCAmelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: UpperCAmelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def a__( self : int )-> Tuple: """simple docstring""" UpperCAmelCase = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder UpperCAmelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) UpperCAmelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class lowerCamelCase_( unittest.TestCase ): @classmethod def a__( cls : Any )-> List[Any]: """simple docstring""" UpperCAmelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def a__( cls : Optional[Any] )-> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def a__( self : Dict )-> int: """simple docstring""" UpperCAmelCase = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) UpperCAmelCase = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''test-image-processor''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) UpperCAmelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCAmelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def a__( self : Tuple )-> List[Any]: """simple docstring""" CustomImageProcessor.register_for_auto_class() UpperCAmelCase = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) UpperCAmelCase = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase : str = logging.get_logger(__name__) def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase = 10_24 UpperCAmelCase = 40_96 UpperCAmelCase = 24 UpperCAmelCase = 16 UpperCAmelCase = [5, 11, 17, 23] UpperCAmelCase = [2_56, 5_12, 10_24, 10_24] UpperCAmelCase = (1, 3_84, 3_84) if "ade" in checkpoint_url: UpperCAmelCase = True UpperCAmelCase = 1_50 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """ade20k-id2label.json""" UpperCAmelCase = json.load(open(cached_download(hf_hub_url(A , A , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = [1, 1_50, 4_80, 4_80] return config, expected_shape def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(A , A ) def lowerCamelCase__ ( A : Any ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase = name.replace(f"""refinenet{layer_idx}""" , f"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def lowerCamelCase__ ( A : Union[str, Any] , A : Tuple ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase = state_dict.pop(f"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[: config.hidden_size, :] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A : Any , A : Optional[int] , A : int , A : Any ): '''simple docstring''' UpperCAmelCase = get_dpt_config(A ) # load original state_dict from URL UpperCAmelCase = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(A ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val # read in qkv matrices read_in_q_k_v(A , A ) # load HuggingFace model UpperCAmelCase = DPTForSemanticSegmentation(A ) if """ade""" in checkpoint_url else DPTForDepthEstimation(A ) model.load_state_dict(A ) model.eval() # Check outputs on an image UpperCAmelCase = 4_80 if """ade""" in checkpoint_url else 3_84 UpperCAmelCase = DPTImageProcessor(size=A ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(A , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**A ).logits if """ade""" in checkpoint_url else model(**A ).predicted_depth # Assert logits UpperCAmelCase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: UpperCAmelCase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , A , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , A ) ) Path(A ).mkdir(exist_ok=A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(A , A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=A , ) image_processor.push_to_hub( repo_path_or_name=Path(A , A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=A , ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _lowercase : int = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' from statistics import mean, stdev def lowerCamelCase__ ( A : Dict , A : Any = 3 ): '''simple docstring''' UpperCAmelCase = min(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = max(SCREAMING_SNAKE_CASE_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE_ ) for x in data] def lowerCamelCase__ ( A : int , A : List[str] = 3 ): '''simple docstring''' UpperCAmelCase = mean(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = stdev(SCREAMING_SNAKE_CASE_ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE_ ) for x in data]
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase__ ( A : Any , A : int , A : List[Any] , A : Union[str, Any] , A : Tuple = None , A : str = None , A : Union[str, Any] = None , ): '''simple docstring''' if config_name_or_path is None: UpperCAmelCase = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase = question_encoder_name_or_path UpperCAmelCase = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase = RagConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase = AutoConfig.from_pretrained(_lowerCAmelCase ) UpperCAmelCase = gen_config UpperCAmelCase = question_encoder_config UpperCAmelCase = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. UpperCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) UpperCAmelCase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) _lowercase : Dict = parser.parse_args() _lowercase : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase : Dict = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCamelCase__ ( A : str , A : List[str]=None ): '''simple docstring''' require_version(deps[pkg] , A )
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' if not nums: return 0 UpperCAmelCase = nums[0] UpperCAmelCase = 0 for num in nums[1:]: UpperCAmelCase = ( max_excluding + num, max(__lowerCAmelCase , __lowerCAmelCase ), ) return max(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCamelCase__ ( A : List[str] , A : Any=False ): UpperCAmelCase = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def lowerCamelCase__ ( A : Union[str, Any] , A : str=None , A : List[str]=None ): if conf_path is None: UpperCAmelCase = '''./model_checkpoints/vqgan_only.yaml''' UpperCAmelCase = load_config(lowercase__ , display=lowercase__ ) UpperCAmelCase = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase = '''./model_checkpoints/vqgan_only.pt''' UpperCAmelCase = torch.load(lowercase__ , map_location=lowercase__ ) if ".ckpt" in ckpt_path: UpperCAmelCase = sd['''state_dict'''] model.load_state_dict(lowercase__ , strict=lowercase__ ) model.to(lowercase__ ) del sd return model def lowerCamelCase__ ( A : str , A : Tuple ): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = model.encode(lowercase__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCAmelCase = model.decode(lowercase__ ) return xrec def lowerCamelCase__ ( A : Tuple , A : List[Any]=False ): UpperCAmelCase , UpperCAmelCase = string.rsplit('''.''' , 1 ) if reload: UpperCAmelCase = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__ , package=lowercase__ ) , cls ) def lowerCamelCase__ ( A : Union[str, Any] ): if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def lowerCamelCase__ ( A : int , A : str , A : Union[str, Any]=True , A : Dict=True ): UpperCAmelCase = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCamelCase__ ( A : Tuple , A : str , A : int , A : Optional[Any] ): if ckpt: UpperCAmelCase = torch.load(lowercase__ , map_location='''cpu''' ) UpperCAmelCase = pl_sd['''global_step'''] print(f"""loaded model from global step {global_step}.""" ) else: UpperCAmelCase = {'''state_dict''': None} UpperCAmelCase = None UpperCAmelCase = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=lowercase__ , eval_mode=lowercase__ )['''model'''] return model, global_step
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' from collections import namedtuple _lowercase : Dict = namedtuple("""from_to""", """from_ to""") _lowercase : int = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.001, 1000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0454, 264.172), 'cubicyard': from_to(0.7_6455, 1.3_0795), 'cubicfoot': from_to(0.028, 35.3147), 'cup': from_to(0.0_0023_6588, 4226.75), } def lowerCamelCase__ ( A : float , A : str , A : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'from_type\' value: {from_type!r} Supported values are:\n""" + ''', '''.join(UpperCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'to_type\' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(UpperCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Any = BertTokenizer __magic_name__ : str = BertTokenizerFast __magic_name__ : List[Any] = True __magic_name__ : int = True __magic_name__ : Optional[Any] = filter_non_english def a__( self : Optional[Any] )-> str: """simple docstring""" super().setUp() UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def a__( self : Any , lowerCAmelCase : Any )-> Tuple: """simple docstring""" UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = '''unwanted, running''' return input_text, output_text def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = self.tokenizer_class(self.vocab_file ) UpperCAmelCase = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCAmelCase__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [9, 6, 7, 12, 10, 11] ) def a__( self : Optional[int] )-> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # With lower casing UpperCAmelCase = self.get_tokenizer(do_lower_case=UpperCAmelCase__ ) UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=UpperCAmelCase__ ) UpperCAmelCase = '''UNwant\u00E9d,running''' UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(UpperCAmelCase__ ) UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def a__( self : Dict )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : int )-> Any: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__( self : Any )-> List[str]: """simple docstring""" UpperCAmelCase = BasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase = BasicTokenizer() UpperCAmelCase = '''a\n\'ll !!to?\'d of, can\'t.''' UpperCAmelCase = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase__ ) , UpperCAmelCase__ ) def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase = {} for i, token in enumerate(UpperCAmelCase__ ): UpperCAmelCase = i UpperCAmelCase = WordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a__( self : List[Any] )-> Optional[int]: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a__( self : Union[str, Any] )-> int: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a__( self : List[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def a__( self : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase = tokenizer_r.encode_plus( UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , ) UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase__ , '''do_lower_case''' ) else False UpperCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = ['''的''', '''人''', '''有'''] UpperCAmelCase = ''''''.join(UpperCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase = True UpperCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase = False UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase = tokenizer_r.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer_p.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase__ ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase__ ) ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowercase : Dict = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowerCamelCase__ ( A : Any , A : Optional[Any] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCAmelCase = value else: UpperCAmelCase = value return new_state_dict def lowerCamelCase__ ( A : Tuple , A : List[str]=False ): '''simple docstring''' UpperCAmelCase = '''''' if is_panoptic: UpperCAmelCase = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[:2_56, :] UpperCAmelCase = in_proj_bias[:2_56] UpperCAmelCase = in_proj_weight[2_56:5_12, :] UpperCAmelCase = in_proj_bias[2_56:5_12] UpperCAmelCase = in_proj_weight[-2_56:, :] UpperCAmelCase = in_proj_bias[-2_56:] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A : int , A : Any ): '''simple docstring''' UpperCAmelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase = '''resnet101''' if "dc5" in model_name: UpperCAmelCase = True UpperCAmelCase = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase = 2_50 else: UpperCAmelCase = 91 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''coco-detection-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase = ConditionalDetrImageProcessor(format=A ) # prepare image UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=A , return_tensors='''pt''' ) UpperCAmelCase = encoding['''pixel_values'''] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCAmelCase = torch.hub.load('''DeppMeng/ConditionalDETR''' , A , pretrained=A ).eval() UpperCAmelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase = '''conditional_detr.''' + src rename_key(A , A , A ) UpperCAmelCase = rename_backbone_keys(A ) # query, key and value matrices need special treatment read_in_q_k_v(A , is_panoptic=A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase = state_dict.pop(A ) UpperCAmelCase = val # finally, create HuggingFace model and load state dict UpperCAmelCase = ConditionalDetrForSegmentation(A ) if is_panoptic else ConditionalDetrForObjectDetection(A ) model.load_state_dict(A ) model.eval() model.push_to_hub(repo_id=A , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion UpperCAmelCase = conditional_detr(A ) UpperCAmelCase = model(A ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowercase : Tuple = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' import json import sys def lowerCamelCase__ ( A : Dict , A : Optional[int] ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as f: UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase = results[benchmark_name] UpperCAmelCase = benchmark_name.split('''/''' )[-1] output_md.append(f"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase = '''| metric |''' UpperCAmelCase = '''|--------|''' UpperCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(_SCREAMING_SNAKE_CASE ): UpperCAmelCase = benchmark_res[metric_name] UpperCAmelCase = metric_vals['''new'''] UpperCAmelCase = metric_vals.get('''old''' , _SCREAMING_SNAKE_CASE ) UpperCAmelCase = metric_vals.get('''diff''' , _SCREAMING_SNAKE_CASE ) UpperCAmelCase = f""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else '''None''' if old_val is not None: val_str += f""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += f""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : Dict = sys.argv[1] _lowercase : List[str] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowercase : Optional[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase__( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = torchvision.models.resnetaaa(pretrained=__UpperCamelCase ) UpperCAmelCase = list(model.children() )[:-2] UpperCAmelCase = nn.Sequential(*__UpperCamelCase ) UpperCAmelCase = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def a__( self : Optional[int] , lowerCAmelCase : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = self.pool(self.model(__UpperCamelCase ) ) UpperCAmelCase = torch.flatten(__UpperCamelCase , start_dim=2 ) UpperCAmelCase = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCamelCase__( __snake_case ): def __init__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = [json.loads(__UpperCamelCase ) for l in open(__UpperCamelCase )] UpperCAmelCase = os.path.dirname(__UpperCamelCase ) UpperCAmelCase = tokenizer UpperCAmelCase = labels UpperCAmelCase = len(__UpperCamelCase ) UpperCAmelCase = max_seq_length UpperCAmelCase = transforms def __len__( self : Dict )-> List[str]: """simple docstring""" return len(self.data ) def __getitem__( self : Dict , lowerCAmelCase : Dict )-> Dict: """simple docstring""" UpperCAmelCase = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=__UpperCamelCase ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase = sentence[: self.max_seq_length] UpperCAmelCase = torch.zeros(self.n_classes ) UpperCAmelCase = 1 UpperCAmelCase = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) UpperCAmelCase = self.transforms(__UpperCamelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = [len(row['''sentence'''] ) for row in batch] UpperCAmelCase , UpperCAmelCase = len(lowercase__ ), max(lowercase__ ) UpperCAmelCase = torch.zeros(lowercase__ , lowercase__ , dtype=torch.long ) UpperCAmelCase = torch.zeros(lowercase__ , lowercase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase__ , lowercase__ ) ): UpperCAmelCase = input_row['''sentence'''] UpperCAmelCase = 1 UpperCAmelCase = torch.stack([row['''image'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''label'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCAmelCase = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ): '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ): '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCamelCase__ ( A : int ): '''simple docstring''' for char in word: UpperCAmelCase = ord(lowerCAmelCase_ ) if not _is_chinese_char(lowerCAmelCase_ ): return 0 return 1 def lowerCamelCase__ ( A : Any ): '''simple docstring''' UpperCAmelCase = set() for token in tokens: UpperCAmelCase = len(lowerCAmelCase_ ) > 1 and is_chinese(lowerCAmelCase_ ) if chinese_word: word_set.add(lowerCAmelCase_ ) UpperCAmelCase = list(lowerCAmelCase_ ) return word_list def lowerCamelCase__ ( A : List[str] , A : Any ): '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCAmelCase = max([len(lowerCAmelCase_ ) for w in chinese_word_set] ) UpperCAmelCase = bert_tokens UpperCAmelCase = 0, len(lowerCAmelCase_ ) while start < end: UpperCAmelCase = True if is_chinese(bert_word[start] ): UpperCAmelCase = min(end - start , lowerCAmelCase_ ) for i in range(lowerCAmelCase_ , 1 , -1 ): UpperCAmelCase = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase = '''##''' + bert_word[j] UpperCAmelCase = start + i UpperCAmelCase = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( A : str , A : int , A : Dict ): '''simple docstring''' UpperCAmelCase = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_00 ): UpperCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=['''cws'''] ).cws UpperCAmelCase = [get_chinese_word(lowerCAmelCase_ ) for r in res] ltp_res.extend(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) UpperCAmelCase = [] for i in range(0 , len(lowerCAmelCase_ ) , 1_00 ): UpperCAmelCase = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) UpperCAmelCase = [] for input_ids, chinese_word in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase = [] for id in input_ids: UpperCAmelCase = bert_tokenizer._convert_id_to_token(lowerCAmelCase_ ) input_tokens.append(lowerCAmelCase_ ) UpperCAmelCase = add_sub_symbol(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase_ ): if token[:2] == "##": UpperCAmelCase = token[2:] # save chinese tokens' pos if len(lowerCAmelCase_ ) == 1 and _is_chinese_char(ord(lowerCAmelCase_ ) ): ref_id.append(lowerCAmelCase_ ) ref_ids.append(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) return ref_ids def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [line.strip() for line in data if len(lowerCAmelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase = LTP(args.ltp ) # faster in GPU device UpperCAmelCase = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase = prepare_ref(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = [json.dumps(lowerCAmelCase_ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) _lowercase : Union[str, Any] = parser.parse_args() main(args)
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase__( unittest.TestCase ): @slow def a__( self : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1E-3 ) ) @slow def a__( self : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase = model(lowercase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowercase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase__ , atol=1E-3 ) )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' _lowercase : List[str] = """ # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowercase : Tuple = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowercase : str = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowercase : int = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class UpperCamelCase__( _UpperCamelCase ): def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Any )-> List[Any]: """simple docstring""" super().__init__(*__a , **__a ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__( self : Optional[int] , lowerCAmelCase : List[Any]=None )-> List[str]: """simple docstring""" UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return {}, {}, postprocess_params def __call__( self : List[Any] , lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCAmelCase : str )-> Any: """simple docstring""" return super().__call__(__a , **__a ) def a__( self : Any , lowerCAmelCase : Dict )-> List[Any]: """simple docstring""" UpperCAmelCase = load_image(__a ) UpperCAmelCase = self.image_processor(images=__a , return_tensors=self.framework ) return model_inputs def a__( self : str , lowerCAmelCase : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model(**__a ) return model_outputs def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=5 )-> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase = probs.topk(__a ) elif self.framework == "tf": UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase = tf.math.top_k(__a , k=__a ) UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowercase = logging.get_logger(__name__) class UpperCamelCase__( UpperCAmelCase_ ): def __init__( self : str , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str )-> List[str]: """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( A : Any , A : List[Any] ): '''simple docstring''' UpperCAmelCase = torch.load(A , map_location='''cpu''' ) UpperCAmelCase = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase = v else: UpperCAmelCase = v UpperCAmelCase = chkpt['''params'''] UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(A , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase = chkpt['''dico_word2id'''] UpperCAmelCase = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(A , A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A , indent=2 ) + '''\n''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowercase : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' from manim import * class UpperCamelCase__( UpperCamelCase__ ): def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase = Rectangle(height=0.25 , width=0.25 ) UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = VGroup(_a , _a ).arrange(_a , buff=0 ) UpperCAmelCase = Text('''CPU''' , font_size=24 ) UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) UpperCAmelCase = [mem.copy() for i in range(4 )] UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = Text('''GPU''' , font_size=24 ) UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = Text('''Model''' , font_size=24 ) UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = [] for i, rect in enumerate(_a ): rect.set_stroke(_a ) UpperCAmelCase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) UpperCAmelCase = [mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) UpperCAmelCase = [] UpperCAmelCase = [] for i, rect in enumerate(_a ): UpperCAmelCase = fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) UpperCAmelCase = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) UpperCAmelCase = MarkupText( F"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) UpperCAmelCase = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) UpperCAmelCase = [meta_mem.copy() for i in range(6 )] UpperCAmelCase = [meta_mem.copy() for i in range(6 )] UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = VGroup(*_a ).arrange(_a , buff=0 ) UpperCAmelCase = VGroup(_a , _a ).arrange(_a , buff=0 ) UpperCAmelCase = Text('''Disk''' , font_size=24 ) UpperCAmelCase = Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) UpperCAmelCase = [] for i, rect in enumerate(_a ): UpperCAmelCase = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) UpperCAmelCase = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCamelCase__: def __init__( self : Optional[Any] , lowerCAmelCase : int , )-> List[str]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = 30 UpperCAmelCase = self.seq_length + self.mem_len UpperCAmelCase = 15 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = [10, 50, 80] UpperCAmelCase = 32 UpperCAmelCase = 32 UpperCAmelCase = 4 UpperCAmelCase = 8 UpperCAmelCase = 128 UpperCAmelCase = 2 UpperCAmelCase = 2 UpperCAmelCase = None UpperCAmelCase = 1 UpperCAmelCase = 0 UpperCAmelCase = 3 UpperCAmelCase = self.vocab_size - 1 UpperCAmelCase = 0.01 def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def a__( self : Tuple )-> int: """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def a__( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict )-> str: """simple docstring""" UpperCAmelCase = TFTransfoXLModel(UpperCamelCase__ ) UpperCAmelCase = model(UpperCamelCase__ ).to_tuple() UpperCAmelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a} UpperCAmelCase = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def a__( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] )-> List[str]: """simple docstring""" UpperCAmelCase = TFTransfoXLLMHeadModel(UpperCamelCase__ ) UpperCAmelCase = model(UpperCamelCase__ ).to_tuple() UpperCAmelCase = {'''input_ids''': input_ids_a, '''labels''': lm_labels} UpperCAmelCase = model(UpperCamelCase__ ).to_tuple() UpperCAmelCase = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} UpperCAmelCase = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def a__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : int )-> Dict: """simple docstring""" UpperCAmelCase = TFTransfoXLForSequenceClassification(UpperCamelCase__ ) UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() (UpperCAmelCase) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class UpperCamelCase__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __magic_name__ : Tuple = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __magic_name__ : Optional[int] = () if is_tf_available() else () __magic_name__ : str = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __magic_name__ : Optional[Any] = False __magic_name__ : Optional[Any] = False __magic_name__ : List[str] = False __magic_name__ : Optional[int] = False def a__( self : str , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict )-> Optional[int]: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = TFTransfoXLModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , d_embed=37 ) def a__( self : Dict )-> Any: """simple docstring""" self.config_tester.run_common_tests() def a__( self : Dict )-> Any: """simple docstring""" self.model_tester.set_seed() UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase__ ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" self.model_tester.set_seed() UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase__ ) def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase__ ) def a__( self : List[Any] )-> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase = model.get_output_embeddings() assert isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) UpperCAmelCase = model.get_bias() assert name is None else: UpperCAmelCase = model.get_output_embeddings() assert x is None UpperCAmelCase = model.get_bias() assert name is None def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" pass @slow def a__( self : List[str] )-> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFTransfoXLModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def a__( self : Union[str, Any] )-> str: """simple docstring""" pass @require_tf class UpperCamelCase__( unittest.TestCase ): @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off UpperCAmelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase = model.generate(UpperCamelCase__ , max_length=200 , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ )
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase : Optional[Any] = logging.get_logger(__name__) # General docstring _lowercase : str = """RegNetConfig""" # Base docstring _lowercase : Optional[int] = """facebook/regnet-y-040""" _lowercase : Tuple = [1, 1088, 7, 7] # Image classification docstring _lowercase : List[Any] = """facebook/regnet-y-040""" _lowercase : Optional[int] = """tabby, tabby cat""" _lowercase : int = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__( nn.Module ): def __init__( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple = 3 , lowerCAmelCase : str = 1 , lowerCAmelCase : Optional[Any] = 1 , lowerCAmelCase : Any = "relu" , )-> str: """simple docstring""" super().__init__() UpperCAmelCase = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , groups=_lowerCamelCase , bias=_lowerCamelCase , ) UpperCAmelCase = nn.BatchNormad(_lowerCamelCase ) UpperCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def a__( self : str , lowerCAmelCase : Tuple )-> int: """simple docstring""" UpperCAmelCase = self.convolution(_lowerCamelCase ) UpperCAmelCase = self.normalization(_lowerCamelCase ) UpperCAmelCase = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : Dict )-> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase = config.num_channels def a__( self : Any , lowerCAmelCase : Tuple )-> int: """simple docstring""" UpperCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCAmelCase = self.embedder(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] = 2 )-> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) UpperCAmelCase = nn.BatchNormad(_lowerCamelCase ) def a__( self : List[Any] , lowerCAmelCase : int )-> Tensor: """simple docstring""" UpperCAmelCase = self.convolution(_lowerCamelCase ) UpperCAmelCase = self.normalization(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any )-> Any: """simple docstring""" super().__init__() UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase = nn.Sequential( nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__( self : Union[str, Any] , lowerCAmelCase : int )-> Dict: """simple docstring""" UpperCAmelCase = self.pooler(_lowerCamelCase ) UpperCAmelCase = self.attention(_lowerCamelCase ) UpperCAmelCase = hidden_state * attention return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] = 1 )-> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = in_channels != out_channels or stride != 1 UpperCAmelCase = max(1 , out_channels // config.groups_width ) UpperCAmelCase = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) UpperCAmelCase = ACTaFN[config.hidden_act] def a__( self : Dict , lowerCAmelCase : str )-> int: """simple docstring""" UpperCAmelCase = hidden_state UpperCAmelCase = self.layer(_lowerCamelCase ) UpperCAmelCase = self.shortcut(_lowerCamelCase ) hidden_state += residual UpperCAmelCase = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : int = 1 )-> Tuple: """simple docstring""" super().__init__() UpperCAmelCase = in_channels != out_channels or stride != 1 UpperCAmelCase = max(1 , out_channels // config.groups_width ) UpperCAmelCase = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetSELayer(_lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) UpperCAmelCase = ACTaFN[config.hidden_act] def a__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = hidden_state UpperCAmelCase = self.layer(_lowerCamelCase ) UpperCAmelCase = self.shortcut(_lowerCamelCase ) hidden_state += residual UpperCAmelCase = self.activation(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict = 2 , lowerCAmelCase : Tuple = 2 , )-> List[str]: """simple docstring""" super().__init__() UpperCAmelCase = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer UpperCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , ) , *[layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for _ in range(depth - 1 )] , ) def a__( self : Optional[int] , lowerCAmelCase : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.layers(_lowerCamelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self : int , lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" super().__init__() UpperCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def a__( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] = False , lowerCAmelCase : Tuple = True )-> BaseModelOutputWithNoAttention: """simple docstring""" UpperCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase = hidden_states + (hidden_state,) UpperCAmelCase = stage_module(_lowerCamelCase ) if output_hidden_states: UpperCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase ) class UpperCamelCase__( lowerCAmelCase__ ): __magic_name__ : List[str] = RegNetConfig __magic_name__ : str = "regnet" __magic_name__ : List[str] = "pixel_values" __magic_name__ : str = True def a__( self : Optional[Any] , lowerCAmelCase : List[Any] )-> int: """simple docstring""" if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=False )-> Dict: """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase = value _lowercase : List[Any] = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowercase : Optional[int] = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__( lowerCAmelCase__ ): def __init__( self : str , lowerCAmelCase : Optional[int] )-> List[str]: """simple docstring""" super().__init__(_lowerCamelCase ) UpperCAmelCase = config UpperCAmelCase = RegNetEmbeddings(_lowerCamelCase ) UpperCAmelCase = RegNetEncoder(_lowerCamelCase ) UpperCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any = None , lowerCAmelCase : Optional[int] = None )-> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.embedder(_lowerCamelCase ) UpperCAmelCase = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) UpperCAmelCase = encoder_outputs[0] UpperCAmelCase = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__( lowerCAmelCase__ ): def __init__( self : List[Any] , lowerCAmelCase : Any )-> Tuple: """simple docstring""" super().__init__(_lowerCamelCase ) UpperCAmelCase = config.num_labels UpperCAmelCase = RegNetModel(_lowerCamelCase ) # classification head UpperCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__( self : Any , lowerCAmelCase : Dict = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : Tuple = None , lowerCAmelCase : Union[str, Any] = None , )-> ImageClassifierOutputWithNoAttention: """simple docstring""" UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = self.regnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) UpperCAmelCase = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase = self.classifier(_lowerCamelCase ) UpperCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase = '''single_label_classification''' else: UpperCAmelCase = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase = MSELoss() if self.num_labels == 1: UpperCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase = CrossEntropyLoss() UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase = BCEWithLogitsLoss() UpperCAmelCase = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: UpperCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states )
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Optional[int] = 16 _lowercase : List[Any] = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 , A : str = "bert-base-cased" ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__snake_case ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__snake_case , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__snake_case , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( A : Optional[Any] , A : Any ): '''simple docstring''' UpperCAmelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config["lr"] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = args.model_name_or_path set_seed(__snake_case ) UpperCAmelCase = get_dataloaders(__snake_case , __snake_case , __snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(__snake_case , return_dict=__snake_case ) # Instantiate optimizer UpperCAmelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase = optimizer_cls(params=model.parameters() , lr=__snake_case ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCAmelCase = 1 UpperCAmelCase = (len(__snake_case ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=0 , num_training_steps=__snake_case , ) else: UpperCAmelCase = DummyScheduler(__snake_case , total_num_steps=__snake_case , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase = 0 # Now we train the model UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase = 0 UpperCAmelCase = {} for epoch in range(__snake_case , __snake_case ): model.train() for step, batch in enumerate(__snake_case ): UpperCAmelCase = model(**__snake_case ) UpperCAmelCase = outputs.loss UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(__snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase = 0 for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**__snake_case ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__snake_case ) - 1: UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__snake_case , references=__snake_case , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __snake_case ) UpperCAmelCase = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: UpperCAmelCase = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(__snake_case , __snake_case ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__snake_case , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__snake_case , ) parser.add_argument( '''--output_dir''' , type=__snake_case , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=__snake_case , default=__snake_case , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=__snake_case , default=3 , help='''Number of train epochs.''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowerCamelCase_: def a__( self : List[Any] , lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" raise NotImplementedError() def a__( self : int )-> str: """simple docstring""" raise NotImplementedError() class lowerCamelCase_( __lowercase ): def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict = False , **lowerCAmelCase : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = tokenizer UpperCAmelCase = skip_prompt UpperCAmelCase = decode_kwargs # variables used in the streaming process UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = True def a__( self : List[Any] , lowerCAmelCase : int )-> int: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCAmelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCAmelCase = text[self.print_len :] UpperCAmelCase = [] UpperCAmelCase = 0 # If the last token is a CJK character, we print the characters. elif len(__A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase = text[self.print_len :] self.print_len += len(__A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(__A ) self.on_finalized_text(__A ) def a__( self : Dict )-> int: """simple docstring""" if len(self.token_cache ) > 0: UpperCAmelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase = text[self.print_len :] UpperCAmelCase = [] UpperCAmelCase = 0 else: UpperCAmelCase = '''''' UpperCAmelCase = True self.on_finalized_text(__A , stream_end=__A ) def a__( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple = False )-> Tuple: """simple docstring""" print(__A , flush=__A , end='''''' if not stream_end else None ) def a__( self : int , lowerCAmelCase : int )-> str: """simple docstring""" if ( (cp >= 0X4e_00 and cp <= 0X9f_ff) or (cp >= 0X34_00 and cp <= 0X4d_bf) # or (cp >= 0X2_00_00 and cp <= 0X2_a6_df) # or (cp >= 0X2_a7_00 and cp <= 0X2_b7_3f) # or (cp >= 0X2_b7_40 and cp <= 0X2_b8_1f) # or (cp >= 0X2_b8_20 and cp <= 0X2_ce_af) # or (cp >= 0Xf9_00 and cp <= 0Xfa_ff) or (cp >= 0X2_f8_00 and cp <= 0X2_fa_1f) # ): # return True return False class lowerCamelCase_( __lowercase ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : int = False , lowerCAmelCase : List[str] = None , **lowerCAmelCase : str )-> List[Any]: """simple docstring""" super().__init__(__A , __A , **__A ) UpperCAmelCase = Queue() UpperCAmelCase = None UpperCAmelCase = timeout def a__( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : int = False )-> Any: """simple docstring""" self.text_queue.put(__A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : int )-> Optional[int]: """simple docstring""" return self def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : List[str] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : int = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } _lowercase : Optional[int] = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } _lowercase : Dict = """▁""" class UpperCamelCase__( UpperCamelCase__ ): __magic_name__ : str = VOCAB_FILES_NAMES __magic_name__ : str = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Dict = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any="<s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Optional[Any]="</s>" , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : List[Any]="<pad>" , lowerCAmelCase : Dict="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Tuple , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase = len(self.sp_model ) - 1 UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a__( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__( self : Optional[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" return len(self.sp_model ) def a__( self : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : Dict , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(__A , out_type=__A ) def a__( self : Dict , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(__A ) return spm_id if spm_id else self.unk_token_id def a__( self : str , lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__A ) def a__( self : List[str] , lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(__A ) UpperCAmelCase = False out_string += self.sp_model.decode(__A ) return out_string.strip() def __getstate__( self : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowercase : List[Any] = datasets.utils.logging.get_logger(__name__) _lowercase : Dict = ['''names''', '''prefix'''] _lowercase : Tuple = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] _lowercase : Tuple = ['''encoding_errors''', '''on_bad_lines'''] _lowercase : int = ['''date_format'''] @dataclass class UpperCamelCase__( datasets.BuilderConfig ): __magic_name__ : str = "," __magic_name__ : Optional[str] = None __magic_name__ : Optional[Union[int, List[int], str]] = "infer" __magic_name__ : Optional[List[str]] = None __magic_name__ : Optional[List[str]] = None __magic_name__ : Optional[Union[int, str, List[int], List[str]]] = None __magic_name__ : Optional[Union[List[int], List[str]]] = None __magic_name__ : Optional[str] = None __magic_name__ : bool = True __magic_name__ : Optional[Literal["c", "python", "pyarrow"]] = None __magic_name__ : Dict[Union[int, str], Callable[[Any], Any]] = None __magic_name__ : Optional[list] = None __magic_name__ : Optional[list] = None __magic_name__ : bool = False __magic_name__ : Optional[Union[int, List[int]]] = None __magic_name__ : Optional[int] = None __magic_name__ : Optional[Union[str, List[str]]] = None __magic_name__ : bool = True __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = True __magic_name__ : Optional[str] = None __magic_name__ : str = "." __magic_name__ : Optional[str] = None __magic_name__ : str = '"' __magic_name__ : int = 0 __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : Optional[str] = None __magic_name__ : bool = True __magic_name__ : bool = True __magic_name__ : int = 0 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : Optional[str] = None __magic_name__ : int = 1_0000 __magic_name__ : Optional[datasets.Features] = None __magic_name__ : Optional[str] = "strict" __magic_name__ : Literal["error", "warn", "skip"] = "error" __magic_name__ : Optional[str] = None def a__( self : List[Any] )-> Tuple: """simple docstring""" if self.delimiter is not None: UpperCAmelCase = self.delimiter if self.column_names is not None: UpperCAmelCase = self.column_names @property def a__( self : int )-> List[str]: """simple docstring""" UpperCAmelCase = { '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class UpperCamelCase__( datasets.ArrowBasedBuilder ): __magic_name__ : List[Any] = CsvConfig def a__( self : List[Any] )-> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def a__( self : List[str] , lowerCAmelCase : str )-> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): UpperCAmelCase = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCAmelCase = [files] UpperCAmelCase = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) ) return splits def a__( self : Union[str, Any] , lowerCAmelCase : pa.Table )-> Any: """simple docstring""" if self.config.features is not None: UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(__SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCAmelCase = table_cast(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return pa_table def a__( self : int , lowerCAmelCase : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): UpperCAmelCase = pd.read_csv(__SCREAMING_SNAKE_CASE , iterator=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = pa.Table.from_pandas(__SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(F"""Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}""" ) raise
715
'''simple docstring''' import argparse import os import re import packaging.version _lowercase : Optional[int] = """examples/""" _lowercase : str = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } _lowercase : Dict = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } _lowercase : List[Any] = """README.md""" def lowerCamelCase__ ( A : int , A : str , A : Optional[Any] ): '''simple docstring''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase , UpperCAmelCase = REPLACE_PATTERNS[pattern] UpperCAmelCase = replace.replace('''VERSION''' , A ) UpperCAmelCase = re_pattern.sub(A , A ) with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(A ) def lowerCamelCase__ ( A : Optional[int] ): '''simple docstring''' for folder, directories, fnames in os.walk(A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(A , A ) , A , pattern='''examples''' ) def lowerCamelCase__ ( A : str , A : Dict=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A , A , A ) if not patch: update_version_in_examples(A ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' UpperCAmelCase = '''1. Want to contribute a new model?''' with open(A , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase = f.readlines() # Find the start of the list. UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(A , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(A ) def lowerCamelCase__ ( ): '''simple docstring''' with open(REPLACE_FILES['''init'''] , '''r''' ) as f: UpperCAmelCase = f.read() UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(A ).groups()[0] return packaging.version.parse(A ) def lowerCamelCase__ ( A : Tuple=False ): '''simple docstring''' UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: UpperCAmelCase = default_version.base_version elif patch: UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(A ) == 0: UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(A , patch=A ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = get_version() UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" UpperCAmelCase = current_version.base_version # Check with the user we got that right. UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(A ) == 0: UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(A ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") _lowercase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
50
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase__ ( A : Iterable[str] , A : int ): '''simple docstring''' UpperCAmelCase = iter(A ) while True: UpperCAmelCase = tuple(itertools.islice(A , A ) ) if not chunk: return yield chunk def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCAmelCase = '' if len(A ) < 2: return dirty for i in range(len(A ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(A ) & 1: clean += "X" return clean def lowerCamelCase__ ( A : str ): '''simple docstring''' UpperCAmelCase = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(A ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(A ) return table def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' UpperCAmelCase = generate_table(A ) UpperCAmelCase = prepare_input(A ) UpperCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A , 2 ): UpperCAmelCase = divmod(table.index(A ) , 5 ) UpperCAmelCase = divmod(table.index(A ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase__ ( A : str , A : str ): '''simple docstring''' UpperCAmelCase = generate_table(A ) UpperCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(A , 2 ): UpperCAmelCase = divmod(table.index(A ) , 5 ) UpperCAmelCase = divmod(table.index(A ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
716
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : List[Any] , lowerCAmelCase : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = 3 UpperCAmelCase = 250 UpperCAmelCase = ids_tensor((batch_size, length) , lowerCAmelCase ) UpperCAmelCase = torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def a__( self : Dict )-> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = MaxLengthCriteria(max_length=10 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase , UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def a__( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self._get_tensors(5 ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def a__( self : int )-> Any: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
50
0
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , _lowercase ).groups()[0] class UpperCamelCase__( lowerCAmelCase ): def __init__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None )-> Tuple: """simple docstring""" UpperCAmelCase = file_names UpperCAmelCase = image_transform UpperCAmelCase = label_to_id def __len__( self : Dict )-> str: """simple docstring""" return len(self.file_names ) def __getitem__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" UpperCAmelCase = self.file_names[idx] UpperCAmelCase = PIL.Image.open(__A ) UpperCAmelCase = raw_image.convert('''RGB''' ) if self.image_transform is not None: UpperCAmelCase = self.image_transform(__A ) UpperCAmelCase = extract_label(__A ) if self.label_to_id is not None: UpperCAmelCase = self.label_to_id[label] return {"image": image, "label": label} def lowerCamelCase__ ( A : Optional[Any] , A : List[Any] ): '''simple docstring''' if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = config['''image_size'''] if not isinstance(_lowercase , (list, tuple) ): UpperCAmelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": UpperCAmelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): UpperCAmelCase = int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: UpperCAmelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: UpperCAmelCase = os.path.split(_lowercase )[-1].split('''.''' )[0] accelerator.init_trackers(_lowercase , _lowercase ) # Grab all the image filenames UpperCAmelCase = [os.path.join(args.data_dir , _lowercase ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences UpperCAmelCase = [extract_label(_lowercase ) for fname in file_names] UpperCAmelCase = list(set(_lowercase ) ) id_to_label.sort() UpperCAmelCase = {lbl: i for i, lbl in enumerate(_lowercase )} # Set the seed before splitting the data. np.random.seed(_lowercase ) torch.manual_seed(_lowercase ) torch.cuda.manual_seed_all(_lowercase ) # Split our filenames between train and validation UpperCAmelCase = np.random.permutation(len(_lowercase ) ) UpperCAmelCase = int(0.8 * len(_lowercase ) ) UpperCAmelCase = random_perm[:cut] UpperCAmelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop UpperCAmelCase = Compose([RandomResizedCrop(_lowercase , scale=(0.5, 1.0) ), ToTensor()] ) UpperCAmelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=_lowercase , label_to_id=_lowercase ) # For evaluation, we use a deterministic Resize UpperCAmelCase = Compose([Resize(_lowercase ), ToTensor()] ) UpperCAmelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=_lowercase , label_to_id=_lowercase ) # Instantiate dataloaders. UpperCAmelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) UpperCAmelCase = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = create_model('''resnet50d''' , pretrained=_lowercase , num_classes=len(_lowercase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): UpperCAmelCase = False for param in model.get_classifier().parameters(): UpperCAmelCase = True # We normalize the batches of images to be a bit faster. UpperCAmelCase = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) UpperCAmelCase = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler UpperCAmelCase = OneCycleLR(optimizer=_lowercase , max_lr=_lowercase , epochs=_lowercase , steps_per_epoch=len(_lowercase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase = 0 # We also need to keep track of the starting epoch so files are named properly UpperCAmelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint UpperCAmelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) UpperCAmelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` UpperCAmelCase = os.path.splitext(_lowercase )[0] if "epoch" in training_difference: UpperCAmelCase = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 UpperCAmelCase = None else: UpperCAmelCase = int(training_difference.replace('''step_''' , '''''' ) ) UpperCAmelCase = resume_step // len(_lowercase ) resume_step -= starting_epoch * len(_lowercase ) # Now we train the model for epoch in range(_lowercase , _lowercase ): model.train() if args.with_tracking: UpperCAmelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step UpperCAmelCase = accelerator.skip_first_batches(_lowercase , _lowercase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader UpperCAmelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['''image'''] - mean) / std UpperCAmelCase = model(_lowercase ) UpperCAmelCase = torch.nn.functional.cross_entropy(_lowercase , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_lowercase , _lowercase ): UpperCAmelCase = f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) model.eval() UpperCAmelCase = 0 UpperCAmelCase = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. UpperCAmelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} UpperCAmelCase = (batch['''image'''] - mean) / std with torch.no_grad(): UpperCAmelCase = model(_lowercase ) UpperCAmelCase = outputs.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''label''']) ) UpperCAmelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() UpperCAmelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_00 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_00 * eval_metric, '''train_loss''': total_loss.item() / len(_lowercase ), '''epoch''': epoch, } , step=_lowercase , ) if checkpointing_steps == "epoch": UpperCAmelCase = f"""epoch_{epoch}""" if args.output_dir is not None: UpperCAmelCase = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=_lowercase , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=_lowercase , default=_lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=_lowercase , default=_lowercase , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=_lowercase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 2_24} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
717
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=lowerCAmelCase ): __magic_name__ : List[str] = ["note_seq"] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : int )-> Optional[int]: """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a__( cls : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a__( cls : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''note_seq'''] )
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[Any] = { """configuration_blenderbot_small""": [ """BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotSmallConfig""", """BlenderbotSmallOnnxConfig""", ], """tokenization_blenderbot_small""": ["""BlenderbotSmallTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = ["""BlenderbotSmallTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ """BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotSmallForCausalLM""", """BlenderbotSmallForConditionalGeneration""", """BlenderbotSmallModel""", """BlenderbotSmallPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ """TFBlenderbotSmallForConditionalGeneration""", """TFBlenderbotSmallModel""", """TFBlenderbotSmallPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """FlaxBlenderbotSmallForConditionalGeneration""", """FlaxBlenderbotSmallModel""", """FlaxBlenderbotSmallPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : List[Any] , A : int , A : List[str] , A : Optional[int] ): '''simple docstring''' UpperCAmelCase = BigBirdConfig.from_json_file(A ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: UpperCAmelCase = BigBirdForQuestionAnswering(A ) else: UpperCAmelCase = BigBirdForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(A , A , is_trivia_qa=A ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(A ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _lowercase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : int = CTRLTokenizer __magic_name__ : int = False __magic_name__ : Optional[Any] = False def a__( self : int )-> Optional[Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase = dict(zip(A__ , range(len(A__ ) ) ) ) UpperCAmelCase = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase = {"""unk_token""": """<unk>"""} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def a__( self : Any , **lowerCAmelCase : Any )-> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A__ ) def a__( self : Any , lowerCAmelCase : List[str] )-> str: """simple docstring""" UpperCAmelCase = """adapt react readapt apt""" UpperCAmelCase = """adapt react readapt apt""" return input_text, output_text def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = """adapt react readapt apt""" UpperCAmelCase = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
719
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def a__( self : Union[str, Any] )-> str: """simple docstring""" UpperCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase ): DisjunctiveConstraint(lowerCAmelCase ) # fails here def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) UpperCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(3 ) UpperCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def a__( self : int )-> Dict: """simple docstring""" UpperCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase = DisjunctiveConstraint(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
50
0
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup _lowercase : Union[str, Any] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowerCamelCase__ ( A : Any ): '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") _lowercase : Optional[int] = parser.parse_args() if args.check_lib: _lowercase : Union[str, Any] = importlib.import_module("""transformers""") _lowercase : Any = Path(transformers_module.__file__).parent else: _lowercase : List[Any] = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
720
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class UpperCamelCase__( lowerCAmelCase ): @staticmethod def a__( lowerCAmelCase : ArgumentParser )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=lowerCAmelCase , default=lowerCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=lowerCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=lowerCAmelCase ) def __init__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool , lowerCAmelCase : bool )-> Any: """simple docstring""" UpperCAmelCase = model UpperCAmelCase = cache UpperCAmelCase = force UpperCAmelCase = trust_remote_code def a__( self : int )-> Optional[Any]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
50
0
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _lowercase : List[str] = None try: import msvcrt except ImportError: _lowercase : Optional[Any] = None try: import fcntl except ImportError: _lowercase : List[str] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowercase : Tuple = OSError # Data # ------------------------------------------------ _lowercase : Optional[int] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] _lowercase : List[str] = """3.0.12""" _lowercase : Tuple = None def lowerCamelCase__ ( ): '''simple docstring''' global _logger UpperCAmelCase = _logger or logging.getLogger(__name__ ) return _logger class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any , lowerCAmelCase : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = lock_file return None def __str__( self : Tuple )-> Optional[int]: """simple docstring""" UpperCAmelCase = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class UpperCamelCase__: def __init__( self : Optional[int] , lowerCAmelCase : str )-> Tuple: """simple docstring""" UpperCAmelCase = lock return None def __enter__( self : Union[str, Any] )-> List[Any]: """simple docstring""" return self.lock def __exit__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] )-> str: """simple docstring""" self.lock.release() return None class UpperCamelCase__: def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Dict=None )-> Any: """simple docstring""" UpperCAmelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCAmelCase = self.hash_filename_if_too_long(UpperCamelCase__ , UpperCamelCase__ ) # The path to the lock file. UpperCAmelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCAmelCase = None # The default timeout value. UpperCAmelCase = timeout # We use this lock primarily for the lock counter. UpperCAmelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCAmelCase = 0 return None @property def a__( self : Dict )-> Tuple: """simple docstring""" return self._lock_file @property def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" return self._timeout @timeout.setter def a__( self : str , lowerCAmelCase : Tuple )-> Any: """simple docstring""" UpperCAmelCase = float(UpperCamelCase__ ) return None def a__( self : Any )-> Any: """simple docstring""" raise NotImplementedError() def a__( self : Dict )-> List[Any]: """simple docstring""" raise NotImplementedError() @property def a__( self : str )-> Union[str, Any]: """simple docstring""" return self._lock_file_fd is not None def a__( self : int , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Tuple=0.05 )-> List[str]: """simple docstring""" if timeout is None: UpperCAmelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCAmelCase = id(self ) UpperCAmelCase = self._lock_file UpperCAmelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(UpperCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCAmelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def a__( self : int , lowerCAmelCase : Optional[int]=False )-> Union[str, Any]: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCAmelCase = id(self ) UpperCAmelCase = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() UpperCAmelCase = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self : Optional[Any] )-> Optional[int]: """simple docstring""" self.acquire() return self def __exit__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] )-> List[Any]: """simple docstring""" self.release() return None def __del__( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" self.release(force=UpperCamelCase__ ) return None def a__( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] )-> str: """simple docstring""" UpperCAmelCase = os.path.basename(UpperCamelCase__ ) if len(UpperCamelCase__ ) > max_length and max_length > 0: UpperCAmelCase = os.path.dirname(UpperCamelCase__ ) UpperCAmelCase = str(hash(UpperCamelCase__ ) ) UpperCAmelCase = filename[: max_length - len(UpperCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(UpperCamelCase__ , UpperCamelCase__ ) else: return path class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Any=-1 , lowerCAmelCase : Optional[int]=None )-> Union[str, Any]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) UpperCAmelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCAmelCase = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: try: msvcrt.locking(UpperCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(UpperCamelCase__ ) else: UpperCAmelCase = fd return None def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = self._lock_file_fd UpperCAmelCase = None msvcrt.locking(UpperCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(UpperCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : Optional[Any]=None )-> Any: """simple docstring""" UpperCAmelCase = os.statvfs(os.path.dirname(UpperCamelCase__ ) ).f_namemax super().__init__(UpperCamelCase__ , timeout=UpperCamelCase__ , max_filename_length=UpperCamelCase__ ) def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCAmelCase = os.open(self._lock_file , UpperCamelCase__ ) try: fcntl.flock(UpperCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(UpperCamelCase__ ) else: UpperCAmelCase = fd return None def a__( self : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self._lock_file_fd UpperCAmelCase = None fcntl.flock(UpperCamelCase__ , fcntl.LOCK_UN ) os.close(UpperCamelCase__ ) return None class UpperCamelCase__( lowerCAmelCase ): def a__( self : str )-> Tuple: """simple docstring""" UpperCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCAmelCase = os.open(self._lock_file , UpperCamelCase__ ) except OSError: pass else: UpperCAmelCase = fd return None def a__( self : Any )-> List[str]: """simple docstring""" os.close(self._lock_file_fd ) UpperCAmelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _lowercase : str = None if msvcrt: _lowercase : int = WindowsFileLock elif fcntl: _lowercase : Tuple = UnixFileLock else: _lowercase : List[str] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
721
'''simple docstring''' def lowerCamelCase__ ( A : str ): '''simple docstring''' assert column_title.isupper() UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 UpperCAmelCase = 0 while index >= 0: UpperCAmelCase = (ord(column_title[index] ) - 64) * pow(26 , A ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
50
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( A : Union[str, Any] , A : Any , A : str , A : List[str]=None , A : int=None ): '''simple docstring''' if "." in tensor_name: UpperCAmelCase = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase = getattr(A , A ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) UpperCAmelCase = new_module UpperCAmelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) UpperCAmelCase = tensor_name in module._buffers UpperCAmelCase = getattr(A , A ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) UpperCAmelCase = False UpperCAmelCase = False if is_buffer or not is_bitsandbytes_available(): UpperCAmelCase = False UpperCAmelCase = False else: UpperCAmelCase = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCAmelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCAmelCase = old_value.to(A ) elif isinstance(A , torch.Tensor ): UpperCAmelCase = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCAmelCase = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCAmelCase = torch.tensor(A , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , A ) and fpaa_statistics is None: UpperCAmelCase = new_value.T UpperCAmelCase = old_value.__dict__ if is_abit: UpperCAmelCase = bnb.nn.IntaParams(A , requires_grad=A , **A ).to(A ) elif is_abit: UpperCAmelCase = bnb.nn.Paramsabit(A , requires_grad=A , **A ).to(A ) UpperCAmelCase = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(A ) ) else: if value is None: UpperCAmelCase = old_value.to(A ) elif isinstance(A , torch.Tensor ): UpperCAmelCase = value.to(A ) else: UpperCAmelCase = torch.tensor(A , device=A ) if is_buffer: UpperCAmelCase = new_value else: UpperCAmelCase = nn.Parameter(A , requires_grad=old_value.requires_grad ) UpperCAmelCase = new_value def lowerCamelCase__ ( A : List[str] , A : Union[str, Any]=None , A : Tuple=None , A : str=None , A : Union[str, Any]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase = [] current_key_name.append(A ) if (isinstance(A , nn.Linear ) or isinstance(A , A )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(A ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(A , A ): UpperCAmelCase , UpperCAmelCase = module.weight.shape else: UpperCAmelCase = module.in_features UpperCAmelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCAmelCase = bnb.nn.LinearabitLt( A , A , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCAmelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCAmelCase = bnb.nn.Linearabit( A , A , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCAmelCase = True # Store the module class in case we need to transpose the weight later UpperCAmelCase = type(A ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(A ) if len(list(module.children() ) ) > 0: UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_linear( A , A , A , A , has_been_replaced=A , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCamelCase__ ( A : Any , A : List[str]=None , A : int=None , A : Any=None ): '''simple docstring''' UpperCAmelCase = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCAmelCase , UpperCAmelCase = _replace_with_bnb_linear( A , A , A , A ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def lowerCamelCase__ ( *A : Any , **A : Optional[int] ): '''simple docstring''' warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , A , ) return replace_with_bnb_linear(*A , **A ) def lowerCamelCase__ ( *A : str , **A : Optional[int] ): '''simple docstring''' warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , A , ) return set_module_quantized_tensor_to_device(*A , **A ) def lowerCamelCase__ ( A : List[Any] ): '''simple docstring''' UpperCAmelCase = deepcopy(A ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCAmelCase = find_tied_parameters(A ) # For compatibility with Accelerate < 0.18 if isinstance(A , A ): UpperCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase = sum(A , [] ) UpperCAmelCase = len(A ) > 0 # Check if it is a base model UpperCAmelCase = not hasattr(A , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase = list(model.named_children() ) UpperCAmelCase = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase = set(A ) - set(A ) UpperCAmelCase = list(set(A ) ) + list(A ) # remove ".weight" from the keys UpperCAmelCase = ['''.weight''', '''.bias'''] UpperCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase = name.replace(A , '''''' ) filtered_module_names.append(A ) return filtered_module_names
700
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__( unittest.TestCase ): def __init__( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Optional[Any]=[10, 20, 30, 40] , lowerCAmelCase : Optional[int]=[1, 1, 2, 1] , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]="relu" , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Union[str, Any]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = embeddings_size UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = scope UpperCAmelCase = len(lowerCAmelCase ) def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : str )-> Optional[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def a__( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetModel(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] )-> List[str]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase ) UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__( lowerCAmelCase , unittest.TestCase ): __magic_name__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __magic_name__ : Optional[int] = False __magic_name__ : List[str] = False __magic_name__ : Dict = False def a__( self : Union[str, Any] )-> None: """simple docstring""" UpperCAmelCase = FlaxRegNetModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : Tuple )-> Tuple: """simple docstring""" return def a__( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def a__( self : Any )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def a__( self : str )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def a__( self : Any )-> List[str]: """simple docstring""" pass def a__( self : Any )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Tuple )-> int: """simple docstring""" def check_hidden_states_output(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase ) , expected_num_stages + 1 ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def a__( self : Union[str, Any] )-> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model_class(lowerCAmelCase ) @jax.jit def model_jitted(lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ): return model(pixel_values=lowerCAmelCase , **lowerCAmelCase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowerCAmelCase ).to_tuple() self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCamelCase__( unittest.TestCase ): @cached_property def a__( self : Dict )-> int: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowerCAmelCase , return_tensors='''np''' ) UpperCAmelCase = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase = (1, 1000) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
50
0
'''simple docstring''' def lowerCamelCase__ ( A : float , A : float , A : int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase__( lowerCAmelCase ): def a__( self : Tuple , lowerCAmelCase : str )-> List[str]: """simple docstring""" with open(lowerCAmelCase , encoding='''utf-8''' ) as input_file: UpperCAmelCase = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCAmelCase = input_file.read() UpperCAmelCase = regexp.search(lowerCAmelCase ) return match def a__( self : Dict , lowerCAmelCase : str )-> Tuple: """simple docstring""" with open(lowerCAmelCase , encoding='''utf-8''' ) as input_file: UpperCAmelCase = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase = regexp.finditer(lowerCAmelCase ) UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a__( self : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase = Path('''./datasets''' ) UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCAmelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = Path('''./datasets''' ) UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCAmelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
702
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers _lowercase : Union[str, Any] = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
50
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowercase : Dict = ["""gpt2"""] _lowercase : Union[str, Any] = """gpt2""" if is_tf_available(): class UpperCamelCase__( tf.Module ): def __init__( self : List[Any] , lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase ) UpperCAmelCase = TFGPTaLMHeadModel.from_config(lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def a__( self : Optional[Any] , lowerCAmelCase : str )-> List[str]: """simple docstring""" UpperCAmelCase = self.tokenizer(lowerCAmelCase ) UpperCAmelCase = tokenized['input_ids'].to_tensor() UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase = self.model(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase )['logits'] return outputs @require_tf @require_keras_nlp class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple )-> Tuple: """simple docstring""" super().setUp() UpperCAmelCase = [GPTaTokenizer.from_pretrained(lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def a__( self : int )-> Tuple: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase = python_outputs[key].numpy() UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def a__( self : Any )-> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(lowerCAmelCase ) for test_inputs in self.test_sentences: UpperCAmelCase = tf.constant(lowerCAmelCase ) UpperCAmelCase = compiled_tokenizer(lowerCAmelCase ) UpperCAmelCase = tf_tokenizer(lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def a__( self : str )-> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=lowerCAmelCase ) UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = model.serving(lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(lowerCAmelCase ) / 'saved.model' tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={'''serving_default''': model.serving} ) UpperCAmelCase = tf.saved_model.load(lowerCAmelCase ) UpperCAmelCase = loaded_model.signatures['serving_default'](lowerCAmelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def a__( self : List[str] )-> Tuple: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(lowerCAmelCase ) # Build model with some sample inputs UpperCAmelCase = tf_tokenizer.get_config() UpperCAmelCase = TFGPTaTokenizer.from_config(lowerCAmelCase ) UpperCAmelCase = model_from_config(lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase = 123123 for max_length in [3, 5, 1024]: UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase = tf_tokenizer(lowerCAmelCase , max_length=lowerCAmelCase ) UpperCAmelCase = out['input_ids'].numpy().shape[1] assert out_length == max_length
703
'''simple docstring''' import functools def lowerCamelCase__ ( A : list[int] , A : list[int] ): '''simple docstring''' if not isinstance(A , A ) or not all(isinstance(A , A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(A ) != 3 or not all(isinstance(A , A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(A ) == 0: return 0 if min(A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(A ) >= 3_66: raise ValueError('''All days elements should be less than 366''' ) UpperCAmelCase = set(A ) @functools.cache def dynamic_programming(A : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Any = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Any = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowercase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : List[str] = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def lowerCamelCase__ ( A : Union[str, Any] , A : Dict , A : Optional[int]=8 ): '''simple docstring''' UpperCAmelCase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase__( __a ): def __init__( self : int , lowerCAmelCase : MultilingualCLIP , lowerCAmelCase : XLMRobertaTokenizer , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase : VQModel , )-> Dict: """simple docstring""" super().__init__() self.register_modules( text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] )-> List[str]: """simple docstring""" if latents is None: UpperCAmelCase = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase = latents.to(snake_case__ ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def a__( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , )-> Optional[int]: """simple docstring""" UpperCAmelCase = len(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else 1 # get prompt text embeddings UpperCAmelCase = self.tokenizer( snake_case__ , padding='''max_length''' , truncation=snake_case__ , max_length=77 , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs.input_ids UpperCAmelCase = self.tokenizer(snake_case__ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case__ , snake_case__ ): UpperCAmelCase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase = text_input_ids.to(snake_case__ ) UpperCAmelCase = text_inputs.attention_mask.to(snake_case__ ) UpperCAmelCase , UpperCAmelCase = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase = prompt_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCAmelCase = text_encoder_hidden_states.repeat_interleave(snake_case__ , dim=0 ) UpperCAmelCase = text_mask.repeat_interleave(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = 42 if negative_prompt is None: UpperCAmelCase = [''''''] * batch_size elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=""" F""" {type(snake_case__ )}.""" ) elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ''' the batch size of `prompt`.''' ) else: UpperCAmelCase = negative_prompt UpperCAmelCase = self.tokenizer( snake_case__ , padding='''max_length''' , max_length=77 , truncation=snake_case__ , return_attention_mask=snake_case__ , add_special_tokens=snake_case__ , return_tensors='''pt''' , ) UpperCAmelCase = uncond_input.input_ids.to(snake_case__ ) UpperCAmelCase = uncond_input.attention_mask.to(snake_case__ ) UpperCAmelCase , UpperCAmelCase = self.text_encoder( input_ids=snake_case__ , attention_mask=snake_case__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase = negative_prompt_embeds.shape[1] UpperCAmelCase = negative_prompt_embeds.repeat(1 , snake_case__ ) UpperCAmelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case__ ) UpperCAmelCase = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase = uncond_text_encoder_hidden_states.repeat(1 , snake_case__ , 1 ) UpperCAmelCase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , snake_case__ , -1 ) UpperCAmelCase = uncond_text_mask.repeat_interleave(snake_case__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def a__( self : Union[str, Any] , lowerCAmelCase : str=0 )-> Dict: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def a__( self : Any , lowerCAmelCase : Optional[int]=0 )-> List[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) if self.safety_checker is not None: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(self.safety_checker , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__( self : str )-> List[str]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self : Union[str, Any] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Optional[Union[str, List[str]]] = None , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 100 , lowerCAmelCase : float = 4.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , )-> List[Any]: """simple docstring""" if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = 1 elif isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = len(snake_case__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}""" ) UpperCAmelCase = self._execution_device UpperCAmelCase = batch_size * num_images_per_prompt UpperCAmelCase = guidance_scale > 1.0 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._encode_prompt( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = torch.cat(snake_case__ , dim=0 ) if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=snake_case__ ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase = get_new_h_w(snake_case__ , snake_case__ , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case__ , snake_case__ , snake_case__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} UpperCAmelCase = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , ).prev_sample # post-processing UpperCAmelCase = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
705
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCamelCase__ ( A : Optional[Any] , A : Tuple=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split('''.''' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('''.''' )[:n_shave_prefix_segments] ) def lowerCamelCase__ ( A : int , A : Optional[Any]=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item.replace('''in_layers.0''' , '''norm1''' ) UpperCAmelCase = new_item.replace('''in_layers.2''' , '''conv1''' ) UpperCAmelCase = new_item.replace('''out_layers.0''' , '''norm2''' ) UpperCAmelCase = new_item.replace('''out_layers.3''' , '''conv2''' ) UpperCAmelCase = new_item.replace('''emb_layers.1''' , '''time_emb_proj''' ) UpperCAmelCase = new_item.replace('''skip_connection''' , '''conv_shortcut''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Any , A : int=0 ): '''simple docstring''' UpperCAmelCase = [] for old_item in old_list: UpperCAmelCase = old_item UpperCAmelCase = new_item.replace('''norm.weight''' , '''group_norm.weight''' ) UpperCAmelCase = new_item.replace('''norm.bias''' , '''group_norm.bias''' ) UpperCAmelCase = new_item.replace('''proj_out.weight''' , '''proj_attn.weight''' ) UpperCAmelCase = new_item.replace('''proj_out.bias''' , '''proj_attn.bias''' ) UpperCAmelCase = shave_segments(A , n_shave_prefix_segments=A ) mapping.append({'''old''': old_item, '''new''': new_item} ) return mapping def lowerCamelCase__ ( A : Tuple , A : Union[str, Any] , A : int , A : Dict=None , A : Optional[int]=None , A : Optional[Any]=None ): '''simple docstring''' assert isinstance(A , A ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase = old_checkpoint[path] UpperCAmelCase = old_tensor.shape[0] // 3 UpperCAmelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase = query.reshape(A ) UpperCAmelCase = key.reshape(A ) UpperCAmelCase = value.reshape(A ) for path in paths: UpperCAmelCase = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase = new_path.replace('''middle_block.0''' , '''mid_block.resnets.0''' ) UpperCAmelCase = new_path.replace('''middle_block.1''' , '''mid_block.attentions.0''' ) UpperCAmelCase = new_path.replace('''middle_block.2''' , '''mid_block.resnets.1''' ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase = new_path.replace(replacement['''old'''] , replacement['''new'''] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase = old_checkpoint[path['''old''']] def lowerCamelCase__ ( A : Union[str, Any] , A : Dict ): '''simple docstring''' UpperCAmelCase = {} UpperCAmelCase = checkpoint['''time_embed.0.weight'''] UpperCAmelCase = checkpoint['''time_embed.0.bias'''] UpperCAmelCase = checkpoint['''time_embed.2.weight'''] UpperCAmelCase = checkpoint['''time_embed.2.bias'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase = checkpoint['''out.0.weight'''] UpperCAmelCase = checkpoint['''out.0.bias'''] UpperCAmelCase = checkpoint['''out.2.weight'''] UpperCAmelCase = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''input_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the middle blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''middle_block''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(A ) } # Retrieves the keys for the output blocks only UpperCAmelCase = len({'''.'''.join(layer.split('''.''' )[:2] ) for layer in checkpoint if '''output_blocks''' in layer} ) UpperCAmelCase = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(A ) } for i in range(1 , A ): UpperCAmelCase = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( A , A , A , additional_replacements=[meta_path, resnet_op] , config=A ) if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=A , config=A , ) UpperCAmelCase = middle_blocks[0] UpperCAmelCase = middle_blocks[1] UpperCAmelCase = middle_blocks[2] UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_resnet_paths(A ) assign_to_checkpoint(A , A , A , config=A ) UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( A , A , A , attention_paths_to_split=A , config=A ) for i in range(A ): UpperCAmelCase = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase = [shave_segments(A , 2 ) for name in output_blocks[i]] UpperCAmelCase = {} for layer in output_block_layers: UpperCAmelCase , UpperCAmelCase = layer.split('''.''' )[0], shave_segments(A , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(A ) else: UpperCAmelCase = [layer_name] if len(A ) > 1: UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = renew_resnet_paths(A ) UpperCAmelCase = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(A , A , A , additional_replacements=[meta_path] , config=A ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase = list(output_block_list.values() ).index(['''conv.weight''', '''conv.bias'''] ) UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(A ) == 2: UpperCAmelCase = [] if len(A ): UpperCAmelCase = renew_attention_paths(A ) UpperCAmelCase = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( A , A , A , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('''qkv''' in key for key in attentions ) else None , config=A , ) else: UpperCAmelCase = renew_resnet_paths(A , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase = '''.'''.join(['''output_blocks''', str(A ), path['''old''']] ) UpperCAmelCase = '''.'''.join(['''up_blocks''', str(A ), '''resnets''', str(A ), path['''new''']] ) UpperCAmelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") _lowercase : Dict = parser.parse_args() _lowercase : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: _lowercase : List[str] = json.loads(f.read()) _lowercase : Union[str, Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _lowercase : Any = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _lowercase : Tuple = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) _lowercase : Optional[Any] = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
50
0
'''simple docstring''' import numpy as np def lowerCamelCase__ ( A : str ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCamelCase__ ( A : Any ): '''simple docstring''' return vector * sigmoid(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Dict = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "dpr" def __init__( self : Dict , lowerCAmelCase : Any=30522 , lowerCAmelCase : List[str]=768 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[int]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=512 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-12 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Tuple="absolute" , lowerCAmelCase : int = 0 , **lowerCAmelCase : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = projection_dim UpperCAmelCase = position_embedding_type
50
0
'''simple docstring''' import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = "naver-clova-ix/donut-base-finetuned-docvqa" __magic_name__ : Tuple = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) __magic_name__ : Tuple = "document_qa" __magic_name__ : Tuple = AutoProcessor __magic_name__ : Optional[int] = VisionEncoderDecoderModel __magic_name__ : Optional[int] = ["image", "text"] __magic_name__ : List[Any] = ["text"] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict )-> Optional[Any]: """simple docstring""" if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Dict )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCAmelCase = task_prompt.replace('''{user_input}''' , lowerCAmelCase ) UpperCAmelCase = self.pre_processor.tokenizer( lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors='''pt''' ).input_ids UpperCAmelCase = self.pre_processor(lowerCAmelCase , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def a__( self : int , lowerCAmelCase : Optional[Any] )-> Union[str, Any]: """simple docstring""" return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase , ).sequences def a__( self : List[Any] , lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = self.pre_processor.batch_decode(lowerCAmelCase )[0] UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) UpperCAmelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) UpperCAmelCase = re.sub(R'''<.*?>''' , '''''' , lowerCAmelCase , count=1 ).strip() # remove first task start token UpperCAmelCase = self.pre_processor.tokenajson(lowerCAmelCase ) return sequence["answer"]
707
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowercase : Tuple = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( A : Optional[Any] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( A : Any , A : str ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowerCamelCase__ ( A : List[Any] , A : List[str] ): '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=A , required=A , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=A , required=A , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=A , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=A , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=A , required=A , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=A , type=A , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=A , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=A , required=A , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=A , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=A , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=A , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=A , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=A , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=A , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=A , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=A , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=A , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=A , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=A , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=A , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=A , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=A , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=A , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=A , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=A , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=A , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=A , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=A , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=A , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=A , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=A , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=A , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=A , default=5_00 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=A , default=40_00 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(A ) # ARGS # init_gpu_params(A ) set_seed(A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(A ) , A , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(A ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(A ) UpperCAmelCase = np.maximum(A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(A ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=A , data=A ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A ) else: UpperCAmelCase = student_model_class(A ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A , A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A , A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=A , dataset=A , token_probs=A , student=A , teacher=A ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
50
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _lowercase : Any = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _lowercase : int = 'sshleifer/student_marian_en_ro_6_1' _lowercase : Dict = 'sshleifer/tiny-mbart' @require_torch class UpperCamelCase__( lowerCAmelCase__ ): def a__( self : str , lowerCAmelCase : Dict=False , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , )-> Tuple: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=_SCREAMING_SNAKE_CASE , extra_args_str=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , do_predict=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase = TrainerState.load_from_json(os.path.join(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history if not do_eval: return UpperCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _SCREAMING_SNAKE_CASE ) assert not math.isnan(float(last_step_stats['''eval_loss'''] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def a__( self : Dict )-> Optional[int]: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE ) @require_torch_multi_gpu def a__( self : List[Any] )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : Optional[int] )-> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : List[str] )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp simple --fp16''' ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : str )-> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_SCREAMING_SNAKE_CASE ) @unittest.skip('''Requires an update of the env running those tests''' ) @require_torch_multi_gpu @require_fairscale def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" self.run_seqaseq_quick( distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_SCREAMING_SNAKE_CASE ) @require_apex @require_torch_gpu def a__( self : str )-> List[str]: """simple docstring""" self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_SCREAMING_SNAKE_CASE , extra_args_str='''--fp16 --fp16_backend=apex''' ) @parameterized.expand(['''base''', '''low''', '''high''', '''mixed'''] ) @require_torch_multi_gpu def a__( self : List[str] , lowerCAmelCase : List[str] )-> Dict: """simple docstring""" UpperCAmelCase = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase = experiments[experiment_id] UpperCAmelCase = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_SCREAMING_SNAKE_CASE , extra_args_str=data['''extra_args_str'''] ) UpperCAmelCase = len(re.findall(_SCREAMING_SNAKE_CASE , cl.err ) ) self.assertEqual(_SCREAMING_SNAKE_CASE , data['''n_matches'''] ) @slow def a__( self : List[str] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_SCREAMING_SNAKE_CASE , learning_rate=3E-4 , num_train_epochs=10 , distributed=_SCREAMING_SNAKE_CASE , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(os.path.join(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history UpperCAmelCase = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase = eval_metrics[0] UpperCAmelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _SCREAMING_SNAKE_CASE ) # test if do_predict saves generations and metrics UpperCAmelCase = os.listdir(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = {os.path.basename(_SCREAMING_SNAKE_CASE ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCAmelCase : Union[str, Any] ) -> Tuple[int, float]: UpperCAmelCase = '''--skip_memory_metrics 0''' UpperCAmelCase = self.run_trainer( max_len=128 , model_name=_SCREAMING_SNAKE_CASE , learning_rate=3E-4 , num_train_epochs=1 , optim=_SCREAMING_SNAKE_CASE , distributed=_SCREAMING_SNAKE_CASE , extra_args_str=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , do_predict=_SCREAMING_SNAKE_CASE , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase = TrainerState.load_from_json(Path(_SCREAMING_SNAKE_CASE , '''trainer_state.json''' ) ).log_history UpperCAmelCase = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20 ) UpperCAmelCase = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20 ) UpperCAmelCase = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" F""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' F""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" F""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def a__( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : int = 3E-3 , lowerCAmelCase : List[Any] = "adafactor" , lowerCAmelCase : Tuple = False , lowerCAmelCase : List[Any] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : List[str] = True , lowerCAmelCase : Dict = True , lowerCAmelCase : int = True , lowerCAmelCase : Any = True , lowerCAmelCase : Union[str, Any] = None , )-> List[str]: """simple docstring""" UpperCAmelCase = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = F"""\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_SCREAMING_SNAKE_CASE )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n """.split() UpperCAmelCase = F"""\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_SCREAMING_SNAKE_CASE )}\n """.split() UpperCAmelCase = ''' --do_predict '''.split() UpperCAmelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase = get_gpu_count() UpperCAmelCase = get_torch_dist_unique_port() UpperCAmelCase = F"""\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n """.split() UpperCAmelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=self.get_env() ) else: UpperCAmelCase = ['''run_translation.py'''] + args with patch.object(_SCREAMING_SNAKE_CASE , '''argv''' , _SCREAMING_SNAKE_CASE ): main() return output_dir
708
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Tuple = ["image_processor", "tokenizer"] __magic_name__ : Any = "ViTImageProcessor" __magic_name__ : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase , lowerCAmelCase ) def __call__( self : str , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , **lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if images is not None: UpperCAmelCase = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) if visual_prompt is not None and images is not None: UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase ) , tensor_type=lowerCAmelCase ) def a__( self : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] )-> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @property def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase , ) return self.image_processor_class @property def a__( self : Any )-> List[Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase , ) return self.image_processor
50
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Union[str, Any] = {'vocab_file': 'vocab.txt'} _lowercase : str = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } _lowercase : List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } _lowercase : Tuple = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class UpperCamelCase__( _A ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : List[Any] = ConvBertTokenizer def __init__( self : str , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]="[UNK]" , lowerCAmelCase : Optional[Any]="[SEP]" , lowerCAmelCase : Tuple="[PAD]" , lowerCAmelCase : Any="[CLS]" , lowerCAmelCase : int="[MASK]" , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : Dict , )-> List[Any]: """simple docstring""" super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase__ ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(UpperCamelCase__ , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**UpperCamelCase__ ) UpperCAmelCase = do_lower_case def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : str=None )-> Optional[int]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["""MaskFormerFeatureExtractor"""] _lowercase : Dict = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] _lowercase : List[Any] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Union[str, Any] = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['''OwlViTFeatureExtractor'''] _lowercase : Union[str, Any] = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Dict = 32 def lowerCamelCase__ ( A : Accelerator , A : int = 16 ): '''simple docstring''' UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase : Union[str, Any] = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A : Optional[Any] , A : Tuple ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , A ) == "1": UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) set_seed(A ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(A , A ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_00 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( A , A , A , A , A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: UpperCAmelCase = os.path.split(A )[-1].split('''.''' )[0] accelerator.init_trackers(A , A ) # Now we train the model for epoch in range(A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: UpperCAmelCase = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**A ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(A ), '''epoch''': epoch, } , step=A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
50
0
'''simple docstring''' from collections import namedtuple _lowercase : Union[str, Any] = namedtuple("""from_to""", """from_ to""") _lowercase : Optional[Any] = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_0454, 264.172), """cubicyard""": from_to(0.7_6455, 1.3_0795), """cubicfoot""": from_to(0.028, 35.3147), """cup""": from_to(0.0_0023_6588, 4226.75), } def lowerCamelCase__ ( A : Union[str, Any] , A : Optional[int] , A : Optional[int] ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'from_type\' value: {from_type!r} Supported values are:\n""" + ''', '''.join(__snake_case ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f"""Invalid \'to_type\' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(__snake_case ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCamelCase__: def __init__( self : List[Any] , lowerCAmelCase : int )-> Tuple: """simple docstring""" UpperCAmelCase = value UpperCAmelCase = None UpperCAmelCase = None class UpperCamelCase__: def __init__( self : List[Any] , lowerCAmelCase : Node )-> Dict: """simple docstring""" UpperCAmelCase = tree def a__( self : Optional[int] , lowerCAmelCase : Node | None )-> Optional[int]: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[str] = "encodec" def __init__( self : List[str] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase : Tuple=24000 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : str=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=128 , lowerCAmelCase : Any=32 , lowerCAmelCase : Any=1 , lowerCAmelCase : List[Any]=[8, 5, 4, 2] , lowerCAmelCase : Union[str, Any]="weight_norm" , lowerCAmelCase : str=7 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : Any=3 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]="reflect" , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Union[str, Any]=1.0 , lowerCAmelCase : Optional[Any]=1024 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : str=True , **lowerCAmelCase : str , )-> List[str]: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase ) @property def a__( self : str )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__( self : List[str] )-> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def a__( self : List[Any] )-> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def a__( self : int )-> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
50
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _lowercase : str = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _lowercase : Union[str, Any] = json.load(f) @require_torch class lowerCamelCase_( unittest.TestCase ): def a__( self : Dict , lowerCAmelCase : List[Any] )-> Optional[Any]: """simple docstring""" return FSMTTokenizer.from_pretrained(UpperCamelCase_ ) def a__( self : Optional[int] , lowerCAmelCase : int )-> List[Any]: """simple docstring""" UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def a__( self : int , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase = F"""facebook/wmt19-{pair}""" UpperCAmelCase = self.get_tokenizer(UpperCamelCase_ ) UpperCAmelCase = self.get_model(UpperCamelCase_ ) UpperCAmelCase = bleu_data[pair]['''src'''] UpperCAmelCase = bleu_data[pair]['''tgt'''] UpperCAmelCase = tokenizer(UpperCamelCase_ , return_tensors='''pt''' , truncation=UpperCamelCase_ , padding='''longest''' ).to(UpperCamelCase_ ) UpperCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase = tokenizer.batch_decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCAmelCase = calculate_bleu(UpperCamelCase_ , UpperCamelCase_ ) print(UpperCamelCase_ ) self.assertGreaterEqual(scores['''bleu'''] , UpperCamelCase_ )
713
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
0
'''simple docstring''' _lowercase : int = """Tobias Carryer""" from time import time class UpperCamelCase__: def __init__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=int(time() ) )-> str: # noqa: B008 """simple docstring""" UpperCAmelCase = multiplier UpperCAmelCase = increment UpperCAmelCase = modulo UpperCAmelCase = seed def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. _lowercase : Optional[Any] = LinearCongruentialGenerator(1664525, 1013904223, 2 << 31) while True: print(lcg.next_number())
714
'''simple docstring''' import heapq def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A , [-1 * len(A ), (key, value)] ) # chosen_vertices = set of chosen vertices UpperCAmelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices UpperCAmelCase = heapq.heappop(A )[1][0] chosen_vertices.add(A ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: UpperCAmelCase = elem[1][1].index(A ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
50
0